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Hierarchical Specification of Log-Linear Models
A full set of log-linear models for 3-way tables that we have considered
so far include:

Log-Linear Model Generator
M(−1) logmi jk = u [0]
M(0) logmi jk = u+ u1(i) + u2( j) + u3(k) [1][2][3]
M(1) logmi jk = u+ u1(i) + u2( j) + u3(k) + u23(jk) [1][23]
M(2) logmi jk = u+ u1(i) + u2( j) + u3(k) + u13(ik) [2][13]
M(3) logmi jk = u+ u1(i) + u2( j) + u3(k) + u12(i j ) [3][12]
M(4) logmi jk = u+ u1(i) + u2( j) + u3(k) + u13(ik) + u23(jk) [13][23]
M(5) logmi jk = u+ u1(i) + u2( j) + u3(k) + u12(i j ) + u23(jk) [12][23]
M(6) logmi jk = u+ u1(i) + u2( j) + u3(k) + u12(i j ) + u13(ik) [12][13]
M(7) logmi jk = u+ u1(i) + u2( j) + u3(k) + u12(i j ) + u13(ik) + u23(jk) [12][13][23]
M(8) logmi jk = u+ u1(i) + u2( j) + u3(k) + u12(i j ) + u13(ik) + u23(jk) + u123(i jk) [123]
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These model specifications have several noteworthy features:

• They obey thehierarchy principle: If the k-way interaction is in the model
then every lower order interaction and main effect is also in the model. For
example, sinceM(7) containsu12(ik) terms then we also know it containsu1(i)

andu2( j) terms).Under the hierarchy principle, nested models are obtained
by adding or dropping higher-order interactions in the model.

• Following the hierarchy principle, a model can be completely specified by
specifying the indices of the highest-order interactions (thegenerators). E.g.:

[1][23] ⇒ u1(i) andu23(jk) are in the model

⇒ u+ u1(i) andu+ u2( j) + u3(k) + u23(jk) are in the model

⇒ logmi jk = u+ u1(i) + u2( j) + u3(k) + u23(jk) is the model

This is how R’s linear modeling notation works also:Schl + Risk*Beh
expands to1 + Schl + Risk + Beh + Risk:Beh.

• The generators are useful mnemonics for

– What the (conditional) independence model is, e.g. [12][13] ≡ 2 ⊥⊥ 3 | 1;
– What the sufficient statistics are, e.g. for [12][13] the sufficient statistics

aren12(i j ) andn13(ik).
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These ten hierarchical models can be organized by nesting asfollows:
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Example: Residual Deviances (LR vs [123]) in boys’ deviancedata

Take 1=Beh, 2=Risk, 3=Schl:
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Higher-Dimensional Tables

Christensen provides data on the relationship between two drugs
(k = 1, 2) and muscle tensions (ℓ = 1, 2) for two weights (i = 1, 2) and
types (j = 1, 2) of muscles in mice.

Drug (k)
Tension (ℓ) Weight (i) Muscle (j) Drug 1 Drug 2

High Type 1 3 21
Type 2 23 11

High
Low Type 1 22 32

Type 2 4 12

High Type 1 3 10
Type 2 41 21

Low
Low Type 1 45 23

Type 2 6 22

Which log-linear models best describe this data?
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It is already painful to write down the saturated model [1234] in hierarchical

log-linear form:

logmi jk = u+ u1(i) + u2( j) + u3(k) + u4(ℓ)

+ u12(i j ) + u13(ik) + u14(iℓ) + u23(jk) + u24(jℓ) + u34(jℓ)

+ u123(i jk) + u124(i jℓ) + u134(ikℓ) + u234(jkℓ)

+ u1234(i jkℓ)

However, the “generator notation” makes model specification easier:

• The independence model [1][2][3][4] consists of the first line above.

• The model of no three-way interaction [12][13][14][23][24][34] consists of

the first two lines above.

• The model of no four-way interaction [123][124][134][234]consists of the

first three lines above.

• The model [123][4] (or [WMD][T]) speficies that muscle weight, type and

drug are independent of tension.

• The model [TMD][WMD] specifies that (tension)⊥⊥(weight) | (type,drug).
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As an illustration we fit three models

n <- scan() ...

Wt <- rep(rep(c("H","L"),c(4,4)),2) # [W]eight

Mt <- rep(rep(c("1","2"),c(2,2)),4) # [M]uscle type

Dt <- rep(c("1","2"),8) # [D]rug type

Tn <- rep(c("H","L"),c(8,8)) # [T]ension

musc <- data.frame(n,Wt,Mt,Dt,Tn)

• Independence: [T][W][M][D]
glm(n ˜ Tn + Wt + Mt + Dt, data = musc, family = poisson)

• No three-way interaction: [TW][TM][TD][WM][WD][MD]
glm(n˜Tn*Wt + Tn*Mt + Tn*Dt + Wt*Mt + Wt*Dt + Mt*Dt, ...)

• No four-way interaction: [TWM][TWD][TMD][WMD]
glm(n ˜ Tn*Wt*Mt*Dt - Tn:Wt:Mt:Dt, ...)

Model Resid. Df Resid. Dev P[χ2
d f > Dev]

Independence 11 127.351 0.00
No three-way 5 47.669 4.15e-09
No four-way 1 0.111 0.74
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Digression: Why Poisson If We Believe Multinomial?

Maximum likelihood for the Poisson model

We re-index a table such asni jk to be justnc, and we suppose thatnc,

c = 1, . . . ,C are independent Poisson counts with meansmc. Then

f (nc|mc) =
e−mcmc

nc

nc!
= exp[nc logmc −mc − lognc!]

= exp[ncθc − expθc − lognc!]

which is an exponential family model with natural parameterθc = logmc.

If we modelθc = logmc linearly as

θC×1 = [log mc]C×1 = XC×DβD×1

then the above is ageneralized linear modelfor Poisson counts with the

log link functionθc = logµc.
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The log-likelihood may be written

L(n|β) =
∏

c

f (nc|β) = exp


∑

c

(nc logmc −mc) −
∑

c

lognc!



= exp

nT Xβ −
∑

c

exp([Xβ]c) + g(data)



and, either explicitly setting derivatives equal to zero, or by using the

general theory of glm’s, we see that the likelihood equations reduce to
∑

c

(nc −mc)xcd = 0 , d = 1, . . . ,D

This is the usual result that the MLE in an exponential familymodel

equates observed and expected sufficient statistics

nT X = mT X

In log-linear models for tables, these are invariably appropriate marginal

totals for the table (see example, next slide).
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Sub-digression: Where does X come from?

Consider the tableni jk with i = 1, 2, j = 1, 2, andk = 1, 2. If we lay out
the log expected cell counts in a column, the model of independence
logmi jk = u+ u1(i) + u2( j) + u3(k) looks like this:

θ =



logm111

logm112

logm121

logm122

logm211

logm212

logm221

logm222



=



1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1





u
u1(2)

u2(2)

u3(2)


= Xβ

Clearly the observed sufficient statistics for theu parameters are

nT X = (n+++, n2++, n+2+, n++2)

which are equated by ML to the expected sufficient statistics

mT X = (m+++,m2++,m+2+,m++2)
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Back to the Poisson Likelihood

• Further differentiation (or application of general results from glm’s)
shows that the information matrix forβ is

[
−

∂2

∂βd1∂βd2

]

D×D

= XTŴX

whereW = diag(m̂) and hence

V̂ar (β) = [XTŴX]−1

• Since the MLE’s under the saturated model (no relations among the
mi ’s) arem̂i = ni , the log-LR statistic for testing against the saturated
model is

−2[logL(n|β) − logL(n|saturated)] = 2
∑

c

[
nc log(nc/m̂c) − nc + m̂c

]

= 2
∑

c

nc log(nc/m̂c)

sincen+ = m̂+ as long as the log-linear model has the interceptu in it.
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• Since the individual cells countsni ∼ Poiss(mi), with
E[ni ] = Var (ni) = mi , it follows that the Pearson residuals

r i = (ni − m̂i)/
√

m̂i

are approximately mean 0, variance 1 (and should be approximately
normal for largeni). This is why they are sensible residuals to use.

• Recall that the model deviance (LR statistic for testing against the
saturated model) is

G2 = 2
∑

i

ni log(ni/m̂i) =
∑

i

di

Thedeviance residualsare

rD
i = sgn (ni − m̂i) ·

√
|di |

and these are approximately normally distributed (since they are
signed square roots of approximately 1-df contributions toG2).
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Maximum likelihood for the Multinomial model

We again take a table likeni jk and re-index the cells asn1, . . . , nC. The key

observation here is that if we condition on n+ =
∑

c nc, C independent

Poisson’s become a C-cell multinomial.

Begin with a Poisson log-linear model with an interceptα,

logmc = α + xT
c β ( = u+ [otheru-terms] )

where (1, xT
c ) is thecth row of X. Up to a function of the data

g(data) =
∑

c lognc!, the Poisson log-likelihood is

logL(n|α, β) =
∑

c

nc logmc −
∑

c

mc

=
∑

c

nc(α + xT
c β) −

∑

c

exp(α + xT
c β)

= n+α +
∑

c

ncxT
c β − τ

whereτ =
∑

c mc =
∑

c exp(α + xT
c β) = eα

∑
c exp(xT

c β).
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Now since logτ = α + log
∑

c exp(xT
c β), it follows that

logL(n|α, β) = logL(n|τ, β)

=


∑

c

ncxT
c β − n log

∑

c

exp(xT
c β)

 + [n+ logτ − τ]

=


∑

c

ncxT
c β −

∑

c

nc log
∑

c′
exp(xT

c′β)

 + [n+ logτ − τ]

=


∑

c

nc log pc

 + [n+ logτ − τ]

wherepc =mc/m+ = exp(α + xT
c β)/
∑

c′ exp(α + xT
c′β) =

exp(xT
c β)/
∑

c′ exp(xT
c′β). The term in brackets is the multinomial

log-likelihood, up to a function of the datah(data) = logn+! −
∑

c lognc! .

Thus, as log-likelihoods:

Poissonα,β(n) = {Multinomialβ(n) | n+ } + [ Poissonτ(n+) ].
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That is worth repeating:For the log-linear model logmc = α + xT
c β,

Poissonα,β(n) = {Multinomialβ(n) | n+ } + [ Poissonτ(n+) ].

as log-likelihoods. Therefore:

• There is a1-1 correspondencebetweenMultinomial log-linear modelsand

Poisson log-linear modelswith the same log-linear form. The Poisson model

requires one more parameter (τ), corresponding to the grand totaln+.

• The (non-intercept) parametersβ in the two models havethe same MLE’s
andthe same variance-covariance matrix(since theβ’s only enter in the

bracketed expressions on the previous slide).

• The intercept parameterα will be different in the two models.

• ThePearson residualsare still variance-stabilized, and as long as the grand

total n+ is large relative to the cell countni , eachr i will be roughly N(0, 1).

You can also show that the computation and interpretation ofG2 andX2

also do not change between the models.
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Product Multinomial Log-linear Models

A similar argument can be used to derive product-multinomial MLE’s

from Poisson MLE’s.

• The key to the equivalence between Poisson MLE’sβ̂ and single-Multinomial

MLE’s β̂ was toinclude the interceptα corresponding to the fixed grand total

n+ in the log-linear model: logmc = α + xT
c β. Then as log-likelihoods

Poissonα,β(n) = { Multinomialβ(n) | n+ } + [ Poissonτ(n+) ].

• The key to equivalence between Poisson MLE’s and Product Multinomial

MLE’s will be to include log-linear termsα(1), . . . ,α(H) corresponding to the

fixed margins n(1)
+ , . . . , n(H)

+ . Then as log-likelihoods

Poissonα,β(n) =
H∑

h=1

{ Multinomialβ(n(h)) | n(h)
+ } + [ Poissonτ(n

(h)
+ ) ].

These results have been known for some time (e.g. Birch, 1963, JRSSB);

a recent update/generalization is Lang (1996,JRSSB).
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Example

Consider again the Aspirin and Heart Attack data:

Myocardial Infarction
Fatal Nonfatal

Attack Attack Total
Placebo n11 = 18 n12 = 171 n1+ = 189
Aspirin n21 = 5 n22 = 99 n2+ = 104

Total n+1 = 23 n+2 = 270 n++ = 293

• If we consider this to be observational data with onlyn++ fixed and a

multinomial model forni j |n++, we can useglm(..., family=poisson) to

fit log-linear models to this dataas long as we include the intercept u in each

log-linear model.

• If we consider this to be a designed experiment so that the cells are product

multinomial with fixed row totalsn1+ andn2+, then we can useglm(...,

family=poisson) to fit log-linear models to this dataas long as we include

the u1(i) terms in each log-linear model.
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• Testing independence with the Single Multinomial Model:

n <- scan()

18 171 10845

5 99 10993

Tx <- rep(c("Placebo","Aspirin"),c(3,3))

Obs <- rep(c("Fatal","NonFatal","NoAttack"),2)

aha.data <- data.frame(n,Tx,Obs)

print(fit <- glm(n ˜ Tx + Obs,data=aha.data,family=poisson))

G2 = 28.058 on 2 d.f.;p ≈ 8× 10−8, so again we reject independence.

• Testing independence with the Product Multinomial Model:

Since the model of independence already has log-linear terms (Tx, i.e. u1(i))
corresponding to the fixed row totalsni+, the same Poisson fit above also
gives the results for the Product Multinomial.

In general, when H0 already contains terms corresponding to the fixed margins in
the table, testing H0 is identicalunder the Poisson, Multinomial, and Product
Multinomial sampling models.
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Example

Back to the muscle study in mice:

Drug (k)
Tension (ℓ) Weight (i) Muscle (j) Drug 1 Drug 2

High Type 1 3 21
Type 2 23 11

High
Low Type 1 22 32

Type 2 4 12

High Type 1 3 10
Type 2 41 21

Low
Low Type 1 45 23

Type 2 6 22

We treated this data before as Poisson or single multinomial. In fact, it

was a designed study with the total number of muscles of eachtypefixed

in advance.So every log-linear model should have theM terms (u2( j)) in it.
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An advantage ofhierarchical principleis that the interesting models

automatically contain the main effects, so if the totals in one dimension

are fixed, the sampling scheme “doesn’t matter” for model fit/comparison:

Model Resid. Df Resid. Dev P[χ2
d f > Dev]

[T][W][M][D] 11 127.351 0.00
[TW][TM][TD][WM][WD][MD] 5 47.669 4.15e-09

[TWM][TWD][TMD][WMD] 1 0.111 0.74

In the study, [T]ension and [W]eight of muscle are measured on each

combination of [M]uscle type and [D]rug. Two more models of interest

might be

1. [TMD][WMD]: (tension)⊥⊥(weight) | (muscle type,drug)

2. [TWM][DM]: (tension,weight)⊥⊥(drug) | (muscle type)

• In the real study, only the totals for muscle [T]ype were fixed, so

either of these models could be fitted as well.
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• In another study of this type, perhaps muscle [W]eight and [D]rug

type would be fixed in advance.

– In that case all models would need to include the [WD]

interaction: we could fit and interpret [TMD][WMD] but not

[TWM][DM]

– (without the [WD] interaction, the totals for (weight)×(drug)

combinations would not be fixed by the log-linear model; the

product multinomial model with [WD] margins fixed could not be

represented)
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