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Aggregation and Association
Consider two questions on a math test:
Y:: “What is the slope of = 2x + 3 atx = 0?”
(Y1 = 0 for wrong,Y; = 1 for right).
Y,: “What is the slope of = (x + 1) + 5 atx = 0?”
(Y2 = 0 for wrong, Y, = 1 for right).

For 500 students a table cross-classifying responsesde th@® questions might
be as follows:

OBS|Y,=0 Y,=1|Total  RESIDS| ;=0 Y,=1
Y, =0 88 52| 140 Y,=0| 108 -1.22
Y,=1| 192  168| 360 Y,=1| -068  0.76

Total | 280  220| 500

The odds ratio is 1.48, and the Wald testHf: OR = 1 yieldsz = 1.92
(p =~ 0.05).

For exampleP[Y, = 1|Y; = 1] = 8 = 0.47 > 044 = 22 = P[Y, = 1].
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On further investigation the students could be separatechigroup of 200
students who had taken an algebra class (only) and 300 studbo had taken a

calculus class as well. Looking at the data separately f®eltwo groups of
students, we see

Algebra Students Calculus Students
Yo=0 Y,=1| Total RESIDS| Y, =0 Y,=1 | Total
Y.=0 64 16 80 Y. =0 24 36 60
Y1=1 96 24| 120 Yi=1 96 144 | 240
Total 160 40| 200 Total 120 180| 300
The odds ratios here af¢dfed) = 1 and G = 1. o, Y, and Y; are
conditionally independent, given class. (Y; 1L Y5)|(class).

Note that

e P[Y, =1]|Algebra] = 0.6 < P[Y; = 1| Calculus] =

e P[Y, =1]|Algebra] = 0.2 < P[Y, = 1| Calculus] =
This co-monotonicity in probabilities is what increases #ssociation in the
combined table. See Esary, Proschan and Walkup (128¥ ,Math. Sat.).
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Smpson’s (Yule's) Paradox

Hospital A Hospital B
‘ Recovered Died ‘ Recovered Died
Treatment N1 Ni21 Treatment Ni12 Ni2o
Placebo Np11 Noop Placebo N2 Moo

Simpson’s paradox occurs, e.g., when

N111N221
OR, = —/——=>1
N211N121
N112M222
ORg = —/—— >1
N212N122
N111 + N112)(N221 + N222
ORug = ( )( ) <1

(N211 + N212)(N121 + N122)

(or reverse all inequalities, as in the math test example).
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For example:
Hospital A Hospital B
‘ Recovered Died ‘ Recovered Died
Treatment 81 6 Treatment| 192 71
Placebo 234 36 PIacebJ 55 25

Here,OR, = £U59 = 2.08; ORs = &0 = 1.23; andOR, 5 = S5 = 0.74.

Note that
e P[Recov. | Hosp. A] = 0.88> P[Recov. | Hosp. B] = 0.72
e P[Treat. | Hosp. A] = 0.24 < P[Treat. | Hosp. B] = 0.77

This reversal of probababilities is whaaduces the association in the combined
table.

If the probabilities both increased (or both decreasedbitlditend taincrease the
association in the combined table (as in the math test ex@mpl

Holland & Rosenbaum (198&nn. Sat.); Kadane, Meyer & Tukey (1999ASA).
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Modelling the Three-Way Table

Phenomena like Simpson’s Paradox make it clear that we téeeno all
there is to know about a three- (or higher-) way table by jogking at
2-way subtables or 2-way aggregates.

We now turn directly to models fan . in a three-way table. We will
develop, simultaneously,

e Direct models fomj; these show what (in-)dependence and
conditional (in-)dependence assumptions are being madtieeby
model,

e The corresponding log-linear models; these make a link &éetw
statistical (in-)dependence and terms in an ANOVA-like elod
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In general we are looking at dnx J x K table. Hereisa & 2 x 2
example:

Ni12 Ni22

Ni11 Ni21

i=1 i=1
i=2 No11 N221 =2 No12 N222
i=3 i=3

N311 N321 N312 N322

We consider mainly multinomiadampling, although the formalisms go
through for the product multinomiahodel as well.

You can compute MLE’s for most of these models by hand.

We will also show how to compute MLE’s using Ridm() function.
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The Model of Complete I ndependence
Themodel of complete independence is
M@ Dk = PiesPrjs Prsk  OF LL(rows,columns,layers)

The MLE’s are

Q(ﬂz = E)i++ fj+j+ ﬁ++k
= (ni++/n+++)(n+j+/n+++)(n++k/n+++) ;

0 _ 5(0)
rrhk - n+++pljk

2
(ni++n+j+n++k)/n+++
= (m++m+j+m++k)/m§++
wherem j satisfy? the “marginal constraintsiy; . = Ni.., Myje = Ny,

r’h++k = Ny ik, andm+++ =Ny

8This is so becauss. ,, etc. are the dficient statistics for the’s when the multinomial
model M(© is viewed as an exponential family model: The MLE in an expuiaé family
model has to equate observel, (, etc.) and expectedr(;’,, etc.) sifficient statistics.
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The two test-statistics are
I J K (Nijk — 1 (0))2
> j
IR IP I I
i=1 j=1 k=1 My

K
Z nijk log nljk/n}(ﬂz
k=1

62:22

with df. for they? tests above are
(IIK-1)-(1-1)-(J-1)-(K-1)=1IK-1-I-K+2.

“M~

The corresponding log-linear model is
Iog Mijk = U+ Ugg) + Uz(j) + Uz

which can be seen by log’ mg\(ﬂz N+ P+ Pt j+ Pk UnderMo.

9 36-720 September 5, 2007



Example
We consider the £ 2 x 3 table

Adversity of school )
Low Med High
FamilyRisk) [ N R N R N R Total
Classrooom  Nondeviant 16 7 15 34 5 3 80
Behavior () Deviant 1 1 3 8 1 3 17
Total 17 8 18 42 6 6 97

The model can be fitted directly or by usip@m() in R. For example,

n <- scan(sep="&")
16 & 7 & 15 & 34 & 5 & 3
1&1&3&8&1&3
Beh <- c(rep("N",6),rep("D",6))
Risk <- rep(c("N","R™,3)
Schl <- rep(c(rep("L",2),rep("M",2),rep("H",2)),2)
summary (fit® <- glm(n ~ Beh + Risk + Schl,family=poisson))
mhat <- fitted(£fit®)
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The table of fitted values is

Low Med High
N R N R N R Total
Nondeviant| 8.72 11.90 2092 2857 4.18 5.71 80
Deviant 1.85 253 4.44 6.07 089 121 17
Total 17 8 18 42 6 6 97
and it is easy to verify that this table has the same margitals as the

original (as it must).

X?=1730o0ondf =(1IJK-1)-(1-1)-(J-1)-(K-1)=2-2-3-1
—2-1-1=7;with ap-value of 0.015.

G? = 16.42,df = 7, p-value=0.02. Note that this is the same as the
“residual deviance” in thglm() output.

The Pearson residuals ft© are

Low Med High
‘ N R N R N R
247 -142 -129 102 040 -1.14
-0.63 -0.96 -0.69 0.78 0.12 1.62

Nondeviant
Deviant
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Modelswith One Factor Independent of the Others

There are three such models:

M@ Pijk = Pis+Psjk  OF (rows)iL(columns,layers)
M@ pik=psjepisk OF (columns)i(rows,layers)
M®:  pik = pekpijs  or (layers)u (rows,columns)

The MLE'’s are straightforward again. For example unkliéb,
f)l(ﬁz = f)i++ ﬁ+jk = r]i++n+jk/ni++
and
m(jlﬁ = r’h++ﬁ'|+jk/';\n+++
subject to the same sorts of constraints, mgyx = n, jx, again due to
equating expected and observedhisient statistics for MLE’s in the
exponential family model.
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The test-statistics are again

X2 le ZJ} ZKl (ijic :(;nijk)z

i=1 j=1 k=1 mjk
I3 K
G* = ZZZZnijkIOgnijk/m(js)ka
io1 =1 kel

depending on which modsl= 1, 2, or 3 is in use; the df. for thg? tests above are
(1IK-1)—(1 -1)- (IJK = 1) (1 - 1)(IK — 1) for M@
(1JK-1)-(J-1)- (IK-1) (J-1)(IK - 1) for M®@;
(IIK-1)-(K-1)-(1J-1) (K =1)(1J - 1) for M@,

The corresponding log-linear models are

logmijx = U+ Ugg + Uy + U + Uz
logmjx = U+ U + Uy + Usgy + Uz
Iog mjk = U+ ul(i) + Uz(j) + U3(k) + ulZGj)

which can be seen by log'ing the corresponding under eactM®.
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Example, Continued
Returning to the school behavior data, we can fit all threeetsod R as

summary (fitl <- glm(n ~ Beh + Risk*Schl, family=poisson))
summary (fit2 <- glm(n ~ Risk + Beh*Schl, family=poisson))
summary (fit3 <- glm(n ~ Schl + Beh*Risk,family=poisson))

and we discover
Resid Deviance df p-value AIC
G(Zl) =556 5 035 6039
ng) =1276 5 Q03 6751
Gj; =5252 8 Q00 10127

It seems thaM@® provides the best fit relative to the saturated model:
(classroom behaviar) (school adversity, family risk)

The Pearson residuals fm® are
Low Med High
N R N R N R
0.53 0.16 0.04 -0.11 0.02 -0.88
-1.15 -0.34 -0.09 0.24 -0.05 1.90

Nondeviant
Deviant
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Conditional Independence Models

For a model asserting (rows)columns)| (layers), we would have

PIijK] = PIIIIPI = PLIKIPLIPI = D Pl o BePeie
ok Pk Pk
There are clearly three such models:
M@ pij = PukPejc/ Pk OF (rows)iL(columns)| (layers)
M® : Pijk = Pij+Psjk/P+j+  OF (rows)ii(layers)| (columns)
M© : Pijk = Pij+ Pisk/Pier  OF (columns)i(layers)| (rows)

The MLE'’s are straightforward again. For example uniié?,
bﬁﬁz = f)i+k p+jk/ p++k = (ni+kn+jk)/(n++kn+++)
and
~(4) _ & PSRN
mijk - m+kmjk/m+k
subject to the same sorts of constraints, mgx = n. j, again due to equating

expected and observedfBaient statistics for MLE’s in the exponential family
model.
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The test-statistics are again

N Z': Z‘]: ZK‘J (nijkjg}(f&)z

i=1 j=1 k=1 rr.\jk
I3 K
G* = ZZZZnijkbgnijk/ﬁ\(js)k,
i=1 =1 k1

depending on which modsl= 4,5, or 6 is in use; the df. for thg? tests above

are
(I - 1)@ - 1K for M@;

(I -1)(K-1)J for M)
@-DK-1) for M®),

For example, the test favI® clearly pools! tests for independence of the
conditionalJ x K subtable at each row, and each of these testshad (K — 1)
df, so the total df isq — 1)(K — 1)I.

The corresponding log-linear models are

logmijx = U+ Ugg + Uygj) + Uy + Uasgiy + Uz
logmijx = U+ Uy + Uz(j) + Usg + Uazgj) + Uasiiy
Iog mjk = U+ Ula) + Uz(j) + U3(k) + ulZGj) + u13(’|k)

For example, when the in the first model we Kiwe get an overparametrized
version of the independence model flag = u + uyg) + Uy).
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Example, Continued

Returning to the school behavior data, we can fit all threeatsoid R as

summary (fit4 <- glm(n ~ Beh*Schl + Risk*Schl, family=poisson))
summary (£fit5 <- glm(n ~ Schl*Risk + Beh*Risk,family=poisson))
summary (fit6 <- glm(n ~ Beh*Risk + Beh*Schl, family=poisson))

and we discover

Resid Deviance df p-value AIC
G§4) =190 3 Q60 6065
G =412 4 Q39 6087

G(ZG):11_32 4 Q02 6807

Although two of these models fit well

(classroom behavior) (family risk) | (school adversity)
(classroom behaviar) (school adversity) (family risk)

the best fitting of the previous three models is simpler, wigimilar AIC (60.39):

(classroom behaviar) (school adversity, family risk).
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The Model of No Three-Way Interaction

Each of the models we have considered so far have involveahbence
of one or more interaction in the log-linear model

logmijk = U+ Ugg) + Uzgj) + Usg + Urzgj) + Uragk) + Uza(ky) + U123¢jk)
or equivalently setting the corresponding odds-ratiosaetpul.
e The independence model sefiggj) = Uzz(jk) = U1k = U123jk = 0
i, j, k.

¢ Independence of one factor from the other two sets the these-
interactionusozgjky = 0 and two of the three two-way interactions to
zero (which two depends on the model).

¢ Conditional independence sets the thre-way interactieg j = 0
and sets one of the two-way interactions to zero (again,rdépg on
the model).
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There is one more model commonly considered, that sets baly t
three-way interactionzjx = 0, Vi, j, k. From this model,

logmijk = U+ Uy + Ug(j) + U + Urzgj) + U1ak) + Uzs(k) (*)

generically takinga = €, we see that the model for the cell means is

Mijk = a- &) - az(j) - A(K) - A2(j) - A3(k) * A23(jk)

Now consider an odds ratio in thex J table in any of thK layers:

OR(, .1/, k) = DURIE _ TR
Pi’jk Pijk My kM jrk
[aa)@2(j) A3« a2 j)Aa3ak) 23K ][ 21 () B2(j) B3 Ba2( ) Ba3(k) B23(7K)]

[a@q4)az(j) s Q12 j) 2130 k) 23k ][ 281 ()B2(j) B3 a.2( ) Qa3k) B23(7K)]

[a124j) @134k @23(k) ][ A12(’ j/) A3k B23(7 k)] _angj@az(j)

[a12(' jyar3¢ K @23k ][ @124 ) Q134K A23G k)] - alZG’j)3~12Gj')’

which does not depend ddh
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Therefore, the model of no three-way interaction
M@ : () holds

is equivalent to the model in which the odds ratio is the samevery
layer of the table.

For this model, there are not closed-form MLE’s; they mustdaputed
iteratively. However, the test statistics are as usual

L3 Ky _m(7))2
RIDIIE

i=1 j=1 k=1 M
I3 K
G* = Zzzznijkmgnijk/m(;z
i—1 =1 k=1

with df. for they? tests above ard & 1)(J — 1)(K — 1).
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The model is easy to fit with R
summary (fit7<-glm(n"Beh*Risk*Schl-Beh:Risk:Schl, family=poisson))
This yields a fit ofG? = 0.94 on 2 d.f. Clearly there is overfit here.

However, given that the model fits we can now estimate a conodds-ratio for
(say) the interaction of classroom behavior and family, réaitoss all levels of
school adversity:

n.mtx <- matrix(n,nrow=2,byrow=T)
mhat.mtx <- matrix(fitted(£fit7) ,nrow=2,byrow=T)

OR(n.mtx[, (1:2)+0])$0R # 2.29; CI is (0.12, 41.98)
OR(m.mtx[,(1:2)+2])$0R # 1.18; CI is (0.27, 5.06)
OR(n.mtx[, (1:2)+4])$OR # 5.00; CI is (0.34, 72.77)

OR(mhat.mtx[,(1:2)+0])SOR # 1.80
OR(mhat.mtx[,(1:2)+2])$OR # 1.80
OR(mhat.mtx[,(1:2)+4])S0OR # 1.80

WhenM® holds, the common odds ratio is more stably estimated sineses all
the data in the table, instead of one layer of data at a tineer(sgt slide).
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Following our work above we know that under the model of ne¢afactor
interaction, for alk,

A12(j)d12(’j)

OR(, j. 1", j'Ik) = = EXD[Ulzaj) + U1z jr) — Uiz j) — UlZGj’)]

Ai2(’j)A12(j)
Once we have fitted the model above we can access the estimaeds and
their variance-covariance matrix as

print(U <- summary(fit7)$coefficients[,1])

(Intercept) BehN RiskR SchlL SchlM
# 0.4765646 1.0026434  0.3945061 -0.3748634 0.3486696
# BehN:RiskR BehN:Schll. BehN:SchlM RiskR:SchlL RiskR:SchlM
# -0.5898590 1.6615308 0.9269025 -0.6094350 0.9456019
V <- summary(fit7)$cov.unscaled

3%

Under the model of no three-way interaction,
log(OR[Beh, Risk|Schl]) = BehN: RiskN+BehD: RiskR—BehN: RiskR—BehD: RiskN

but we can see above that R set all but one of these equal toazielentify the
model. For R’s reduced model, then, we have that the log camwdds ratio is

log(OR[Beh, Risk]) = log(OR[Beh, Risk|Schl]) = —BehN:RiskR = —U[6] = 0.59
with standard erron/V[6] = 0.39.
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Note also that exp{U[6]) = 1.80, the same as we calculated from the fitted
subtables on the slide above.

An approximate 95% CI for the log common odds ratio is

—U[6] + (~=2,2)\V[6]) = (-0.19,1.37)

which we can exponentiate to get an approximate 95% intéovahe common
odds ratio itself
exp(-0.19,1.37) = (0.83,3.93)

Note that

e The final Cl contains 1, suggesting that we cannot rejeceeith

* log(OR[Beh,Risk]) = 1, i.e. (behavior) (family risk)
* log(OR[Beh, Risk|Schl]) = 1, i.e. (behavior)iL (family risk) | (school);
e The Cl here is much shorter than any of the CI's for OR’s caltad from the
2x2 subtables above.
Using all of the data really does sharpen the inferencel
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