
Two-way ANOVA

For continuous response data recall the two-way ANOVA model

yi jk = u+ u1(i) + u2( j) + u12(i j ) + εi jk , whereεi jk
iid
∼ N(0, σ2)

(i = 1, . . . , I ; j = 1, . . . , J). This is equivalent to

yi jk
indep
∼ N(mi j , σ

2) , wheremi j = u+ u1(i) + u2( j) + u12(i j )

If the design is balanced withK observations per cell then the cell-means

MLE’s m̂i j = yi j satisfy

m̂i j ∼ N(mi j , σ
2/K)

and we can learn everything about the table of meansmi j from the table of

MLE’s m̂i j (except for estimatingσ2, which is essentially the MSE of the

residualsyi jk − m̂i j ).

2 36-722 August 29, 2007

36-720: Log-Linear Models

Brian Junker

August 29, 2007

• Two-way ANOVA

• Two-way Log-Linear Model

• Odds Ratios, Independence, Interaction Plots

• Example 1: Husbands’ & Wives’ Heights

• Example 2: Politics by College

• Extending the Notation to Three-Way Tables

1 36-722 August 29, 2007



Two-way Log-Linear Model

Now let mi j be the expected counts in anI × J table. An analogous model

is

logmi j = u+ u1(i) + u2( j) + u12(i j ) (3)

• Why write in terms oflogmi j ?

– The observed countsni j and their expected valuesmi j = E[ni j ] are
bounded below by zero (and above byn++); this places awkward limits
on theu-terms in (1); taking logs removes these limits in (3).

– This is especially true when consideringn++ = 1, which is useful for
thinking about the jount distribution of the row and column variables!

– Log-linear modeling is natural for the Poisson, Multinomial and
Product-Multinomial sampling models.

– There is a good asymptotic theory for (3).

• What about the error term “+εi jk ”?

– This is where the sampling models come in.
– ni j ∼ (sampling model with meanmi j ).
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• A feature of the model

mi j = u+ u1(i) + u2( j) + u12(i j ) (1)

is that it is over-parametrized:u12(i j ) already containsI × J parameters

corresponding to the cell meansmi j and we don’t really need the additional

1+ I + J parametersu+ u1(i) + u2( j); for any choice of these we can

compensate withu12(i j ) to exactly match ˆmi j .

• Constraints such as
∑

i u1(i) = 0;
∑

i
∑

j u12(i j ) = 0 are a way to deal with this

overparametrization.

• If the model changes, e.g. to

H0 : mi j = u+ u1(i) + u2( j) , (2)

then the MLE’s change from ˆmi j = yi j to

m̂0
i j = yi + yj − y = y+ (yi − y) + (yj − y) ,

at least in the balanced case ofK observations per cell.

• We learn about the adequacy of a model like (2) by comparing the fit of its

MLE’s m̂0
i j to the unconstrained MLE’s ˆmi j .
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• Underproduct multinomial sampling, the columns are independent of

the rows iff p1 j = · · · = pI j ≡ π j ∀ j; therefore

mi j = ni+π j

and once again

logmi j = u+ u1(i) + u2( j) (4)

• The converses are also true:

– Undermultinomial sampling, (4) impliespi j = pi+p+ j and hence

mi j = mi+m+ j/m++;

– Underproduct-multinomialsampling, (4) implies

p1 j = · · · = pI j ≡ π j ∀ j; and hencemi j = ni+π j .

The proofs are just careful bookkeeping.

Thus,the additive log-linear model corresponds exactly to independence.
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Once again the model

logmi j = u+ u1(i) + u2( j) + u12(i j ) , (3)

is over-parametrized. We will talk more about constraints to identify the

model, but one common set is just as in ANOVA:

∑

i

u1(i) =

∑

j

u2( j) =

∑

i

∑

j

u12(i j ) = 0 .

A more interesting model is theadditive log-linear model:

• Undermultinomial sampling, theI × J table satisfies independence

iff pi j = pi+p+ j , so that

mi j = n++pi+p+ j

or equivalently

logmi j = u+ u1(i) + u2( j) (4)
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What does the null hypothesis
H0 : u12(i j ) + u12(i′ j′) − u12(i′ j) − u12(i j ′) = 0

mean, in the model
logmi j = u+ u1(i) + u2( j) + u12(i j ) ?

Let a, b, c, d be constants, such that
u12(i j ) = a

u12(i j ′) = a+ b
u12(i′ j) = a+ c

u12(i j ) = a+ d

ThenH0 above is equivalent to
a+ (a+ d) − (a+ b) − (a+ c) = 0

or d = b+ c. Taking
αi = a β j = 0

αi′ = a+ c β j′ = b

we see thatH0 is equivalent tou12(rs) = αr + βs, for r = i, i′ ands= j, j′.
Sinceαr andβs can be subsumed intou1(r) andu2(s) respectively,H0 above is
equivalent to

H0 : u12(rs) = 0 , r = i, i′ , s= j, j′
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Odds Ratios, Independence, Interaction Plots

By cancelling then’s in either the multinomial cell meansmi j = n++pi j or

the product multinomial cell meansmi j = ni+pi j , we see that the odds ratio

OR(i, j, i′, j′) =
pi j pi′ j′

pi′ j pi j ′
=

mi j mi′ j′

mi′ jmi j ′

Taking logs, we see

logOR(i, j, i′, j′) = logmi j + logmi′ j′ − logmi′ j − logmi j ′

= u12(i j ) + u12(i′ j′) − u12(i′ j) − u12(i j ′)

where in the last line we have substituted logmi j = u+ u1(i) + u2( j) + u12(i j ).

Thus

OR(i, j, i′, j′) = 1⇔
I∑

r=1

J∑

s=1

qrsu12(rs) = 0

whereqi j = qi′ j′ = 1, qi′ j = qi j ′ = −1 and otherwiseqrs = 0.

Since
∑

r
∑

s qrs = 0, then
∑

r
∑

s qrsu12(i j ) is acontrast.
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Example 1: Husbands’ & Wives’ Heights

OBS W. Tall W. Med W. Short log(OBS) W. Tall W. Med W. Short
H. Tall 18 28 14 H. Tall 2.89 3.33 2.64

H. Med 20 51 28 H. Med 3.00 3.93 3.33
H. Short 12 25 9 H. Short 2.48 3.22 2.20
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Columns within Rows

G2
= 2.92 on (3− 1)(3− 1) = 4 d.f.; p = 0.57; logmi j = u+ u1(i) + u2( j) seems OK.
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Independence of rows and columns

We know that

(rows) ⊥⊥ (columns) ⇔ OR(i, j, i′, j′) = 1 , ∀i, j, i′, j′

⇔ u12(i j ) + u12(i′ j′) − u12(i′ j) − u12(i j ′) = 0

⇔ OR(1, 1, i, j) = 1 , ∀i, j

⇔ u12(11)+ u12(i j ) − u12(i1) − u12(1j) = 0

and there are clearly just (I − 1)(J − 1) of the latter contrasts.

Applying the result of the previous slide to these contrastswe know that

the

(rows) ⊥⊥ (columns)⇔ u12(i j ) ≡ 0 , ∀i, j

Thus we can explore for independence by making alog-linear interaction

plot, very much like an interaction plot for ANOVA models.

9 36-722 August 29, 2007



Extending the Notation to Three-Way Tables
Adversity of school (k)

Low Med High
Family Risk (j) N R N R N R Total

Classrooom Nondeviant 16 7 15 34 5 3 80
Behavior (i) Deviant 1 1 3 8 1 3 17

Total 17 8 18 42 6 6 97

• There are a variety of two-way tables here:

– Conditional on low School Adversity we could examine
N R

Non 16 7
Dev 1 1

to see if there is a relationship between Class. Beh. and Family Risk.
– Conditional on deviant Classroom Behavior we could examine

Low Med High
N 1 3 1
R 1 8 3

to see if there is a relationship between Family Risk and School Adv.

• Any of these 2-way tables can be analyzed with logmi j = u+u1(i)+u2( j)+u12(i j ).
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Example 2: Politics by College
OBS Rep Dem Indep log(OBS) Rep Dem Indep

L.Arts 34 61 16 L.Arts 3.53 4.11 2.77
Eng 31 19 17 Eng 3.43 2.94 2.83
Agr 19 23 16 Agr 2.94 3.14 2.77

Educ 23 39 12 Educ 3.14 3.66 2.48
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G2
= 16.39 on (4− 1)(3− 1) = 6 d.f.; p = 0.01; logmi j = u+ u1(i) + u2( j) + u12(i j )

probably needed.
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Expanding the log-linear modelnotationto 3-way tables is not difficult:

logmi jk = u+ u1(i) + u2( j) + u3(k) + u12(i j ) + u23(jk) + u13(ik) + u123(i jk)

and the three main sampling models (Poisson, Multinomial, Product

Multinomial) generalize as well.

The main questions for the next several lectures are:

• What do theu-terms mean in this model? What hypotheses on them

correspond to conditional independence, etc.?

• What is a more efficient way to organize, specify, and interpret these

models (and tables)?

• What is a more efficient way to fit them and select among competing

models?
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Analysis of the two-way subtables is limited to questions ofindependence

or dependence between pairs of variables.

If we expand to analysis of the full 3-way table, we can ask more

interesting questions:

• Is classroom behavior independent of school adversity, given family

risk factors?

• How does the relationship between classroom behavior and school

adversity change, for boys from high-risk families vs. boysfrom

low-risk families?

• etc.
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