
36-720 Homework 1 Solutions
Fall 2007

Problem 1 (10 points):
For a single multinomial distribution, under the null, pij = pipj, so the d.f. is I-1+j-1 as the
number of free row parameters is I-1 (

∑
i pi = 1) and the number of free column parameters

is J-1 (
∑

j pj = 1). Under the alternative (unrestricted model), the number of free parame-
ters is I*J-1 (one lost for

∑
i,j Pij = 1 ). So the d.f. for the single multinomial sampling is

d.f. = IJ-1 - (I-1+J-1) = (I-1)(J-1).

Problem 2 (30 points):
a) Let (N1, ..., NJ) have a Multinomial distribution with parameters (n,p), where p =
(p1, ..., pJ). The probability mass function is

P (N1 = n1, · · · , nJ = nJ) =
n!

n1! · · ·nJ !
pn1

1 ...pnJ
J

where
∑t

i=1 ni = n and
∑t

i=1 pi = 1. Multiply and divide this probability function by
P (N1 = n1), where N1 is Binomial(n, p1). We get,

P (N1 = n1, · · · , Nt = nJ) =
n!

n1!(n− n1)!
pn1

1 (1− p1)
n−n1

n!

n1! · · ·nJ !
pn1

1 · · · pnJ
J

n1!(n− n1)!

n!

1

pn1
1

1

(1− p1)n−n1

=
n!

n1!(n− n1)!
pn1

1 (1− p1)
n−n1

(n− n1)!

n2! · · ·nJ !

pn2
2 · · · pnJ

J

(1− p1)n−n1

=
n!

n1!(n− n1)!
pn1

1 (1− p1)
n−n1

(n− n1)!

n2! · · ·nJ !

(
p2

1− p1

)n2

· · ·
(

pJ

1− p1

)nJ

which is the product of a Binomial(n, p1) times a Multinomial(n − n1,p
∗), with p∗ =(

p2

1−p1
, · · · , pJ

1−p1

)
.

If we apply the same decomposition to the Multinomial(n−n1,p
∗), and then to Multinomial(n−

n1 − n2,p
∗∗), and so on, we get

P (N1 = n1, · · · , Nt = nJ) = P (N1 = n1)P (N2 = n2|N1 = n1) · · ·P (NJ−1 = nJ−1|Ni = ni, 1 ≤ i ≤ J−2)

where N1 is Bin(n, p1) and Nk given N1, · · · , and Nk−1 is Bin
(
n−∑k−1

i=1 ni,
pk

1−∑k−1
i=1 pi

)
, for

k = 2, , J − 1.

b) Say the first sample has distribution Multi1(n1, P11, P12, ..., P1J) and the second sample
has distribution of Multi2(n2, P21, P22, ..., P2J). Then with the product-multinomial sam-
pling, the likelihood function is L(p) = Multi1(n1, P11, P12, ..., P1J)∗Multi2(n2, P21, P22, ..., P2J),
which gets maximized at p̂ij =

nij

n
.
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Under the null H0 : p1j = p2j = πj, j=1,...,J, the likelihood ratio function becomes L(p) =
Multi01(n1, π1, π2, ..., πt) ∗Multi02(n2, π1, π2, ..., πJ), which get maximized at p̂0

ij = π̂j =
n.j

n..
.

The likelihood ratio test statistics is

λ =
L(p̂0)

L(p̂)
=

Multi01 ∗Multi02
Multi1 ∗Multi2

then G2 = −logλ, each of the multinomials can be factored to J-1 binomials, as we proved

in part a. So G2 = −∑J−1
1 log(

Bin0
1j∗Bin0

2j

Bin1j∗Bin2j
) =

∑
J−1 G2

1 as for a 2*2 table, G2
1 = −logλ =

−log(
Bin0

1∗Bin0
2

Bin1∗Bin2
).

Alternatively, we can do the calculation directly without invoking part (a), but this in-
volves considerable algebraic manipulation that is equivalent to reproving part (a).

Problem 3. EX. 2.7.2 (15 points):
Both the χ2 and likelihood ratio test give a test-statistic of about 14.99. Comparing to a
χ2 distribution with (2 − 1)(12 − 1) = 11 degrees of freedom, this gives a p-value of 0.18.
Therefore, we fail to reject the null hypothesis of independence of gender and birth month.
Normally we would stop here, but because the problem asked us to use all the tools developed
in the first two lectures, we proceed to examine the nature of the residuals under the null
model. The Pearson residuals are given in the following table.

Female Male
Jan 0.41 −0.40
Feb 0.87 −0.84
Mar 1.01 −0.98
Apr −1.51 1.46
May −0.53 0.51
Jun −0.10 0.10
Jul −0.64 0.62

Aug 0.48 −0.47
Sep 0.26 −0.26
Oct 1.05 −1.01
Nov −0.02 0.02
Dec −1.20 1.15

There appears to be a temporal pattern in the residuals, with more than the expected
number of males being born between April and July as well as in November and December.
However, compared to the degrees of freedom, the residuals are not very large. Perhaps with
a larger sample size we would be able to detect lack of independence, in which case we could
test for such a pattern using an odds ratio collapsing over the relevant months.

As an observational study, we would like to think that n++ is fixed and it’s better to
think of this as a single multinomial sampling.
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Problem 4 EX. 2.7.5 (15 points):

1.

Pr(y1 = r1, t = t0) = Pr(y1 = r1, y2 = t0 − r1)

=

(
N1

r1

)
pr1

1 (1− p1)
N1−r1

(
N2

t0 − r1

)
pt0−r1

2 (1− p2)
N2−(t0−r1)

2. Assuming p1 = p2, t = y1 + y2 ∼ Binomial(N1 + N2, p1), so

Pr(y1 = r1|t = t0) = Pr(y1 = r1, y2 = t0 − r1)/Pr(t = t0)

=

(
N1

r1

)
pr1

1 (1− p1)
N1−r1

(
N2

t0−r1

)
pt0−r1

2 (1− p2)
N2−(t0−r1)

(
N1+N2

t0

)
pt0

1 (1− p1)N1+N2−t0

=

(
N1

r1

)(
N2

t0 − r1

)
/

(
N1 + N2

t0

)

This is hypergeometric distribution. Both columns and rows are fixed. Each row
considered as an independent Binomial, the row totals are fixed; as the condition, t,
and thus the column totals are fixed.

3. Pr(y1 = 3|t = 10) =
(
5
3

)(
8
7

)
/
(
5+8
10

)
= .2797

The condition Pr(y1 = r1|t = 10) ≤ Pr(y1 = 3|t = 10) is satisfied for r1 = 2, 3, and 5,
which gives a p-value of 0.51.

Problem 5 (30 points):

a) No matter what the value of K, the expected values for the 4 cells are:

A Ā Total
B 225 75 300
B̄ 75 25 100

300 100 400

We can now write the Pearson chi-square statistic as

χ2 =
K2

225
+

K2

75
+

K2

75
+

K2

25

= K2(
1

225
+

2

75
+

1

25
)

= K2 16

225
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Since the critical value of χ2 with 1 degree of freedom at 1% level is 6.635, the test rejects
if χ2 ≥ 6.635. Thus, we need to have

K2 16

225
≥ 6.635

K2 ≥ 225

16
6.635

= 93.3

|K| ≥ 9.659.

If we consider only integer values of K, then the result is that K ≥ 10 or K ≤ −10.
Thus χ2 is useful for detecting departures from independence in both positive and negative
directions.

b) Using G2 in place of χ2, we get

G2 = 2
∑

O log
O

E

= 2[(225 + K) log
225 + K

225
+ 2(75−K) log

75−K

75
+ (25 + K) log

25 + K

25
]

≥ 6.635.

since, as before, we reject H0 at the 1% level if G2 ≥ 6.65. Solving this inequality in Maple
yield |K| ≥ 9.887. Alternatively you may just have tried integer values numerically in which
case you would have discovered that |K| ≥ 10.

c) In this instance the integer values in parts (a) and (b) are the same and we appear to
have equivalent results. This will not happen in general.
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