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A full set of log-linear models for 3-way tables that we havasidered
so far include:

Hierarchical Specification of Log-Linear Models

Log-Linear Model Generator
MY logmy = u [0]
MO logmj = U+ Uyg + Uzg) + Usgg [1][2][3]
M(l) Iog mjk =u+ ul(i) + Uz(j) + Ug(k) + U23(jk) [1][23]
M@ log Mijk = U+ Ugg) + Uxj) + Uz + Uiagk) [2][13]
M@ IOg Mk = U+ Uyg) + Uzg) + Uz + Uizg)) [3][12]
M(4) |0g Mijk = U+ Ugg) + Uz(j) + Uzk) + Uizgk) + U23(jk) [13][23]
M® log Mijk = U+ Uy + Uz + Uz + Urzgj) + Uz3(jk) [12][23]
M® logmj = U+ Uyg + Uag) + Usg + Uszgj) + Uiage [12][13]
M@ |Og Mk = U+ Uyg) + Uzgj) + Ugk) + Uizgj) + Uizgk) + U23(jk) [12][13][23]
M® log Myjic = U+ Ugg) + Upgj) + Uy + Urogj) + Uragiy + Upa() + Unasgik) [123]

2 36-720 September 10, 2007



These model specifications have several noteworthy fesature

e They obey théierarchy principle If the k-way interaction is in the model
then every lower order interaction and maifeet is also in the model. For
example, sincé(”) containsu e terms then we also know it containg;
anduy;) terms).Under the hierarchy principle, nested models are obtained
by adding or dropping higher-order interactions in the mbde

e Following the hierarchy principle, a model can be complesglecified by
specifying the indices of the highest-order interactiadhs generator}. E.g.:

[1][23] = u anduysgy are in the model
= U+ Uy andu + Uy ) + Usgy + Uz are in the model
= logmj = U+ Uy + Uygj) + Usgy + Upggky IS the model
This is how R’s linear modeling notation works alsehl + Risk*Beh

expandstd + Schl + Risk + Beh + Risk:Beh.
e The generators are useful mnemonics for

— What the (conditional) independence model is, e.g. [12]H2 1 3| 1;

— What the sficient statistics are, e.g. for [12][13] thefBaient statistics
aren; gy andngsg).
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These ten hierarchical models can be organized by nestiftji@ss:

[123]

[12][13][23]
[13m[12]
M3 28 [E)

1I213]

[0]
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Example: Residual Deviances (LR vs [123]) in boys’ deviateta

Take EBeh, 2Risk, 3=Schl:
[123] (00)

[12][13][23] (0.92)

/\

[13][23] (1.93)  [12][23] (4.74) [13][12] (11.34)

[1](23] (5.6/5)  [2][13] (12.85) [3][12] (14.96)

[1][2][3] (16.4/7)

[0] (100.711)
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Higher-Dimensional Tables

Christensen provides data on the relationship between tugsd
(k = 1, 2) and muscle tensionsg € 1, 2) for two weights (= 1, 2) and
types ( = 1, 2) of muscles in mice.

Drug (k)
Tension {) Weight({) Muscle () | Drugl Drug?2
High Type 1 3 21
Type 2 23 11
High
Low Type 1 22 32
Type 2 4 12
High Type 1 3 10
Type 2 41 21
Low
Low Type 1 45 23
Type 2 6 22

Which log-linear models best describe this data?
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It is already painful to write down the saturated model [JaB4ierarchical
log-linear form:

logmijx = U+ UG + Uyj) + Usgy + Usg
+ U12gj) + U13gk) + Uiage) + U2s(ik) + Uz4(e) + Usage)
+ U123gjk) T U1244je) + Ur3agke) + U234(jke)
+ U1234(jke)

However, the “generator notation” makes model specificagi@sier:

e The independence model [1][2][3][4] consists of the firstlabove.

e The model of no three-way interaction [12][13][14][23][[E34] consists of
the first two lines above.

e The model of no four-way interaction [123][124][134][23@)nsists of the
first three lines above.

e The model [123][4] (or [WMD][T]) speficies that muscle weigkype and
drug are independent of tension.

e The model [TMD][WMD] specifies that (tensiom)(weight)| (type,drug).
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As an illustration we fit three models

n <- scan()

Wt <- rep(rep(c("H","L"),c(4,4)),2) # [W]eight

Mt <- rep(rep(c('1","2"),c(2,2)),4) # [M]uscle type
Dt <- rep(c("1","2"),8) # [D]rug type
Tn <- rep(c("H","L"),c(8,8)) # [T]ension
musc <- data.frame(n,Wt,Mt,Dt,Tn)

¢ Independence: [T][W][M][D]
glm(n © Tn + Wt + Mt + Dt, data = musc, family = poisson)

¢ No three-way interaction: [TW][TM][TD][WM][WD][MD]

glm(n"Tn*Wt + Tn*Mt + Tn*Dt + Wt*Mt + Wt*Dt + Mt*Dt, ...)
¢ No four-way interaction: [TWM][TWD][TMD][WMD]
glm(n °~ Tn*Wt*Mt*Dt - Tn:Wt:Mt:Dt, ...)
Model Resid. Df Resid. Dev  Rf, > Dev]
Independence 11 127.351 0.00
No three-way 5 47.669 4.15e-09
No four-way 1 0.111 0.74
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Digression: Why Poisson If We Believe Multinomial?

Maximum likelihood for the Poisson model

We re-index a table such agy to be jusin., and we suppose thag,
c=1,...,C are independent Poisson counts with meansThen

e—nl:rncnc
fingm) = =1
C.

= exp[hclogme — m; —logn!]
= exp[n.b. — expb: — lognc!]

which is an exponential family model with natural paramétet log m.
If we modeld. = logm linearly as

Ocx1 = [10g Mc]ex1 = XexpBoxi

then the above is generalized linear modébr Poisson counts with the
log link functiond. = log uc.
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The log-likelihood may be written

L) = [ [ f(nelg) = exp| ) (nclogme—my) - > Iognc!}

c

= exp|n' X8 - ) exp(IXBlc) + g(date)

and, either explicitly setting derivatives equal to zenohy using the
general theory of glm’s, we see that the likelihood equati@duce to

Z(nc—mc)xcdzo, d=1,...,D
C
This is the usual result that the MLE in an exponential farmilydel
equates observed and expectefiisient statistics
n'X =m' X

In log-linear models for tables, these are invariably appete marginal
totals for the table (see example, next slide).
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Sub-digression: Where does X come from?

Consider the table withi=1,2,j =1,2, andk = 1, 2. If we lay out
the log expected cell counts in a column, the model of inddproe
logmijx = U+ Uy + Uy(j) + Usg l0oks like this:

[ |Og M1 | 1 0 0O 0]
logm 1 0 0 1
log M2y 1 010 u

o= logm2 _ 1 01 1 W) | _

|Og Mp11 1 1 00 U2(2)
lognpyo 1 1 0 1 U3(2)
log mpo1 1 1 10
logmpo | [1 1 1 1]

Clearly the observed fiicient statistics for the parameters are
N'X = Myt Mg Ny2p, Nyy2)
which are equated by ML to the expectedisient statistics
M'X = (Myrs, Mo, Mi2i, My 2)

11 36-720 September 10, 2007

Back to the Poisson Likelihood

o Further diferentiation (or application of general results from glm’s)
shows that the information matrix f@ris

02
9B, 0Be,
whereW = diag(m) and hence

Var (8) = [X"WX]~*

l = XTWX
DxD

e Since the MLE’s under the saturated model (no relations gntios
my’s) areny = n;, the log-LR statistic for testing against the saturatefl
model is

—2[logL(n|B) — log L(n|saturated)]

2" [nelog(ne/fi) - ne + ]

2 > nclog(ne/ri)

sincen, = M, as long as the log-linear model has the interceiptit.
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¢ Since the individual cells counts ~ Poisgm), with
E[n] = Var (n;)) = my, it follows that the Pearson residuals

rio= (- )/ iy

are approximately mean 0, variance 1 (and should be appabeiyn
normal for largen;). This is why they are sensible residuals to use.

¢ Recall that the model deviance (LR statistic for testingragjahe
saturated model) is

G?=2) nilog(i/Mm)= ) d
i i
Thedeviance residualare

rP = sgn 6y — M) - dil

and these are approximately normally distributed (sineg #re
signed square roots of approximately 1-df contributionGtp
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Maximum likelihood for the Multinomial model

We again take a table likajx and re-index the cells as, ..., nc. The key
observation here is that if we condition op & > . n., C independent
Poisson’s become a C-cell multinomial.

Begin with a Poisson log-linear model with an intercept
logm=a+x8 (= u+[otheru-terms])

where (1x]) is thec™" row of X. Up to a function of the data
g(data) = Y. logn¢!, the Poisson log-likelihood is

logL(na.p) = ) nclogme— ) m

D N+ X - ) explr + X )
-~ n+a+chxI,8—r

wherer = 3. me = Y. expl + XI:B) =€ X exp(xI,B)
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Now since logr = a + log 3. exp(x} B), it follows that
log L(nIz, B)

{Z neXe3 — nlog Z exp(xI,B)} +[n;logr - 1]
{Z NeX. 8 — Z Ne Iogz exp(xI,,B)} +[n, logt — 1]
{Z nc log pc} +[ny logt — 1]

wherepe = Me/m. = expl + X[B)/ e exp + X.B) =
explB)/ Yo expk.B). The term in brackets is the multinomial
log-likelihood, up to a function of the dat{data) = logn,! — > . logn! .

log L(nla, B)

Thus, as log-likelihoods:
Poisson g(n) = { Multinomialz(n) | n, } + [ Poisson(n.) ].

15 36-720 September 10, 2007

That is worth repeatingFor the log-linear model logy = @ + X! 5,
Poissong(n) = { Multinomialg(n) | n, } + [ Poisson(n.) ].

as log-likelihoods. Therefore:

e There is al-1 correspondencéetweerMultinomial log-linear modelsnd
Poisson log-linear modelwith the same log-linear form. The Poisson modgl
requires one more parametej,(corresponding to the grand total.

e The (non-intercept) parametegdsn the two models havthe same MLE’s
andthe same variance-covariance matrixsince thes’s only enter in the
bracketed expressions on the previous slide).

e Theintercept parameterr will be differentin the two models.

==

e ThePearson residualsare still variance-stabilized, and as long as the gran
totaln, is large relative to the cell count, eachr; will be roughly N(O, 1).

You can also show that the computation and interpretati€®?and X?
also do not change between the models.
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Product Multinomial Log-linear Models

A similar argument can be used to derive product-multinbMiaE’s
from Poisson MLE’s.

e The key to the equivalence between Poisson MIs&sd single-Multinomial
MLE’s 5 was toinclude the intercept corresponding to the fixed grand totalf
n, in the log-linear model: logy, = a + X! 3. Then as log-likelihoods

Poissopz(n) = { Multinomialg(n) | n, } + [ Poisson(n,) ].

e The key to equivalence between Poisson MLE’s and Productihduhial
MLE’s will be to include log-linear terma®, ..., o™ corresponding to the
fixed margins Y, ..., i) Then as log-likelihoods

H
Poisson,(n) = Z { Multinomialg(n®) | n® } + [ Poisson(n) 1.
h=1

These results have been known for some time (e.g. Birch,, IF6SSR
a recent updatgeneralization is Lang (1996RSSR
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Example
Consider again the Aspirin and Heart Attack data:

Myocardial Infarction

Fatal Nonfatal
Attack Attack Total
Placebo n;;1 =18 ni»=171 ny, =189
Aspirin - np1= 5 nyp= 99 ny =104
Total n,1 =23 nop =270 n,, =293

¢ |f we consider this to be observational data with only fixed and a
multinomial model fom;j|n,., we can usglm(..., family=poisson) to
fit log-linear models to this datas long as we include the intercept u in eaclj
log-linear model

¢ |f we consider this to be a designed experiment so that the aed product
multinomial with fixed row total$,, andn,,, then we can usglm(.. .,
family=poisson) to fit log-linear models to this da&s long as we include
the ug terms in each log-linear model
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e Testing independence with the Single Multinomial Model:

n <- scan()

18 171 10845

5 99 10993

Tx <- rep(c("Placebo","Aspirin"),c(3,3))

Obs <- rep(c("Fatal","NonFatal", "NoAttack"),2)
aha.data <- data.frame(n,Tx,0bs)

print(fit <- glm(n ~ Tx + Obs,data=aha.data,family=poisson))

G? = 28.058 on 2 d.f.;p ~ 8 x 1078, so again we reject independence.
e Testing independence with the Product Multinomial Model:

Since the model of independence already has log-lineast@mmi.e. uyg)
corresponding to the fixed row totals , the same Poisson fit above also
gives the results for the Product Multinomial.

In general, when blalready contains terms corresponding to the fixed margins |
the table, testing blis identicalunder the Poisson, Multinomial, and Product
Multinomial sampling models.
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Example

Back to the muscle study in mice:

Drug (k)
Tension {) Weight({) Muscle () | Drugl Drug?2
High Type 1 3 21
Type 2 23 11
High
Low Type 1 22 32
Type 2 4 12
High Type 1 3 10
Type 2 41 21
Low
Low Type 1 45 23
Type 2 6 22

We treated this data before as Poisson or single multinommidct, it
was a designed study with the total number of muscles of Bgefixed
in advanceSo every log-linear model should have theerms (y;)) in it.

20 36-720 September 10, 2007



An advantage ohierarchical principleis that the interesting models
automatically contain the mairffects, so if the totals in one dimension
are fixed, the sampling scheme “doesn’t matter” for mod&dmparison:

Model Resid. Df Resid. Dev Rf; > Dev]

[TIW]IM][D] 11 127.351 0.00
[TW][TM][TD][WM][WD][MD] 5 47.669 4.15e-09
[TWM][TWD][TMD][WMD] 1 0.111 0.74

In the study, [T]ension and [W]eight of muscle are measuredarh
combination of [M]uscle type and [D]rug. Two more modelsmerest
might be

1. [TMD][WMD]: (tension)lL(weight)| (muscle type,drug)

2. [TWM][DM]: (tension,weight)i (drug)| (muscle type)

¢ In the real study, only the totals for muscle [T]ype were fixesal
either of these models could be fitted as well.
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¢ In another study of this type, perhaps muscle [W]eight anjdj@
type would be fixed in advance.

— In that case all models would need to include the [WD]
interaction: we could fit and interpret [TMD][WMD] but not
[TWM][DM]

— (without the [WD] interaction, the totals for (weighktjdrug)
combinations would not be fixed by the log-linear model; the
product multinomial model with [WD] margins fixed could na b
represented)
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