36-720: Discrete Multivariate Analysis HW01, Due September 5, 2007, 5:00pm

Announcements:

- The first part of the course follows Christensen Chapters 2, 3, and 10 (You should review, as needed, Chapters 1 and 9). This homework is mostly drawn from Chapter 2.
- Please remember that, although you are free to talk with one another about HW's, the work you turn in should be your own.
- Best to use a word processor that can handle mathematics (like LaTeX) and can include graphics from R and other programs. Next best is neat handwriting with neatly cut-and-pasted tables and graphs.

Problems:

- 1. In class we showed that the d.f. for the χ^2 test of independence (either X^2 or G^2) for the $I \times J$ table was (I-1)(J-1) under product-multinomial sampling, by counting parameters. Show the same result under single multinomial sampling.
- 2. Partitioning G^2
 - (a) Let $(n_1, ..., n_J)$ be a *J*-cell table of counts following a multinomial distribution with total sample size n_+ and cell probabilities $p_1, ..., p_J$. Show that the multinomial probability function can be factored into a product of J-1 binomial probability functions.
 - (b) Now consider a $2 \times J$ table $(n_{ij}: i = 1, ..., 2; j = 1, ..., J)$ [so, 2 rows and J columns], where the rows follow independent multinomials (with possibly different row totals n_{1+} , n_{2+}), and consider the likelihood ratio test statistic G^2 for independence of row and column effects (that is, $p_{1j} = p_{2j} \forall j$, also known as homogeneity of proportions). Use part (a) to show that G^2 can be partitioned into independent 1 d.f. G^2 components for $J 1 \times 2 \times 1$ tables.
- 3. Christensen, p. 62, Ex. 2.7.2. You should use all of the tools developed in the first two lectures. Please write a short paragraph summarizing/interpreting your analysis and answering the question about which sampling model is best.
- 4. Christensen, pp. 64–65, Ex. 2.7.5¹ For part (b), give the name of the probability function you derive for $P(y_1 = r_1|t = t_0)$, and explain which margins of the 2×2 table can be viewed as fixed, and why, for $P(y_1 = r_1|t = t_0)$.
- 5. Consider the following table for differing values of *K*:

	A	\overline{A}	Total
В	225 + K	75 – K	300
\overline{B}	75 – K	25 + K	100
Total	300	100	400

- (a) Find X^2 as a function of K, how large an integer value of K would you need to ensure that the test rejects the independence of rows and columns at the 1% level?
- (b) Repeat part (a) using G^2 in place of X^2 .
- (c) What do your answers in parts (a) and (b) suggest about the properties of the two goodness of fit tests?

Agresti (1992 Statistical Science) has a nice survey of exact tests for contingency tables. See hw01/agresti-1992-exact-inference.pdf.