36-720 Homework 1 Solutions
Fall 2007

Problem 1 (10 points):

For a single multinomial distribution, under the null, p;; = p;p;, so the d.f. is I-1+j-1 as the
number of free row parameters is I-1 (. p; = 1) and the number of free column parameters
is J-1 (3_;p; = 1). Under the alternative (unrestricted model), the number of free parame-

ters is I*J-1 (one lost for »_, . F; = 1 ). So the d.f. for the single multinomial sampling is
df =1J-1 - (L1+J-1) = (L1)(J-1).

Problem 2 (30 points):
a) Let (NVq,...,N;) have a Multinomial distribution with parameters (n,p), where p =
(p1,..-,ps). The probability mass function is
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where Z:zl n; = n and 22:1 p; = 1. Multiply and divide this probability function by
P(N; = ny), where Ny is Binomial(n, p;). We get,
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which is the product of a Binomial(n,p;) times a Multinomial(n — nq, p*), with p* =
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If we apply the same decomposition to the Multinomial(n—n;, p*), and then to Multinomial(n—
ny — ng, p**), and so on, we get
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where N; is Bin(n,p;) and Ny given Ny, ---, and Nj_; is Bin(n — Zif:ll n;, %), for
=1 I’
k=2 J—1.

b) Say the first sample has distribution Multii(nq, P11, P2, ..., P1y) and the second sample
has distribution of Multiy(ng, Pay, Pas, ..., Pay). Then with the product-multinomial sam-
pling, the likelihood function is L(p) = Multiy(nq, P11, Pia, ..., Pry)*Multis(ng, Py, P, ..., Pay),
which gets maximized at p;; = =2
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Under the null Hy : p1; = pa; = 75, j=1,...,J, the likelihood ratio function becomes L(p) =
Multi®(ny, w1, T, ..., T) * MultiS(ng, 71, T, ..., m7), which get maximized at ﬁ?j =7 = 2
The likelihood ratio test statistics is
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then G? = —log), each of the multinomials can be factored to J-1 binomials, as we proved
in9 «Bing.,
in part a. So G2 = — 377! log(%) = >, ,G7 as for a 2¥2 table, G} = —log\ =
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Alternatively, we can do the calculation directly without invoking part (a), but this in-

volves considerable algebraic manipulation that is equivalent to reproving part (a).

Problem 3. EX. 2.7.2 (15 points):

Both the y? and likelihood ratio test give a test-statistic of about 14.99. Comparing to a
x? distribution with (2 — 1)(12 — 1) = 11 degrees of freedom, this gives a p-value of 0.18.
Therefore, we fail to reject the null hypothesis of independence of gender and birth month.
Normally we would stop here, but because the problem asked us to use all the tools developed
in the first two lectures, we proceed to examine the nature of the residuals under the null
model. The Pearson residuals are given in the following table.

Female Male

Jan 0.41 -0.40
Feb 0.87 —0.84
Mar 1.01 —-0.98
Apr —1.51 1.46
May  —0.53 0.51
Jun —0.10 0.10
Jul —0.64 0.62

Aug 0.48 —0.47
Sep 0.26 —0.26
Oct 1.05 —1.01
Nov  —0.02 0.02
Dec —1.20 1.15

There appears to be a temporal pattern in the residuals, with more than the expected
number of males being born between April and July as well as in November and December.
However, compared to the degrees of freedom, the residuals are not very large. Perhaps with
a larger sample size we would be able to detect lack of independence, in which case we could
test for such a pattern using an odds ratio collapsing over the relevant months.

As an observational study, we would like to think that n,, is fixed and it’s better to
think of this as a single multinomial sampling.
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Problem 4 EX. 2.7.5 (15 points):
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This is hypergeometric distribution. Both columns and rows are fixed. Each row

considered as an independent Binomial, the row totals are fixed; as the condition, t,
and thus the column totals are fixed.

3. Pr(y; =3|t=10)= (3) )/ (%) = 2797

7)1\ 10
The condition Pr(y; = r1|t = 10) < Pr(y, = 3|t = 10) is satisfied for r; = 2,3, and 5,
which gives a p-value of 0.51.

Problem 5 (30 points):

a) No matter what the value of K, the expected values for the 4 cells are:

A A | Total
1§ 225 75 300

B | 7 25| 100
300 100 | 400

We can now write the Pearson chi-square statistic as

o KRR K
225 75 75 25
1 2 1

2 —_— —_— —_—
(225 * 75 * 25)
KQE
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Since the critical value of y? with 1 degree of freedom at 1% level is 6.635, the test rejects

if x? > 6.635. Thus, we need to have

16
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6.635

2256 635
16

93.3
9.659.

If we consider only integer values of K, then the result is that K > 10 or K < —10.
Thus x? is useful for detecting departures from independence in both positive and negative

directions.

b) Using G? in place of x?, we get
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since, as before, we reject Hy at the 1% level if G > 6.65. Solving this inequality in Maple
yield |K| > 9.887. Alternatively you may just have tried integer values numerically in which

case you would have discovered that |K| > 10.

c) In this instance the integer values in parts (a) and (b) are the same and we appear to
have equivalent results. This will not happen in general.



