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SUMMARY

We introduce a method for comparing multinomial and Poisson log-linear models which
affords an explicit description of their equivalences and differences. The method involves
specifying the model in terms of constraint equations, rather than the more common
freedom equations. The Poisson and multinomial large sample distributions of log-linear
model parameter estimators are derived and compared within this constraint equation
context; reparameterizations are thereby avoided. As a by-product, the method provides
the practitioner with the adjustment that is necessary to make valid inferences about all
multinomial log-linear parameters when, as a matter of convenience, the Poisson log-linear
model is fitted. This implies that valid large sample inferences about the multinomial cell
probabilities can be made directly by using the Poisson log-linear model. To illustrate the
utility of this approach, several examples are considered.

Keywords: CATEGORICAL DATA; CONSTRAINT EQUATIONS; FREEDOM EQUATIONS; FREEDOM
PARAMETERS; LAGRANGE MULTIPLIERS; RESTRICTED LIKELIHOOD EQUATIONS

1. INTRODUCTION

In practice, the Poisson log-linear model is often assumed as a matter of convenience.
In particular, the Poisson log-linear model is simpler to fit using maximum likelihood
methods than the multinomial log-linear model is. This follows since

(a) the mean parameters are not required to satisfy sampling constraints and
(b) the components of the random vector are independent.

In fact, the Poisson log-linear model is a univariate generalized linear model
(McCullagh and Nelder, 1989) and can be fitted by using the iterative reweighted
least squares algorithm.

It has been pointed out by many researchers (e.g. Birch (1963), Bishop et al. (1975),
Palmgren (1981), McCullagh and Nelder (1989) and Agresti (1990)) that there are
several equivalences between the Poisson and multinomial log-linear models. The
method that these researchers used to show the equivalences generally, depending on
the original parameterization, requires several reparameterizations. When the log-
linear model satisfies certain sufficient conditions the Poisson log-likelihood can be
partitioned into a sum of two log-likelihoods: one is the reparameterized multinomial
log-likelihood; the other is a Poisson log-likelihood. For the proper parameter-
ization, which exists when the sufficient conditions are met, the two log-likelihoods
are functions of distinct parameters. From this partitioning it follows that the large
sample likelihood inferences about the parameters in the reparameterized multi-
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nomial log-likelihood are identical for both sampling assumptions (see Palmgren
(1981)). These equivalences enable the user to fit the model by using the Poisson
assumption even when it is known that the data are product multinomial.

We present a different method for showing these equivalences, a method which
also allows for an explicit description of the differences. Our method does not de-
pend on the particular parameterization chosen; it is easily seen to depend only on
the spanning set of the design, or basis, matrix. Reparameterization of the log-
likelihoods will be avoided, allowing us to derive results about the parameters in the
original parameterization. We show that as a by-product of this method of proof we
obtain correction matrices that can be used to alter the Poisson variance estimates
under the original parameterization so that they are equal to the product
multinomial variance estimates. This implies that valid inference about the product
multinomial cell probabilities can be made directly by using the Poisson log-linear
model. We shall derive the asymptotic distributions of the multinomial and the
Poisson maximum likelihood estimators using the approach of Aitchison and Silvey
(1958, 1960). Their method involves specifying the model by using constraint
equations and then maximizing the log-likelihood subject to these constraints.

In Section 2, we introduce the notation that will be used in the remainder of the
paper. The multinomial and Poisson log-linear models are also defined. Two
different, but equivalent, specifications of a log-linear model are considered in
Section 3. We also present the non-restrictive model assumptions that will be
sufficient for the equivalence results to hold. In Section 4, the multinomial log-linear
model is described in detail. We derive the restricted likelihood equations (see
Aitchison and Silvey (1960)) and describe the large sample behaviour of the solution
to these equations. In Section 5, we mirror the discussion of Section 4, this time for
Poisson log-linear models. A comparison of the two models is conducted in Section
6. In this section, we give an interesting equivalence result that has several practical
implications. Section 7 illustrates these results via examples. A brief discussion of the
paper is given in the final section.

2. NOTATION

Throughout this paper we shall assume that the random vector of counts

Y satisfies either M—Y =vec(Yy, ... Yx), where Yi=Yi,... Yi) ~
indep mult(ng, 7¢) and 7 = (Te1, - - o ), B Mg =1, k=1,..., K, or P—
Y = vec(Yy, - . ., Yk), where Yj; ~ indep Poisson (ug), k=1,... . K, j=1,...,r.

That is, the s x 1 vector Y, where s = rK, is either product multinomial or product
Poisson.

For the product multinomial sampling scheme M, let p; = nemy; represent the
expected cell counts. For both sampling schemes, let the sx 1 vector p =
vec(iy, - - -, Mg), Where p, = vec(uy; j=1, . . ., r), and let £ =log .

Consider the log-linear models [w*)] and [wP)] with corresponding model spaces

WM — (€ ¢ = XB, samp(¢) = 0}, @.1)
w®) = {& £ =XB}. 22

Here the constraint samp(€) =0 is the multinomial sampling constraint; it is
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samp(§) = @K, 1))ef — (my, . . ., ng)’ = 0. The symbol &KX | 1’ represents the direct

r

sum of K components, in this case K identical components. Specifically,

r o 0o ... 0
O roe .0
6915:11;: r .r r ) r
O o0 ... 1

is a K x s matrix. The multinomial sampling constraints simply state that within each
of the K levels, say level k, the sum of the expected counts is »y.

The model [w™)] along with the distributional assumption M is called a product
multinomial log-linear model. The model [wP)] along with the distributional
assumption P is called a Poisson log-linear model.

3. CONSTRAINT VERSUS FREEDOM SPECIFICATION OF THE MODEL

Aitchison and Silvey (1958) introduced a terminology that is useful for describing
model specification methods. The model spaces w™) and w® of equations (2.1) and
(2.2) are said to be specified using freedom equations. A motivation for this
terminology is as follows. The space w®) comprises all those vectors £ that can be
written as £ = X3 where the parameter 3 is completely unrestricted in the sense that
each component of 3 is free to take on any value on the real line. It is for this reason
that the parameters in 3 are called freedom parameters and the model specification is
called the freedom equation specification. For distinctness, we shall refer to the
parameters in £ as model parameters.

There is an equivalent way to specify these models. It is known as the constraint
equation specification. Requiring that & = X3 for some unrestricted 3 is tantamount
to requiring £ to fall in the range space of X, denoted R(X). This in turn is equivalent
to requiring £ to fall in the null space of a matrix U’ where the columns of U span the
space that is orthogonal to R(X), namely R(X)". It follows that the model spaces w*)
and wP) can be specified equivalently as

WM = {¢&: U'¢ =0, samp(€) = 0}, (3.1)
WP = {& Ug =0}, (32

where U satisfies UX = 0 and R(U) = R(X)".
The following non-restrictive model assumption A1 will be sufficient for the
equivalences between Poisson and multinomial log-linear models to hold:

RX) 2 R@®K, 1,).

For convenience, we shall also assume that X is s x p of full column rank p
(assumption .A2) and Uis s X (s — p) = s x u of full column rank u (assumption .A3).
Assumpion Al is satisfied whenever a parameter is included for each of the K
independent multinomials, i.e. the fixed-by-design parameters are included. This
assumption implies that the sufficient conditions for equality of point estimates under
the two sampling schemes are met (Birch, 1963).
Requiring X and U to be of full column rank (A2 and .43) is not necessary.



256 LANG [No. 1,

However, it is convenient to assume this for expository reasons, as generalized
inverses can be avoided. When all three assumptions A1, A2 and A3 hold, we shall
simply say that assumption .4 holds.

4. MULTINOMIAL LOG-LINEAR MODELS

4.1. Restricted Likelihood Equations
Our first objective is to find the product multinomial restricted maximum
likelihood estimate of &. The product multinomial log-likelihood is

Zzykjl()gwkj'FZlOg(y " ) =2 yyloguy+c= oD b+,
=5 % k1 - - Vier % ko

where c is a constant with respect to 7r. Thus, the kernel of the log-likelihood is, using
vector notation, IM)(¢; y) = y'€. Hence, the maximum likelihood estimator is the
solution £ to

sup {{M(&; y)} = Jsup. yo =vé @.1)

&w(M)
We are to maximize this function /™) subject to the constraints as specified in
equation (3.1). As did Aitchison and Silvey (1958), we shall use Lagrange’s method
of undetermined multipliers to solve equation (4.1). In particular, let 7 be the K x 1
vector of undetermined multipliers corresponding to samp(§) = 0 and let A be the

u x 1 vector of undetermined multipliers corresponding to the constraint U¢=0.
The solution vec(§, A, 7) to the restricted likelihood equations

y+D (@K, 1,)7 +UX
Ué =0
(&K, 1))t = (mi, . - ., mg)

is the maximum likelihood estimate of (¢, A, 7). Here, Dy is the diagonal matrix with

elements in x on the diagonal. Assuming that assumption Al holds, we can solve for

# explicitly. Premultiplying the first equation by (@5, 1)), we obtain

ny m
n; . ~ K ’ " n; . A
0=] . + diag(ny, . . ., ng)T+ (@, 1,)UX = . +diag(ny, . . ., nx)T,

ng ng

since, by assumption A1, ®X 1, = XB for some matrix B and UX =0. It is this
orthogonality of the Jacobians that allows for simple Poisson-multinomial com-
parisons. It follows that + = —1x. Thus, we can find vec(§, A) by solving the reduced

set of equations
y-e+UX) _ 42
( UI 6 ) N ( - )

Lang and Agresti (1994) outlined a simple iterative scheme for solving equations
(4.2). The algorithm can be used for a more general class of models as well.
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4.2. Asymptotic Behaviour of Multinomial Estimators

We shall explore the large sample behaviour of € and 3 under the assumption that
the model [w*™)] truly does hold Let the symbol n =X n; represent the total
sample size and the matrix N = @ X Pl , iel,, where I, is the r x r identity matrix. All the
asymptotlcs will hold as » — oo in such a way that n~!N — W, where the matrix
W=0X wl,and 0 <w<l,k=1,..., K, ie. the sample sizes are assumed to
grow large at approximately the same rate

To describe the asymptotic behaviour of vec(§ )\) we begin by noting that
vec(& ) is the solution to equations (4.2) if and only if it is the solution to

w120y — ef —1/2
( PSRN UA) 0 *3)

since U'¢€ = 0 for £cw™).
Now, expanding the restricted likelihood equations (4.3) about vec(§, 0), we show
in Appendix A that

-1/2

l 2
( ; - 5)) ~ MVNQ,T) in distribution,

where MVN(0, I') represents a multivariate normal random vector with zero mean
and variance I', which can be written as

W'D —W-'D;'UU'D;!'W-U) 'UD'W- - @K, 1,1)W! 0
0 U'D;'w-uy™!

The upper left block of T is the asymptotic variance of nl/2(€ — £). It can be
rewritten as

lim[»{D;' - D;'UU'D,'U)"'UD;! — &f 1,1,/n.}],

n—oo

since lim,.o(nD;') = W™'D;! and sN~' = W~ 4 o(1). The following result sum-
marizes the behav1our of several multinomial estimators.

Result 1. The asymptotic variances of the multinomial estimators, denoted by I
are

r'¢) =D;' - D;'UUD;'U)'UD,! - &f 1,1,/n, 4.4
I'(B) = (X'’X)"'XTE)XXX) ", 4.5)

I'(@) =D, - U(UD;'U)'U - &, mpi/m, (4.6)
I'(#) = N7 IT(@)NL. @.7)

Notice that 8 = (X'X)"'X'€, i = f and # = N™'fi. Therefore, the last three results
can be shown by using the delta method.

The asymptotic variances of result 1 can be used to understand better what effect
parsimonious modelling has on variance estimates. For instance, in a 2 x 2 table,
suppose that there is full multinomial sampling (K = 1). For the multinomial log-
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linear model of independence, the matrix U’ = (1, — 1, — 1, 1). By equations (4.6)
and (4.7), the asymptotic variance of # can be written as

1 -1 -1 1
1 1 -1 1 1 -1

I@#) =-Dy — 7)) - —— ,
) n(D ) n?avar(logd) |-1 1 1 -1
1 -1 -1 1

where 0 is the sample odds ratio and
2

avar(log ) = i Z py'"
P

= j=1

is the asymptotic variance of log#. Evidently, the asymptotic variance of the
independence model estimator # can be obtained by subtracting the matrix involving
avar(f) from the saturated model variance estimate. More generally, since the matrix
UUD;'U)'U in equation (4.6) is non-negative definite, we immediately see that
good fitting parsimonious models, those models with many constraints, produce
estimators with smaller variances.

5. POISSON LOG-LINEAR MODELS

5.1.  Restricted Likelihood Equations
The Poisson maximum likelihood estimate of £ is the solution £ to

sup {ID(& y)} = sup ('€ —ef1,) = y€ — €1, (5.1)

tcw(P) tcw(P)

As in the multinomial setting, we solve equation (5.1) by using Lagrange’s method
of undetermined multipliers. For Poisson log-linear models, we need only to
introduce the u x 1 vector of undetermined multipliers A corresponding to the
constraint U’'¢ = 0; there are no sampling constraints.

The solution vec(£, A) to the restricted likelihood equations

( y- ‘sz U") 0 (5.2)

is the maximum likelihood estimate.

5.2. Asymptotic Behaviour of Poisson Estimators

We explore the large sample behaviour of £ and B under the assumption that the
model [wP] truly does hold. Let the symbol p, = % % ;. The asymptotics will
hold as p, — oo in such a way that u +‘D — V, where the matrix V=
diag(viy, . . » V) and 0 <o < 1, k=1, K j=1, r. Thus, all the expec-
ted cell counts are assumed to grow large at approximately the same rate.

As in the multinomial setting, we expand a properly standardized version of the
restricted likelihood equations (5.2) about vec(¢, 0) in a Taylor expansion. Using
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arguments that are analogous to those used to describe the asymptotic behaviour of
product multinomial estimators, it is straightforward to show that

1205
("* ¢, XO ) MVNQ,T;) in distribution,
By

where

r_(V U\ (Vo Vv -u\"
Pm\-Uu o 0 0/)\-Uu o)

which simplifies to
r.— (V'-v'uuviuylov! 0
P 0 vyt )
1/2

The upper left-hand block in this expression is the asymptotic variance of ) = ).
It can be rewritten as

lim [[.L.,.{D;l _ D;IU(IJ'D;IU)_IUlD;l}],

Py —00

since lim,, o(u; D) = V7!, The following result summarizes the asymptotic
behaviour of several Poisson estimators.

Result 2. The asymptotic variances of the Poisson estimators, denoted by T, are

I =D,' - D,'UUD;'U)'UD;}, (5.3)
I'(B) = X'X) ' XTEXXX)™, (54)
I'(#) =D, - U(UD;'U)'U. (5.5)

Similarly to result 1, the last two results can be obtained by using the delta method.

6. COMPARISON: MULTINOMIAL VERSUS POISSON LOG-LINEAR MODELS

We begin by comparing point estimates —multinomial versus Poisson. Equations
(4.2) and (5.2) evidently give rise to the same solutions, i.e. £ = £ and XA =X. These
numerical equivalences occur because assumption A1 implies the sufficient con-
ditions of Birch (1963), namely, as long as the Poisson fitted values y,(3) satisfy the
multinomial sampling constraints, the multinomial and Poisson estimates are
identical. It also follows that the freedom parameter estimates are identical (i.e.
B = B). This follows since 8 = (X'X)'X'é = (X'X)"'X'é = 8.

Comparing results 1 and 2, it is immediately obvious that the following result
holds.

Result 3. Assuming that model assumption .4 holds, the asymptotic variances for
the multinomial and Poisson estimators are related according to
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L) =T@ - &, 1,1,/ m, 6.1)
T(i2) = T() — i, Mt/ M (6.2)
T(#) = N"T@N" — N (@K, pypt /N, (63)
LB =T@ - A, (6.4)
where the p X p matrix A is non-negative definite and has the form
A =XX) X (@, L1 /n)XXX)™". (6.5)

Remark 1. By relationship (6.1), the asymptotic variance of any linear contrast of
log-means within a covariate level is the same under both the multinomial and the
Poisson models. This follows since a linear contrast of log-means within level k of the
covariate has form ¢;§ wherec; = (0,0, .. ., 0, cx1, - - -, Ckry O, . . ., 0) with ¢y in the
(k — 1)r + 1 position and X7_, ¢;; = 0. Thus, by relationship (6.1),

avar(c;€) = ¢ T(é)cx
= ¢ L) — (@, 1,1, /m)e
=c,T'()c, — 0
= avar(c,£).

Therefore, inferences about measures like odds and odds ratios are the same for both
models. In contrast, inferences about such measures as relative risk and differences
between probabilities will be different for these two models.

Remark 2. To illustrate how important these differences between the models can
be, we consider the following: suppose that there is full multinomial sampling
(K=1). Our goal is to estimate p'l;, the sum of the expected counts. For full
multinomial sampling, we know that f'l; =»n with probability 1. Since n is
considered fixed for multinomial sampling, our variance estimate of f'l; should
reflect this; it should be 0. With Poisson sampling our point estimate is the same, but
the variance of our estimate is significantly inflated. In fact, avar(@'l,) = @'l = n.
Notice that by relationship (6.2) we can easily adjust the Poisson variance estimate so
that it equals the multinomial variance estimate, i.e.

A Ay

pp, I,=n—n=0.

avar(f'l,) = 'T(@)1, - 1,

Remark 3. Relationship (6.3) is of practical importance. By that relationship, we
can draw valid inference about the multinomial cell probablhtles even when a Poxsson
log-linear model is fitted. We simply subtract the quantity N~'(X | u,fuk /MmN,
an estimate thereof, from the Poisson variance estimator N~'T'(z)N~!, an estlmator
that can easily be obtained by using standard generalized linear model fitting
methods such as iterative reweighted least squares (McCullagh and Nelder, 1989;
Aitkin et al., 1989).

Remark 4. With regard to relationship (6.4), it is of practical importance to know
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which of the components in A are 0. For, if they are 0, inference about the
corresponding freedom parameters will be the same for both sampling schemes.
Palmgren (1981) investigated this relationship by using an alternative approach. We
end this section with a more thorough investigation of the form of A.

Notice that relationship (6.5) can be written as

A = {XX)'X'(®K, 1,/vr)H(@K 1./vn)XX'X) '},

and that, since R(®X , 1,) C R(X) by assumption Al, we can write (&K, 1,//m) =
XB for some matrix B. By assumption A1, there must be a collection of T (T<p)
columns in X, say X*= (x;, . . ., X;;), that spans a space containing R®K 1,/ \/nk)

Without loss of generality, we assume that this collection is a minimal spanmng set in
the sense that any smaller collection has span that does not contain R(&X , 1,/\/n).

It follows that the matrix B’ can be written as B' = (b, b2 b,), where b; = O if
i¢ {i1, . . ., ir}. This is so because R(X*) contains R(®X 1,/\/nk) which 1mphes
that (&£, 1,/4/nc) can be written as a linear combmatlon of the columns in X*
alone. Therefore, with this choice of B, we have that A = BB’ and the following
result.

Result 4. Assuming that model assumption A holds, the asymptotic variances of
the multinomial estimator 3 and the Poisson estimator 3 are related according to

L@ =T@-A,
where A is non-negative definite with components satisfying
Aij = 0’ 1f(l,_])¢ {ila CRENEY) ZT} X {il’ CREREY) ZT}

The collection of subscripts {ij, . . ., ir} indexes the T columns of the design matrix
X that span a set that contains R(®X | 1,).

This result follows immediately on noting that if either i or j is not in the set
{i1, . . ., ir} then either row b! or b is the zero vector. Thus, the (i, j/)th component of
A, which has form bb;, must be d

Result 4 allows us to determine which parameter estimators, for the original
parameterization, have large sample distributions which are invariant to sampling
scheme, Poisson or product multinomial.

7. EXAMPLES

7.1. Example 1

Consider a prospective study whereby n; = 50 subjects are assigned treatment
(T =1) and n, = 75 subjects are assigned control (7 = 2). After a certain length of
time, the subjects are observed and their disease status determined: D = 1 means that
the disease is present and D = 2 means that the disease is absent. The resulting data
and corresponding distributions are shown in Table 1.

For this example, the number of independent multinomials, or covariate levels, is
K =2 and the number of response levels within each covariate is r = 2. The product
multinomial log-linear model space corresponding to homogeneity (or, loosely, in-
dependence of T and D) can be specified as
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W™ = {& &y =a+af + o, of = of =0, samp(§) = 0}
= {& U = 0, samp(€) = 0},

where & = log(memy;), k=1,2,j=1,2. Here, the freedom parameter vector is
B =(a, of, a?), the matrix U =(1, —1, —1,1) and the design matrix X
corresponding to the freedom parameter identifiability constraints (o] = a? = 0) is

10 0
10 1
X=l11 o
11 1

The multinomial sampling constraint is

—~ 50
samp(§) = @}, 1) — (m, m) = (Z: ~175 ) -

Notice that the first two columns of X span a space that contains R(®?2_, 15). In
general, to check whether R(A) C R(B) use the fact that R(A) C R(B) if and only if
{I - B(B'B)"'B'}A = 0. Evidently, assumption A is satisfied and so by result 4

T(3) =T(B) - A,
where A; = 0, if (i, j) ¢ {1, 2} x {1, 2}. Hence, A has the form

x y 0
A=y z 0
0 0O

where x, y and z are generally non-zero. We conclude that, if we had fitted the
Poisson log-linear model instead of the correct multinomial log-linear model, our
inferences about the parameter o would have remained the same. Also, if we had
not included the of-term in our model the inferences, including point estimates,
would have been different for the two models, since assumption A1 would not be
satisfied.

For these data we computed parameter estimators and their estimated variances
under both sampling schemes. The results for the independence model are shown in
Table 2.

TABLE 1
Cell counts and underlying distributions
T D T D
1 2 1 2
1 30 20 50 1 ™1 2 1.0
2 60 15 75 2 T | T 1.0
125
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TABLE 2
Independence log-linear model estimates

Parameter Estimate Multinomial Poisson
standard error standard error

m 0.720 0.040 0.110
T 0.720 0.040 0.092
a 3.584 0.056 0.152
of 0.405 0.000 0.183
ob —0.944 0.199 0.199
TABLE 3
Covariance estimates for the independence model
Multinomial covariance estimates Poisson covariance estimates
a aof a? a of of
a 0.0031 0.0231
air, 0.0000 0.0000 —0.0200 0.0333
a, —0.0111 0.0000 0.0397 —0.0111 0.0000 0.0397

Table 3 contains the covariance estimates for the 1ndependence model freedom
parameter estimators.

From Table 2, it is evident that the inference about the parameter a? is the same
for both sampling schemes; this we know to be the case from result 4. Table 3 shows
that the last row and last column of the variance—covariance estimates are identical
for the two sampling assumptions. This also must be the case by result 4.

7.2. Example 2
For the same data, if the saturated model {&: £ = 3, samp(£) = 0} were fitted, we
would have that X = I, and U = 0. For this parameterization, all four columns of X
are needed to span a set containing R(é7_, 15). Thus,

') =T(B) - A,

where Ay = 0, if (i, /)¢ {1, 2, 3, 4} x {1, 2, 3, 4}, i.e. all elements in A are generally
non-zero. We conclude that, if this saturated Poisson log-linear model is fitted, the
inferences about all four parameters are different. In contrast, by the first remark
following result 3, inferences about any linear contrast in 3 are the same for both
sampling schemes.

A better, and more common, parameterization might be

f=a+oy +a +af,

where of = of = aT D= akl 0. Corresponding to the identifiable freedom param-
eters in B = (o, o, aD of?) is the design matrix
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[ e N )
—_—O O
—_—0 = O
-0 O O

In this case, the first two columns of X span R(®?2_, 1,) so that the adjustment matrix
A has the form

O O %
O O N
(= e )
(=R e e B )

and the inferences about both of and of? are the same under both sampling
assumptions.

8. DISCUSSION

We have outlined an alternative approach to showing the equivalence between
product multinomial and Poisson log-linear models. Using constraint equations to
formulate the model, we have derived the asymptotic distributions of several
estimators of interest. This alternative approach, which is based on the seminal
papers by Aitchison and Silvey (1958, 1960), has several advantages over the original
approach (Birch, 1963; Palmgren, 1981).

A comparison of the large sample behaviour of Poisson and product multinomial
estimators was carried out. With this approach, adjustment matrices are computed as
a by-product. The adjustment matrices enable us to modify the Poisson variance
estimates so that they match product multinomial variance estimates. Therefore,
valid inferences about multinomial cell probabilities can be conducted by using
the Poisson log-linear model along with the adjustments. Also, the asymptotic
covariances have intuitive forms in that we can readily see the effect of parsimonious
modelling.

For pedagogical reasons, this approach has some advantages over the original
approach. As illustrated by example, we can immediately see the effect of different
freedom parameterizations; it is simple to determine when inferences about different
freedom parameters will be invariant with respect to the sampling scheme.

An important feature of this method, which does not require reparameterization of
the likelihood in terms of freedom parameters, is that we can extend these
equivalence results to non-standard models of the form Clog(Au) = X3 where C
and A are known conformable matrices. See Lang and Agresti (1994) for a discussion
of the applicability of these generalized log-linear models.

Finally, we have not discussed model assessment statistics such as goodness-of-fit
statistics or adjusted residuals in this paper. The well-known equivalences, e.g. x*
goodness-of-fit statistics, are the same for either sampling scheme and can be shown
by using our method of proof. Using this method, it is also easy to see that, for
models satisfying assumption .4, the score statistic, the Lagrange multiplier statistic
(see Aitchison and Silvey (1958)) and the Pearson x?-statistic are identical.
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APPENDIX A

Using the method of Aitchison and Silvey (1958), it can be shown that the solution
vec(£, A) is_consistent in the following sense: € — & = Op(n~1/2), X = Op(n'/?). Expanding

n~2(Y — €f) about ¢ in a Taylor expansion we obtain

n Y — ) = n7 Y — e - D€ - £) + 02(1)}
=n"X(Y — ) —n"'Dn' (€ ~ €) + 0p (n7'7?)
= (Y — ) - WD, A€ - ) + 0, (0.

Thus, we can approximate the likelihood equations as follows:

[ nVA(Y — &)+ n12UX
B n'2U'é - )

_(mPY =) | (-WD. U\ (nE-¢)
() (U () v

(,n—l/z(z_es)) _ (Vilgzr ) )( 1/2515/2 6)) + 0p(1).

Now, by standard asymptotic arguments for multinomial random variables,

ie.

n (Y — ef) - MVN{0, WD, — X | mm})} in distribution.

Therefore, by an application of Slutsky’s theorem and the delta method,

nl
( /2_(‘15/ f)) — MVN(0, I') in distribution,

where

r— (WD —U\"'(WD.—of mm) 0)(WD, -U\~
“{-uv o 0 o)\ -v o) -

Following arguments of Aitchison and Silvey (1958), and using the fact that
(Gallc(:lﬂ;c)D;lU = (6911;11:)[J =0,
it is straightforward to show that I" can be rewritten as

(W“D;‘ - W'D lUUD;'W'U)'U'D;'W! — (@k, 1, 1)W! 0
0

U'D'W™'U)

(A.1)

)
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