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Hierarchical Specification of Log-Linear Models

A full set of log-linear models for 3-way tables that we havasidered
so far include:

Log-Linear Model Generator
MED logmy = u [O]

logmjc = U+ Ui + Ug(j) + Uz [1][2][3]

l0g Myjc = U+ Ung) + Ug(j) + Usgy + Uas(ik) [1][23]

|Og rnijk =U+ Ul(i) + Uz(j) + U3(k) + ul3@k) [2][13]
logMyjc = U+ Uy + Uz(j) + Usgg + Uazg)) [3][12]

Iog mjk = U+ Ugg + Uzgj) + Uk + Uizgk) + U23(jk) [13][23]

log Mijic = U+ Uy + Uz(j) + Usg + Uizgj) + Uza(ik) [12][23]

|Og rnijk =UuU+ Ul(i) + Uz(j) + U3(k) + ulZGj) + ul3@k) [12][13]
logmijc = U+ Uyg) + Uz(j) + Us + Uizgj) + Uaagy + Uzs(i) [12][13][23]
log M = U+ Ugg) + Ug(j) + U + Urzgj) + Uragiy + Uzz(ky) + Unzagik) [123]
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These model specifications have several noteworthy fesature

e They obey thénierarchy principle If the k-way interaction is in the model
then every lower order interaction and maiteet is also in the model. For
example, sincé(") containsu; g terms then we also know it containg
anduy(;) terms).Under the hierarchy principle, nested models are obtained
by adding or dropping higher-order interactions in the mbde
Following the hierarchy principle, a model can be compiesglecified by
specifying the indices of the highest-order interactidhs generator$. E.g.:

[1][23] = uig andugggyy are in the model

= U+ Uy andu + Up(j) + U3k + Ux3(jk) alre in the model

= |Og Mijk = U+ Uz + Uz + Uzk) + U23(jk) IS the model

This is how R'’s linear modeling notation works alszhl + Risk*Beh
expandstd + Schl + Risk + Beh + Risk:Beh.
e The generators are useful mnemonics for

— What the (conditional) independence model is, e.g. [13]H2 1 3| 1;
— What the sticient statistics are, e.g. for [12][13] thefBaient statistics
aren;ygj) andnysg).
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These ten hierarchical models can be organized by nestifolj@ass:
[123]

[12][13][23]

/\

23]  [12][23] [13][12]

— | _—

[1][2][3]

[O]
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Example: Residual Deviances (LR vs [123]) in boys’ deviata@
Take EBeh, 2=Risk, 3=Schl:

[123] (G0)

[12][13][23] (0.92)

/\

[13][23] (1.93)  [12][23] (4.4) [13][12] (11.34)

[1][23] (5.6/5)  [2][13] (12.85) [3][12] (14.96)

\/

[1][2][3] (16.4/7)

[0] (100.711)
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Higher-Dimensional Tables

Christensen provides data on the relationship between tugsd
(k = 1, 2) and muscle tension$ € 1, 2) for two weights( = 1, 2) and
types ( = 1, 2) of muscles in mice.

Tension ()

Weight ()

Muscle (j)

Drug (k)
Drugl Drug?2

High

High

Low

High

Low

Type 1
Type 2

Type 1
Type 2

Type 1
Type 2

Type 1
Type 2

3 21
23 11

32
12

10
21

23
22

Which log-linear models best describe this data?
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It is already painful to write down the saturated model [1]dB4ierarchical
log-linear form:

logmijx = U+ Ugg) + Uy + Uggy + Usgp

+ U12gj) + U1zik) + U1gge) + U23(jk) T U24(j0) + Uzsjo)
+ U123(jk) + U124¢je) + U1zagke) T U234(ke)
+ U1234(jko)

However, the “generator notation” makes model specificatiasier:

The independence model [1][2][3][4] consists of the firgtliabove.

The model of no three-way interaction [12][13][14][23][£34] consists of
the first two lines above.

The model of no four-way interaction [123][124][134][23&dnsists of the
first three lines above.

The model [123][4] (or [WMD][T]) speficies that muscle weigkype and
drug are independent of tension.

The model [TMD][WMD] specifies that (tensiom)(weight)| (type,drug).
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As an illustration we fit three models

n <- scan()

Wt <- rep(rep(c("H","L"),c(4,4)),2) # [W]eight

Mt <- rep(rep(c('"1","2"),c(2,2)),4) # [M]uscle type
Dt <- rep(c("1","2"),8) # [D]rug type
Tn <- rep(c("H","L"),c(8,8)) # [T]ension
musc <- data.frame(n,Wt,Mt,Dt,Tn)

e Independence: [T][W][M][D]
glm(n © Tn + Wt + Mt + Dt, data = musc, family = poisson)

e No three-way interaction: [TW][TM][TD][WM][WD][MD]
glm(n"Tn*Wt + Tn*Mt + Tn*Dt + Wt*Mt + Wt*Dt + Mt*Dt,

e No four-way interaction: [TWM][TWD][TMD][WMD]
glm(n °~ Tn*Wt*Mt*Dt - Tn:Wt:Mt:Dt, ...)

Model Resid. Df Resid. Dev Rf, > Dev]

Independence 11 127.351 0.00
No three-way 5 47.669 4.15e-09
No four-way 1 0.111 0.74
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Digression: Why Poisson If We Believe Multinomial?

Maximum likelihood for the Poisson model

We re-index a table such agi to be justn., and we suppose that,
c=1,...,C are independent Poisson counts with meaasThen

e Me rncnc

ne!
exp[nc logm. — mg — lognc!]
exp[n.6; — expé. — logn¢!]

f(Nnclme)

which is an exponential family model with natural paramétet log m..
If we model6; = logm linearly as

Ocx1 = [10g Mclex1 = XexpBoxi

then the above is generalized linear moddbr Poisson counts with the
log link functioné. = log uc.
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The log-likelihood may be written

L) = | | f(ng) = exp| ) (nclogm: —m) — > log nc!}

C

exp|n' X8 - > exp((Xplc) + g(data)

and, either explicitly setting derivatives equal to zembhyp using the
general theory of glm’s, we see that the likelihood equati@uuce to
Z(nc—mc)xcdzo, d=1,....,D

C
This is the usual result that the MLE in an exponential fammiydel
equates observed and expectefiicent statistics

nN'X =m'X

In log-linear models for tables, these are invariably appete marginal
totals for the table (see example, next slide).
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Sub-digression: Where does X come from?

Consider the tablajy withi =1,2, | = 1,2, andk = 1, 2. If we lay out
the log expected cell counts in a column, the model of indéprce
log Mijk = U+ Ugg) + Uz(j) + Uz looks like this:

[ |Og M1 | 1 0 O O]
logmy i,
logmyo; U
logmy,, U1(2)
logmp11 Uz(2)
logmp1 | Us2) |
log mp21

| logmpos || 1 1 |

Clearly the observed flicient statistics for the parameters are
NTX = (Nyass Npgsy Ma2i, Nis2)
which are equated by ML to the expectedisient statistics
M X = (Mysr, Mpss, Migy, Miy)
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Back to the Poisson Likelihood

e Further diferentiation (or application of general results from gim’s)
shows that the information matrix f@ris

62 .
— = X' WX
aﬁdlaﬁdZ DxD

whereW = diag(m) and hence
Var (8) = [X"WX ™

Since the MLE’s under the saturated model (no relations gnios
my's) arem = n;, the log-LR statistic for testing against the saturatef
model is

—2[log L(n|8) — log L(n|saturated)] 2 Z [nc log(ne/e) — Ne + M

ZZ nc log(ne/Me)

sincen, = M, as long as the log-linear model has the interceptit.
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e Since the individual cells counts ~ Poisgm;), with
E[n] = Var (nj)) = m, it follows that the Pearson residuals

ri = (n — M)/ iy

are approximately mean 0, variance 1 (and should be appab&iyn
normal for largey;). This is why they are sensible residuals to use.

Recall that the model deviance (LR statistic for testingragjahe
saturated model) is

G? = ZZ n; log(ni/m) = Zdi

Thedeviance residualare

P = sgn i - m) - Vldi

and these are approximately normally distributed (sineg dre
signed square roots of approximately 1-df contributionG4p
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Maximum likelihood for the Multinomial model

We again take a table likey and re-index the cells as, . .., nc. The key
observation here is that if we condition on & . n;, C independent
Poisson’s become a C-cell multinomial.

Begin with a Poisson log-linear model with an intercept
logmc=a+x.8 (= u+[otheru-terms])

where (1x]) is thec" row of X. Up to a function of the data
g(data) = > . lognc!, the Poisson log-likelihood is

logL(na.p) = Z nclogm; - Z m;
Z (e + X B) - Z expe + X )

n+a+chxC,8—T
C

wherer = Y. me = Y. expl + X-cr:B) =€ )¢ exp(xI,B)
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Now since logr = a + log Y. exp(x. 3), it follows that

log L(nler, B) log L(niz, B)

Z ncx-cr:B — N IogZ exp(xI,B)} +[n, logt — 7]

D nexiB— ) nclog ) exp(xlﬂ)} +[n, logr - ]

Z nc log pc} + [ny logT — 7]
C

wherepe = me/m. = expl + X )/ Yo expl + X.f) =
exp(!B)/ > expk.p). The term in brackets is the multinomial
log-likelihood, up to a function of the datddata = logn,! — > . logn! .

Thus, as log-likelihoods:

Poissop s(n) = { Multinomials(n) | n, } + [ Poisson(n,) ].
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That is worth repeatingFor the log-linear model logy = « + X! 3,
Poissop s(n) = { Multinomials(n) | n, } + [ Poisson(n,) ].

as log-likelinoods. Therefore:

e There is al-1 correspondencédetweerMultinomial log-linear modelsnd
Poisson log-linear modelwith the same log-linear form. The Poisson modd|
requires one more parametej,(corresponding to the grand total.

e The (non-intercept) parametgdsn the two models havithe same MLE'’s
andthe same variance-covariance matriXsince thes’s only enter in the
bracketed expressions on the previous slide).

e Theintercept parametetrr will be different in the two models.

e ThePearson residualsare still variance-stabilized, and as long as the granp
total n, is large relative to the cell count, eachr; will be roughly N(O, 1).

You can also show that the computation and interpretatid®’afnd X?

also do not change between the models.
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Product Multinomial Log-linear Models

A similar argument can be used to derive product-multinbiMiaE’s
from Poisson MLE’s.

e The key to the equivalence between Poisson MIgEsd single-Multinomial
MLE’s 3 was toinclude the intercepi corresponding to the fixed grand total
n, in the log-linear model: logy = « + X! 8. Then as log-likelihoods

Poissop;(n) = { Multinomials(n) | n, } + [ Poisson(n,) ].

e The key to equivalence between Poisson MLE’s and Productifduhial
MLE'’s will be to include log-linear term&Y, ..., oM corresponding to the
fixed margins {, ..., 1. Then as log-likelihoods

H
Poisson,(n) = Z { Multinomialg(n®) | n{ } + [ Poisson(n™) 1.
h=1

These results have been known for some time (e.g. Birch,, 1383S[R
a recent updatgeneralization is Lang (1996RSSR
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Example

Consider again the Aspirin and Heart Attack data:

Myocardial Infarction

Fatal Nonfatal
Attack Attack Total
Placebo Ni1=18 nyp»=171 ny =189
Aspirin - npp= 5 M= 99 ny, =104
Total n;; =23 N =270 n,y =293

e If we consider this to be observational data with only fixed and a
multinomial model fom;;|n.,, we can usglm(. .., family=poisson) to
fit log-linear models to this datas long as we include the intercept u in eac

log-linear model

e If we consider this to be a designed experiment so that the &ed product
multinomial with fixed row totals$;. andn,,, then we can uselm(. ..,
family=poisson) to fit log-linear models to this dats long as we include

the ug terms in each log-linear model
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e Testing independence with the Single Multinomial Model:

n <- scan()
18 171 10845
5 99 10993

Tx <- rep(c("Placebo","Aspirin"),c(3,3))
Obs <- rep(c("Fatal","NonFatal","NoAttack"),2)
aha.data <- data.frame(n,Tx,Obs)

print(fit <- glm(n ~ Tx + Obs,data=aha.data,family=poisson))

G? = 28.058 on 2 d.f.;p ~ 8 x 1078, so again we reject independence.
Testing independence with the Product Multinomial Model:

Since the model of independence already has log-lineasst@mmi.e. u,))
corresponding to the fixed row totals , the same Poisson fit above also
gives the results for the Product Multinomial.

In general, when klalready contains terms corresponding to the fixed margins
the table, testing Hlis identicalunder the Poisson, Multinomial, and Product
Multinomial sampling models.
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Example

Back to the muscle study in mice:

Drug (k)
Tension {) Weight() Muscle () | Drugl Drug?2

High Type 1 3 21
Type 2 11

High
Low Type 1 32
Type 2 12

High Type 1 10
Type 2 21

Low Type 1 45 23
Type 2 6 22

We treated this data before as Poisson or single multinommidhct, it
was a designed study with the total number of muscles of Baefixed
In advanceSo every log-linear model should have theerms () In It.
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An advantage olierarchical principleis that the interesting models
automatically contain the mairtects, so if the totals in one dimension
are fixed, the sampling scheme “doesn’t matter” for mod&drhparison:

Model Resid. Df Resid. Dev Rf; > Dev]

[TIIW][M][D] 11 127.351 0.00
[TW][TM][TD][WM][WD][MD] 5 47.669 4.15e-09
[TWM][TWD][TMD][WMD] 1 0.111 0.74

In the study, [T]ension and [W]eight of muscle are measuredaxch
combination of [M]uscle type and [D]rug. Two more models mirest
might be

1. [TMD][WMD]: (tension).L(weight)| (muscle type,drug)
2. [TWM][DM]: (tension,weight)i (drug)| (muscle type)

¢ In the real study, only the totals for muscle [T]ype were fixsnl
either of these models could be fitted as well.
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¢ |n another study of this type, perhaps muscle [W]eight anadud
type would be fixed in advance.

— In that case all models would need to include the [WD]
interaction: we could fit and interpret [TMD][WMD)] but not

[TWM][DM]

— (without the [WD] interaction, the totals for (weigkt)drug)
combinations would not be fixed by the log-linear model; the
product multinomial model with [WD] margins fixed could na b

represented)
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