36-720: Discrete Multivariate Analysis HW02, Due Wednesday, September 19, 2005

Announcements:

- We are finishing up with the first part of the course, Chapters 2, 3 and parts of Chapters 9 and 10, in Christensen. Next week we will turn to graphical models (parts of Chapter 5, especially sections 5.1–5.3) and model selection/criticism (parts of Chapter 6); Chapters 2 and 4 of Edwards are also relevant.
- Problems #4 #7 below were written somewhat quickly. Please solve the "intended" problem if there are flaws!
- Please remember that, although you are free to talk with one another about HW's, the work you turn in should be your own.
- Best to use a word processor that can handle mathematics (like LaTeX) and can include graphics from R and other programs. Next best is neat handwriting with neatly cut-and-pasted tables and graphs.

Problems:

- 1. p. 113, Ex. 3.8.2
- 2. p. 114, Ex. 3.8.7 Iterative Proportional Fitting is scalable to large tables, especially when the log-linear model is not too complicated, so even though it is an old method, it is worth knowing something about.
- 3. pp. 113-114, Ex. 3.8.4
- 4. pp. 114-115, Ex. 3.8.9

In addition, please do:

- (d) Use the model of no three-way interaction to test whether there is a common odds ratio for sex and admission in all six departments.
- (e) Whether or not you accepted the hypothesis of a common odds ratio, use the no three-way interaction model to estimate the common odds ratio and give a confidence interval for it. Compare with a confidence interval for the odds ratio in the marginal table for sex and admission (summed across departments).

The Mantel-Haenszel test is still quite popular in many settings. For example it is often used to test for the effect of treatement on outcome in multicenter clinical trials where the $2 \times 2 \times K$ table is (treatment)×(outcome)×(center); and it is used to assess test-question bias by major testing organizations where the $2 \times 2 \times K$ table is (right/wrong)×(majority/minority group)×(total score on other questions).

[Continued on back]

5. Let $n = (n_{ij} : i = 1 ... I, j = 1 ... J)$ be a two-way table of counts that follows the Poisson sampling model. Use the delta method to show that the asymptotic standard error of the estimated log-odds ratio

$$\log \widehat{OR} = \log \frac{n_{ij}n_{i'j'}}{n_{i'j}n_{ij'}} \tag{*}$$

is

$$\sqrt{\frac{1}{n_{ij}} + \frac{1}{n_{i'j'}} + \frac{1}{n_{i'j}} + \frac{1}{n_{ij'}}}$$

- 6. Let $n = (n_1, ..., n_C)$ be a table with total $N = n_+$, following the multinomial sampling model: $n \sim Multinom(N, p)$ where $p = (p_1, ..., p_C)$ are the cell probabilities.
 - (a) For N = 1, compute the variance-covariance matrix V for n.
 - (b) Show that, as $N \to \infty$,

$$(n-m)/\sqrt{N} \sim N(0,V),$$

where m = E[n], by showing that a standard asymptotic theorem applies, and gives this result. (A more general theory is sketched in Chapter 12 of Christensen.)

- (c) Now assume that the n_c 's can be re-indexed as n_{ij} in a two-way table. Use the delta method to obtain the asymtotic standard error of $\log \widehat{OR}$ in (*) again, this time under multinomial sampling.
- 7. Suppose $n = (n_1, \dots, n_C)$ is sampled from an exponential family model with parameter vector θ

$$L(n \mid \theta) = G(n)e^{B(\theta) + K(n)^T \gamma(\theta)}$$

where $K(n) = (K_1(n), ..., K_d(n))$ are the *sufficient statistics*, and $\gamma(\theta) = (\gamma_1(\theta), ..., \gamma_d(\theta))$ are the *natural parameters*. Let $\ell(\theta) = \log L(n \mid \theta)$.

(a) Compute the gradient $\partial \ell(\theta)/\partial \theta$ and show that

$$\frac{\partial \ell(\theta)}{\partial \theta} = \frac{\partial B(\theta)}{\partial \theta} + K(n)^T \frac{\partial \gamma(\theta)}{\partial \theta}$$

where $\frac{\partial B(\theta)}{\partial \theta}$ is the gradient of $B(\theta)$ and $\frac{\partial \gamma(\theta)}{\partial \theta}$ is an appropriate matrix of partial derivatives.

(b) Use part (a) together with the fact that $E[\partial \ell(\theta)/\partial \theta \mid \theta] = 0$ to show that

$$\frac{\partial \ell(\theta)}{\partial \theta} = [K(n) - \mu(\theta)]^T \frac{\partial \gamma(\theta)}{\partial \theta}$$

where $\mu(\theta) = E[K(n)]$ is the vector of expected sufficient statistics.

(c) Now suppose d = C, $K(n) = (n_1, ..., n_C)$, and $\gamma(\theta) = A\theta$. Show that, for the MLE $\hat{\theta}$,

$$\mu(\hat{\theta})^T A = n^T A$$

(d) What does this have to do with equating expected and observed margins for the MLE of a log-linear model?