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On further investigation the students could be separated into a group of 200

students who had taken an algebra class (only) and 300 students who had taken a

calculus class as well. Looking at the data separately for these two groups of

students, we see

Algebra Students Calculus Students

Y2 = 0 Y2 = 1 Total RESIDS Y2 = 0 Y2 = 1 Total

Y1 = 0 64 16 80 Y1 = 0 24 36 60

Y1 = 1 96 24 120 Y1 = 1 96 144 240

Total 160 40 200 Total 120 180 300

The odds ratios here are(64)(24)
(16)(96) = 1 and (24)(144)

(36)(96) = 1. So, Y1 and Y2 are

conditionally independent, given class: (Y1 ⊥⊥ Y2)|(class).

Note that
• P̂[Y1 = 1 | Algebra] = 0.6 < P̂[Y1 = 1 | Calculus] = 0.8;

• P̂[Y2 = 1 | Algebra] = 0.2 < P̂[Y2 = 1 | Calculus] = 0.6;
This co-monotonicity in probabilities is what increases the association in the

combined table. See Esary, Proschan and Walkup (1967,Ann. Math. Stat.).
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Aggregation and Association
Consider two questions on a math test:

Y1: “What is the slope ofy = 2x + 3 at x = 0?”

(Y1 = 0 for wrong,Y1 = 1 for right).

Y2: “What is the slope ofy = (x + 1)2 + 5 at x = 0?”

(Y2 = 0 for wrong,Y2 = 1 for right).

For 500 students a table cross-classifying responses to these two questions might

be as follows:

OBS Y2 = 0 Y2 = 1 Total RESIDS Y2 = 0 Y2 = 1

Y1 = 0 88 52 140 Y1 = 0 1.08 −1.22

Y1 = 1 192 168 360 Y1 = 1 −0.68 0.76

Total 280 220 500

The odds ratio is 1.48, and the Wald test ofH0 : OR = 1 yieldsz = 1.92

(p ≈ 0.05).

For example,̂P[Y2 = 1|Y1 = 1] = 168
360 = 0.47> 0.44= 220

500 = P̂[Y2 = 1].
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For example:

Hospital A Hospital B

Recovered Died Recovered Died

Treatment 81 6 Treatment 192 71

Placebo 234 36 Placebo 55 25

Here,ORA =
(81)(36)
(6)(234) = 2.08; ORB =

(192)(25)
(71)(55) = 1.23; andORA+B =

(273)(61)
(77)(289) = 0.74.

Note that

• P̂[Recov. | Hosp. A] = 0.88> P̂[Recov. | Hosp. B] = 0.72

• P̂[Treat. | Hosp. A] = 0.24< P̂[Treat. | Hosp. B] = 0.77

This reversal of probababilities is whatreduces the association in the combined

table.

If the probabilities both increased (or both decreased) it would tend toincrease the

association in the combined table (as in the math test example).

Holland & Rosenbaum (1986,Ann. Stat.); Kadane, Meyer & Tukey (1999,JASA).
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Simpson’s (Yule’s) Paradox

Hospital A Hospital B

Recovered Died Recovered Died

Treatment n111 n121 Treatment n112 n122

Placebo n211 n221 Placebo n212 n222

Simpson’s paradox occurs, e.g., when

ORA =
n111n221

n211n121
≥ 1

ORB =
n112n222

n212n122
≥ 1

ORA+B =
(n111+ n112)(n221+ n222)
(n211+ n212)(n121+ n122)

< 1

(or reverse all inequalities, as in the math test example).
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In general we are looking at anI × J × K table. Here is a 3× 2× 2
example:

k = 1 k = 2

j = 1 j = 2 j = 1 j = 2

i = 1 n111 n121 i = 1 n112 n122

i = 2 n211 n221 i = 2 n212 n222

i = 3 n311 n321 i = 3 n312 n322

We consider mainly multinomialsampling, although the formalisms go

through for the product multinomialmodel as well.

You can compute MLE’s for most of these models by hand.

We will also show how to compute MLE’s using R’sglm() function.
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Modelling the Three-Way Table

Phenomena like Simpson’s Paradox make it clear that we cannot learn all

there is to know about a three- (or higher-) way table by just looking at

2-way subtables or 2-way aggregates.

We now turn directly to models formi jk in a three-way table. We will

develop, simultaneously,

• Direct models formi jk; these show what (in-)dependence and

conditional (in-)dependence assumptions are being made bythe

model;

• The corresponding log-linear models; these make a link between

statistical (in-)dependence and terms in an ANOVA-like model.
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The two test-statistics are

X2
=

I
∑

i=1

J
∑

j=1

K
∑

k=1

(ni jk − m̂(0)
i jk)

2

m̂(0)
i jk

G2
= 2

I
∑

i=1

J
∑

j=1

K
∑

k=1

ni jk logni jk/m̂
(0)
i jk

with df. for theχ2 tests above are

(IJK − 1)− (I − 1)− (J − 1)− (K − 1) = IJK − I − J − K + 2.

The corresponding log-linear model is

logmi jk = u + u1(i) + u2( j) + u3(k)

which can be seen by log’ingm(0)
i jk = n+++pi++p+ j+p++k underM0.
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The Model of Complete Independence

Themodel of complete independence is

M(0) : pi jk = pi++p+ j+p++k or ⊥⊥(rows,columns,layers)

The MLE’s are

p̂(0)
i jk = p̂i++ p̂+ j+ p̂++k

= (ni++/n+++)(n+ j+/n+++)(n++k/n+++) ;

m̂(0)
i jk = n+++ p̂(0)

i jk

= (ni++n+ j+n++k)/n
2
+++

= (m̂i++m̂+ j+m̂++k)/m̂
2
+++

wherem̂i jk satisfya the “marginal constraints” ˆmi++ = ni++, m̂+ j+ = n+ j+,

m̂++k = n++k, andm̂+++ = n+++.
aThis is so becauseni++, etc. are the sufficient statistics for thep’s when the multinomial

model M(0) is viewed as an exponential family model: The MLE in an exponential family
model has to equate observed (ni++, etc.) and expected ( ˆmi++, etc.) sufficient statistics.
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The table of fitted values is
Low Med High

N R N R N R Total
Nondeviant 8.72 11.90 20.92 28.57 4.18 5.71 80
Deviant 1.85 2.53 4.44 6.07 0.89 1.21 17
Total 17 8 18 42 6 6 97

and it is easy to verify that this table has the same marginal totals as the

original (as it must).

X2
= 17.30 ond f = (IJK − 1) − (I − 1) − (J − 1) − (K − 1) = 2 · 2 · 3 − 1

− 2 − 1 − 1 = 7; with a p-value of 0.015.

G2
= 16.42,d f = 7, p-value=0.02. Note that this is the same as the

“residual deviance” in theglm() output.

The Pearson residuals forM(0) are
Low Med High

N R N R N R
Nondeviant 2.47 −1.42 −1.29 1.02 0.40 −1.14
Deviant −0.63 −0.96 −0.69 0.78 0.12 1.62
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Example

We consider the 2× 2× 3 table

Adversity of school (k)
Low Med High

Family Risk (j) N R N R N R Total
Classrooom Nondeviant 16 7 15 34 5 3 80
Behavior (i) Deviant 1 1 3 8 1 3 17

Total 17 8 18 42 6 6 97

The model can be fitted directly or by usingglm() in R. For example,

n <- scan(sep="&")

16 & 7 & 15 & 34 & 5 & 3

1 & 1 & 3 & 8 & 1 & 3

Beh <- c(rep("N",6),rep("D",6))

Risk <- rep(c("N","R"),3)

Schl <- rep(c(rep("L",2),rep("M",2),rep("H",2)),2)

summary(fit0 <- glm(n ˜ Beh + Risk + Schl,family=poisson))

mhat <- fitted(fit0)
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The test-statistics are again

X2
=

I
∑

i=1

J
∑

j=1

K
∑

k=1

(ni jk − m̂(s)
i jk)

2

m̂(s)
i jk

G2
= 2

I
∑

i=1

J
∑

j=1

K
∑

k=1

ni jk logni jk/m̂
(s)
i jk ,

depending on which models = 1, 2, or 3 is in use; the df. for theχ2 tests above are

(IJK − 1)− (I − 1)− (JK − 1) = (I − 1)(JK − 1) for M(1);

(IJK − 1)− (J − 1)− (IK − 1) = (J − 1)(IK − 1) for M(2);

(IJK − 1)− (K − 1)− (IJ − 1) = (K − 1)(IJ − 1) for M(3).

The corresponding log-linear models are

logmi jk = u + u1(i) + u2( j) + u3(k) + u23(jk)

logmi jk = u + u1(i) + u2( j) + u3(k) + u13(ik)

logmi jk = u + u1(i) + u2( j) + u3(k) + u12(i j)

which can be seen by log’ing the correspondingmi jk under eachM(s).
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Models with One Factor Independent of the Others

There are three such models:

M(1) : pi jk = pi++p+ jk or (rows)⊥⊥(columns,layers)

M(2) : pi jk = p+ j+pi+k or (columns)⊥⊥(rows,layers)

M(3) : pi jk = p++k pi j+ or (layers)⊥⊥(rows,columns)

The MLE’s are straightforward again. For example underM(1),

p̂(1)
i jk = p̂i++ p̂+ jk = ni++n+ jk/n

2
+++

and

m̂(1)
i jk = m̂i++m̂+ jk/m̂+++

subject to the same sorts of constraints, e.g.m+ jk = n+ jk, again due to

equating expected and observed sufficient statistics for MLE’s in the

exponential family model.
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Conditional Independence Models
For a model asserting (rows)⊥⊥(columns)| (layers), we would have

P[i jk] = P[i j|k]P[k] = P[i|k]P[ j|k]P[k] =
pi+k

p++k

p+ jk

p++k
p++k =

pi+k p+ jk

p++k

There are clearly three such models:

M(4) : pi jk = pi+k p+ jk/p++k or (rows)⊥⊥(columns)| (layers)

M(5) : pi jk = pi j+p+ jk/p+ j+ or (rows)⊥⊥(layers)| (columns)

M(6) : pi jk = pi j+pi+k/pi++ or (columns)⊥⊥(layers)| (rows)

The MLE’s are straightforward again. For example underM(4),

p̂(4)
i jk = p̂i+k p̂+ jk/ p̂++k = (ni+kn+ jk)/(n++kn+++)

and

m̂(4)
i jk = m̂i+km̂+ jk/m̂++k

subject to the same sorts of constraints, e.g.m+ jk = n+ jk, again due to equating

expected and observed sufficient statistics for MLE’s in the exponential family

model.
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Example, Continued

Returning to the school behavior data, we can fit all three models in R as

summary(fit1 <- glm(n ˜ Beh + Risk*Schl,family=poisson))

summary(fit2 <- glm(n ˜ Risk + Beh*Schl,family=poisson))

summary(fit3 <- glm(n ˜ Schl + Beh*Risk,family=poisson))

and we discover

Resid Deviance df p-value AIC
G2

(1) = 5.56 5 0.35 60.39
G2

(2) = 12.76 5 0.03 67.51
G2

(3) = 52.52 8 0.00 101.27

It seems thatM(1) provides the best fit relative to the saturated model:

(classroom behavior)⊥⊥(school adversity, family risk)

The Pearson residuals forM(1) are
Low Med High

N R N R N R
Nondeviant 0.53 0.16 0.04 −0.11 0.02 −0.88
Deviant −1.15 −0.34 −0.09 0.24 −0.05 1.90
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Example, Continued

Returning to the school behavior data, we can fit all three models in R as

summary(fit4 <- glm(n ˜ Beh*Schl + Risk*Schl,family=poisson))

summary(fit5 <- glm(n ˜ Schl*Risk + Beh*Risk,family=poisson))

summary(fit6 <- glm(n ˜ Beh*Risk + Beh*Schl,family=poisson))

and we discover

Resid Deviance df p-value AIC
G2

(4) = 1.90 3 0.60 60.65
G2

(5) = 4.12 4 0.39 60.87
G2

(6) = 11.32 4 0.02 68.07

Although two of these models fit well

(classroom behavior)⊥⊥(family risk) | (school adversity)

(classroom behavior)⊥⊥(school adversity)| (family risk)

the best fitting of the previous three models is simpler, witha similar AIC (60.39):

(classroom behavior)⊥⊥(school adversity, family risk).
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The test-statistics are again

X2
=

I
∑

i=1

J
∑

j=1

K
∑

k=1

(ni jk − m̂(s)
i jk)

2

m̂(s)
i jk

G2
= 2

I
∑

i=1

J
∑

j=1

K
∑

k=1

ni jk logni jk/m̂
(s)
i jk ,

depending on which models = 4, 5, or 6 is in use; the df. for theχ2 tests above
are

(I − 1)(J − 1)K for M(4);

(I − 1)(K − 1)J for M(5);

(J − 1)(K − 1)I for M(6).

For example, the test forM(6) clearly poolsI tests for independence of the
conditionalJ × K subtable at each row, and each of these tests has (J − 1)(K − 1)
df, so the total df is (J − 1)(K − 1)I.

The corresponding log-linear models are
logmi jk = u + u1(i) + u2( j) + u3(k) + u13(ik) + u23(jk)

logmi jk = u + u1(i) + u2( j) + u3(k) + u12(i j) + u23(jk)

logmi jk = u + u1(i) + u2( j) + u3(k) + u12(i j) + u13(ik)

For example, when the in the first model we fixk, we get an overparametrized
version of the independence model logmi j = u + u1(i) + u2( j).
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There is one more model commonly considered, that sets only the

three-way interactionu123(i jk) = 0,∀i, j, k. From this model,

logmi jk = u + u1(i) + u2( j) + u3(k) + u12(i j) + u13(ik) + u23(jk) (∗)

generically takinga = eu, we see that the model for the cell means is

mi jk = a · a1(i) · a2( j) · a3(k) · a12(i j) · a13(ik) · a23(jk)

Now consider an odds ratio in theI × J table in any of theK layers:

OR(i, j, i′, j′|k) =
pi jk pi′ j′k

pi′ jk pi j′k
=

mi jkmi′ j′k

mi′ jkmi j′k

=
[a a1(i)a2( j)a3(k)a12(i j)a13(ik)a23(jk)][a a1(i′)a2( j′)a3(k)a12(i′ j′)a13(i′k)a23(j′k)]

[a a1(i′)a2( j)a3(k)a12(i′ j)a13(i′k)a23(jk)][a a1(i)a2( j′)a3(k)a12(i j′)a13(ik)a23(j′k)]

=
[a12(i j)a13(ik)a23(jk)][a12(i′ j′)a13(i′k)a23(j′k)]

[a12(i′ j)a13(i′k)a23(jk)][a12(i j′)a13(ik)a23(j′k)]
=

a12(i j)a12(i′ j′)

a12(i′ j)a12(i j′)
,

which does not depend onk!
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The Model of No Three-Way Interaction

Each of the models we have considered so far have involved theabsence

of one or more interaction in the log-linear model

logmi jk = u + u1(i) + u2( j) + u3(k) + u12(i j) + u13(ik) + u23(jk) + u123(i jk)

or equivalently setting the corresponding odds-ratios equal to 1.

• The independence model setsu12(i j) = u23(jk) = u13(ik) = u123(i jk) = 0

∀i, j, k.

• Independence of one factor from the other two sets the three-way

interactionu123(i jk) = 0 and two of the three two-way interactions to

zero (which two depends on the model).

• Conditional independence sets the thre-way interactionu123(i jk) = 0

and sets one of the two-way interactions to zero (again, depending on

the model).
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The model is easy to fit with R

summary(fit7<-glm(n˜Beh*Risk*Schl-Beh:Risk:Schl,family=poisson))

This yields a fit ofG2
= 0.94 on 2 d.f. Clearly there is overfit here.

However, given that the model fits we can now estimate a commonodds-ratio for
(say) the interaction of classroom behavior and family risk, across all levels of
school adversity:

n.mtx <- matrix(n,nrow=2,byrow=T)

mhat.mtx <- matrix(fitted(fit7),nrow=2,byrow=T)

OR(n.mtx[,(1:2)+0])$OR # 2.29; CI is (0.12, 41.98)

OR(n.mtx[,(1:2)+2])$OR # 1.18; CI is (0.27, 5.06)

OR(n.mtx[,(1:2)+4])$OR # 5.00; CI is (0.34, 72.77)

OR(mhat.mtx[,(1:2)+0])$OR # 1.80

OR(mhat.mtx[,(1:2)+2])$OR # 1.80

OR(mhat.mtx[,(1:2)+4])$OR # 1.80

WhenM(7) holds, the common odds ratio is more stably estimated since it uses all
the data in the table, instead of one layer of data at a time (see next slide).
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Therefore, the model of no three-way interaction

M(7) : (∗) holds

is equivalent to the model in which the odds ratio is the same in every

layer of the table.

For this model, there are not closed-form MLE’s; they must becomputed

iteratively. However, the test statistics are as usual

X2
=

I
∑

i=1

J
∑

j=1

K
∑

k=1

(ni jk − m̂(7)
i jk)

2

m̂(7)
i jk

G2
= 2

I
∑

i=1

J
∑

j=1

K
∑

k=1

ni jk logni jk/m̂
(7)
i jk

with df. for theχ2 tests above are (I − 1)(J − 1)(K − 1).
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Note also that exp(−U[6]) = 1.80, the same as we calculated from the fitted
subtables on the slide above.

An approximate 95% CI for the log common odds ratio is

−U[6] + (−2,2)
√

V[6]) = (−0.19, 1.37)

which we can exponentiate to get an approximate 95% intervalfor the common
odds ratio itself

exp(−0.19, 1.37)= (0.83, 3.93)

Note that

• The final CI contains 1, suggesting that we cannot reject either

* log(OR[Beh,Risk]) = 1, i.e. (behavior)⊥⊥ (family risk)

* log(OR[Beh,Risk|S chl]) = 1, i.e. (behavior)⊥⊥ (family risk) | (school);

• The CI here is much shorter than any of the CI’s for OR’s calculated from the
2×2 subtables above.

Using all of the data really does sharpen the inference!
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Following our work above we know that under the model of no three-factor
interaction, for allk,

OR(i, j, i′, j′|k) =
a12(i j)a12(i′ j′)

a12(i′ j)a12(i j′)
= exp

[

u12(i j) + u12(i′ j′) − u12(i′ j) − u12(i j′)

]

Once we have fitted the model above we can access the estimatedu-terms and
their variance-covariance matrix as

print(U <- summary(fit7)$coefficients[,1])

# (Intercept) BehN RiskR SchlL SchlM

# 0.4765646 1.0026434 0.3945061 -0.3748634 0.3486696

# BehN:RiskR BehN:SchlL BehN:SchlM RiskR:SchlL RiskR:SchlM

# -0.5898590 1.6615308 0.9269025 -0.6094350 0.9456019

V <- summary(fit7)$cov.unscaled

Under the model of no three-way interaction,

log(OR[Beh,Risk|S chl]) = BehN:RiskN+BehD:RiskR−BehN:RiskR−BehD:RiskN

but we can see above that R set all but one of these equal to zeroto identify the
model. For R’s reduced model, then, we have that the log common odds ratio is

log(OR[Beh,Risk]) = log(OR[Beh,Risk|S chl]) = −BehN:RiskR = −U[6] = 0.59

with standard error
√

V[6] = 0.39.
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