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Aqggregation and Association

Consider two questions on a math test:

Y1 “What is the slope oy = 2x+ 3 atx = 0?"
(Y1 = 0 for wrong,Y; = 1 for right).

Y,: “What is the slope of = (x + 1) + 5 atx = 0?”
(Y, = 0 for wrong,Y, = 1 for right).

For 500 students a table cross-classifying responsesde th® questions might
be as follows:

OBS | Y,=0 Y,=1| Total RESIDS| Y, =0 Y,=1
Y. =0 88 52| 140 Y. =0 1.08 -1.22
Yi=1 192 168 | 360 Yp=1| -0.68 0.76

Total 280 220| 500

The odds ratio is 1.48, and the Wald testhf: OR =1 yieldsz= 1.92
(p ~ 0.05).

For exampleP[Y, = 1]Y; = 1] = £ = 047> 044 = 22 = P[Y, = 1].
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On further investigation the students could be separatedaigroup of 200
students who had taken an algebra class (only) and 300 $sudbno had taken a
calculus class as well. Looking at the data separately &sehwo groups of
students, we see
Algebra Students Calculus Students

Yo=0 Y,=1| Total RESIDS| Y, =0 Y,=1 | Total
Y. =0 64 16 80 Y. =0 24 36 60
Y. =1 96 24 | 120 Y. =1 96 144 | 240

Total 160 40| 200 Total 120 180 | 300

The odds ratios here aff)2 ) =1and@ _ 1 55 Y, and Y, are

= _ )(96) (36)(96)
conditionally independent, given class. (Y1 1L Y)|(class).

Note Athat i

e P[Y,=1|Algebra] =0.6 < P[Y, =1|Calculus] =

e P[Y,=1]|Algebra] = 0.2 < P[Y, = 1| Calculus] =
This co-monotonicity in probabilities is what increases #issociation in the
combined table. See Esary, Proschan and Walkup (1&6¥,Math. Sat.).
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Smpson’s (Yule's) Paradox

Hospital A Hospital B

Recovered Died Recovered Died

Treatment Ni11 Ni21 Treatment Ny12 N1

Placebo No11 Nooq Placebo N1 N2y

Simpson’s paradox occurs, e.g., when

N111N221
OR, —— >1
N211N121

N112M222
ORg — >1

N212N122

(N111 + N112)(N221 + N222)

ORAsB
i (N211 + N212)(N121 + N122)

(or reverse all inequalities, as in the math test example).
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For example:

Hospital A Hospital B

Recovered Died Recovered Died

Treatment 81 6 Treatment 192 71
Placebo 234 36 Placebo 55 25

__ (81)(36) _ . _ (192)(25) _ . _ (273)(61) _
Here,OR, = ©23) = 2.08; ORg = D65 = 1.23; andORy. g = T7289) = 0.74.

Note that

e P[Recov. | Hosp. A] = 0.88 > P[Recov. | Hosp. B] = 0.72

e P[Treat.| Hosp. A] = 0.24 < P[Treat. | Hosp. B] = 0.77

This reversal of probababilities is whaduces the association in the combined
table.

If the probabilities both increased (or both decreasedpitld/tend tancrease the
association in the combined table (as in the math test ex@mpl

Holland & Rosenbaum (198&nn. Sat.); Kadane, Meyer & Tukey (1999AA).
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Modelling the Three-Way Table

Phenomena like Simpson’s Paradox make it clear that we téesmm all
there is to know about a three- (or higher-) way table by josking at
2-way subtables or 2-way aggregates.

We now turn directly to models fan j in a three-way table. We will
develop, simultaneously,

e Direct models fomji; these show what (in-)dependence and
conditional (in-)dependence assumptions are being matiecby

model;

e The corresponding log-linear models; these make a link &etw
statistical (in-)dependence and terms in an ANOVA-like elod
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In general we are looking at dnx J x K table. Hereisa & 2x 2
example:

k=2
j=1 j=2

N111 Ni21 Ni12 N122

=1 | =1
| =2 MNp11 Noog | =2 MNp12 N2
| =3 | =3

N311 N321 N312 N322

We consider mainly multinomiadampling, although the formalisms go
through for the product multinomiahodel as well.

You can compute MLE’s for most of these models by hand.

We will also show how to compute MLE'’s using Ridm() function.
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The Model of Complete | ndependence

Themodel of complete independence is

MO . Dk = Pt PijsPisk  OF 1L(rows,columns,layers)

The MLE's are

f)l(?;z f)i++ f)+j+ f)++k

(ni++/n+++)(n+j+/n+++)(n++k/n+++) ,

~(0) ~(0)
M Nt Py

2
(ni++n+j+n++k)/n+++
(m++ﬁhj+ﬁh+k)/ﬁﬁ++
wherem j satisfyf the “marginal constraintshy, = ni,., My = Ny,

r,h++k = Nyiks ar](:Irﬁ+++ =Ny 4.

4This is so becausa, ., etc. are the dficient statistics for th@'s when the multinomial
model M© is viewed as an exponential family model: The MLE in an expuiaé family
model has to equate observesl, (., etc.) and expectedr{,,, etc.) sdficient statistics.
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The two test-statistics are

G? Nijk log nijx/ m(?ﬁ

with df. for they? tests above are
(IIK-1)-(1-1)-F-1)-(K-1)=1IK-1-J-K+2.

The corresponding log-linear model is

logmij = U+ ) + Uz(j) + Uz

which can be seen by Iog’ingg(?@ = Nyt Pios Pijs Posk UNderMo.
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Example
We consider the ¥ 2 x 3 table

Adversity of school K)
Low Med High
FamilyRisk) | N R N R N R | Total
Classrooom  Nondeviant 16 7 15 34 5 3 80
Behavior () Deviant 1 1 3 8 1 3 17
Total 17 8 18 42 6 6 97

The model can be fitted directly or by usipgim() in R. For example,

n <- scan(sep="&'")
16 & 7 & 15 & 34 & 5 & 3
1 &1 &3 &8¢&1&3
Beh <- c(rep("N",6),rep("D",6))
Risk <- rep(c('"N","R"),3)
Schl <- rep(c(rep('L",2),rep("M",2),rep("H",2)),2)
summary (fit® <- glm(n =~ Beh + Risk + Schl,family=poisson))
mhat <- fitted(fit®)
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The table of fitted values is

Low Med High
N R N R N R | Total
Nondeviant| 8.72 11.90 20.92 2857 418 571 80
Deviant 1.85 2.53 4.44 6.07 089 121 17
Total 17 8 18 42 6 6 97

and it is easy to verify that this table has the same margals as the
original (as it must).

X2=17300ndf = (IJK-1) - (1 -1)-(J-1)-(K-1)=2.2.3-1

—2—-1-1=7; with ap-value of 0.015.

G? = 16.42,df = 7, p-value=0.02. Note that this is the same as the
“residual deviance” in thglm() output.

The Pearson residuals fot© are

Low Med High

N R N R N R
Nondeviant| 2.47 -1.42 -1.29 1.02 0.40 -1.14
Deviant -0.63 -0.96 -0.69 0.78 0.12 1.62
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Models with One Factor |ndependent of the Others

There are three such models:

Pijk = Pi++P+jk  Or (rows)i (columns,layers)
Pijk = P+j+Pi+k  Or (columns)u (rows,layers)

Pijk = P++kPij+ or (layers) (rows,columns)

The MLE'’s are straightforward again. For example unilié?,

A(l) _

IO,Jk p|++p+Jk — n|++n+1k/n+++

and

N

m(l) — m++m+]k/m+++

subject to the same sorts of constraints, mgy = n, j, again due to
equating expected and observedlisient statistics for MLE’s in the
exponential family model.
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The test-statistics are again

G° Nijk log nijk/m(js)k :

depending on which modsl= 1, 2, or 3 is in use; the df. for thg? tests above are
(I1JK-1)-(1-1)-(IK-1) = (I-1)JK-1)for MWD;
(I1JK-1)-(J-1)-(K=-1) = J-1)(K-=-1)for M®;
(IJK-1)-(K-1)-(1J-1) = (K=1)(1J-1)forM®,

The corresponding log-linear models are

logmijx = U+ Ugg) + Uy + Usgy + Uzsgk
logmijc = U+ Uy + Uzgj) + Usgy + Urag
logmijk = U+ Ugg) + Uy + Usgy + Uizgj)

which can be seen by log'ing the corresponding under eacitM®.
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Example, Continued
Returning to the school behavior data, we can fit all threeetsod R as

summary(fitl <- glm(n ~ Beh + Risk*Schl, family=poisson))
summary (fit2 <- glm(n ~ Risk + Beh*Schl,family=poisson))
summary (fit3 <- glm(n ~ Schl + Beh*Risk,family=poisson))

and we discover

Resid Deviance df p-value AIC

G, =556 5 035 6039

G, =1276 5 Q03 6751

2) =
G(%) =5252 8 Q00 10127

It seems thaMV) provides the best fit relative to the saturated model:
(classroom behaviar) (school adversity, family risk)

The Pearson residuals fotD) are
Low Med High
N R N R N R

Nondeviant| 0.53 0.16 0.04 -0.11 0.02 -0.88
Deviant -1.15 -0.34 -0.09 024 -0.05 1.90
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Conditional Independence M odels

For a model asserting (rowg)columns)| (layers), we would have
P[ijK] = P[ijIKIP[K] = PlIKIP[jIKIP[K] = Dtk Peik - PrekPei
Ptk Prsk Pk

There are clearly three such models:

Pijk = PiskPrjk/ Pk OF (rows)iL(columns) (layers)
Pijk = Pij+ P+jk/Psj+ O (rows)u (layers)| (columns)
Pijk = Pij+ Pisk/Pire  OF (columns)u (layers)| (rows)

The MLE'’s are straightforward again. For example unklié?,

(4 A ~
pl(le = pi+kp+jk/ Ptk = (ni+kn+jk)/(n++kn+++)

and

ﬁ}(ﬁ = MM jie/ My i
subject to the same sorts of constraints, gk = n. jk, again due to equating
expected and observedfBaient statistics for MLE’s in the exponential family

model.
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The test-statistics are again

2(9)12
jk — Mjk)

X?
)
M

G* Nijk log nijk/m(js)k :

depending on which model= 4,5, or 6 is in use; the df. for thg? tests above

are
(I - 1)(J - DK for M@:

(I = 1)K - 1)J for M®:
(J-1)(K - D) for M®,

For example, the test favi® clearly poolsl tests for independence of the
conditionalJ x K subtable at each row, and each of these testshad (K — 1)
df, so the total df isJ — 1)(K — 1)I.

The corresponding log-linear models are
logmijk = U+ Ugg) + Uy + Usgy + Ursge) + Uosgik)

logmj = U+ Uy + Uz + Ugy + Unzgj) + Uas
|Og Mijk = U+ Uy + U + U3k + Uizgj) + Uiz

For example, when the in the first model weKixve get an overparametrized
version of the independence model fag = u + Uy + Uy).
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Example, Continued

Returning to the school behavior data, we can fit all threeelsoia R as

summary (fit4 <- glm(n
summary (fit5 <- glm(n
summary (£fit6 <- glm(n

and we discover

Resid Deviance df p-value

" Beh*Schl + Risk*Schl, family=poisson))
" Schl*Risk + Beh*Risk,family=poisson))
" Beh*Risk + Beh*Schl, family=poisson))

AIC

G(24) =190 3 Q60
G2, =412 4 Q39

(5)
Gz, =1132 4 Q02

6)
Although two of these models fit well

6065
6087
6807

(classroom behaviar) (family risk) | (school adversity)
(classroom behaviar) (school adversity) (family risk)

the best fitting of the previous three models is simpler, w&igimilar AIC (60.39):

(classroom behaviar) (school adversity, family risk).
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The Model of No Three-Way Interaction

Each of the models we have considered so far have involvealibence
of one or more interaction in the log-linear model

logmijk = U+ Uz + Uzgj) + Uz + U12gj) + U1k + U23(jk) + U123 k)

or equivalently setting the corresponding odds-ratiosaetpl.

e The independence model SH_T@QJ') = U23(jk) = U13(ik) = U123(jk) = 0
vi, j, k.

¢ Independence of one factor from the other two sets the thege-
Interactionus2zgj = 0 and two of the three two-way interactions to
zero (which two depends on the model).

o Conditional independence sets the thre-way interactigg j = 0
and sets one of the two-way interactions to zero (again,r#pg on
the model).
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There is one more model commonly considered, that sets baly t
three-way Interactioni;ozgjky = 0, Vi, J, k. From this model,

l0g Myjk = U+ Uy + Uz(j) + Ua + U12gj) + Unagky + Uz3(k) ()

generically takinga = €, we see that the model for the cell means is

Mijk = a-ayg) - ax(j) - a3k * A12(j) - A3(k) - A3(jk)

Now consider an odds ratio in thex J table in any of th&K layers:

OR(G. j.i". /'IK) = PijkPir j k _ My jkMy jk
Pi’ jk Pij k My kMY jk

@@y ) 32(j) @) Q1.2(j) A13(k) 23k [ @ A1) @2() B3y a2( ) Ba3( k) B23( k)]

@@y )az(j) B3k @20 j) @134 k) B23(jk) ] @ 8u ) A2(j) B30 Ra.2( ) Aa3k) B23() k)
Q124 j) @13k 23kl [Qu2 jyusedesg]  Aizej)duzg )

Q120 A3k @23l daziin sl du2e a2y

which does not depend dxh
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Therefore, the model of no three-way interaction
M) : (x) holds
IS equivalent to the model in which the odds ratio is the sanmevery

layer of the table.

For this model, there are not closed-form MLE’s; they musttaputed
iteratively. However, the test statistics are as usual

K (Nijk — m(?))z

~(7)
Mg

G° Nijk lognijk/ m(ﬁz

with df. for they? tests above ard  1)(J — 1)(K — 1).
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The model is easy to fit with R
summary (fit7<-glm(n"Beh*Risk*Schl-Beh:Risk:Schl,family=poisson))
This yields a fit ofG? = 0.94 on 2 d.f. Clearly there is overfit here.

However, given that the model fits we can now estimate a conuodds-ratio for
(say) the interaction of classroom behavior and family,reskcoss all levels of
school adversity:

n.mtx <- matrix(n,nrow=2,byrow=T)
mhat.mtx <- matrix(fitted(fit7),nrow=2,byrow=T)

OR(n.mtx[,(1:2)+0])$O0R # 2.29; CI is (0.12, 41.98)
OR(n.mtx[,(1:2)+2])$0R # 1.18; CI is (0.27, 5.06)
OR(n.mtx[,(1:2)+4])$0R # 5.00; CI is (0.34, 72.77)

OR(mhat.mtx[,(1:2)+0])$OR # 1.80
OR(mhat.mtx[,(1:2)+2])$0R # 1.80
OR(mhat.mtx[,(1:2)+4])$0OR # 1.80

WhenM) holds, the common odds ratio is more stably estimated stnees all
the data in the table, instead of one layer of data at a tineer(ggt slide).

21 36-720 September 5, 2007



Following our work above we know that under the model of neéhfactor
interaction, for alk,

Q124 j)Qa2( )

OR(, j, 1", J'IK) = = eXp[Ulzaj) + Ui j) — Urzgj) — ulZGj')]

Qa2 j)&12( )
Once we have fitted the model above we can access the estimtads and
their variance-covariance matrix as

print (U <- summary(fit7)$coefficients[,1])
# (Intercept) BehN RiskR SchlL SchlM
0.4765646 1.0026434 0.3945061 -0.3748634 0.3486696
BehN:RiskR BehN:SchllL BehN:SchlM RiskR:SchlL RiskR:SchlM

#
#
# -0.5898590 1.6615308 0.9269025 -0.6094350 0.9456019
V <- summary(fit7)$cov.unscaled

Under the model of no three-way interaction,
log(OR[ Beh, Risk|Schl]) = BehN: RiskN+BehD: RiskR—BehN: RiskR—BehD: RiskN

but we can see above that R set all but one of these equal toazelentify the
model. For R’s reduced model, then, we have that the log camodds ratio is

log(OR[Beh, Risk]) = log(OR[Beh, Risk|Schl]) = —BehN:RiskR = —U[6] = 0.59
with standard erron/V[6] = 0.39.
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Note also that exp{U[6]) = 1.80, the same as we calculated from the fitted
subtables on the slide above.

An approximate 95% CI for the log common odds ratio is

_U[6] + (=2,2)V[6]) = (~0.19,1.37)

which we can exponentiate to get an approximate 95% intéovahe common
odds ratio itself

exp(=0.19,1.37) = (0.83,3.93)
Note that

e The final Cl contains 1, suggesting that we cannot rejecéeith

* log(OR[Beh, Risk]) = 1, i.e. (behavior)iL (family risk)
* log(OR[Beh, Risk|Schl]) = 1, i.e. (behavior)wL (family risk) | (school);

e The CI here is much shorter than any of the CI's for OR’s cal®d from the
2x2 subtables above.

Using all of the data really does sharpen the inference!
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