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SUMMARY

Various definitions of the collapsibility of a hierarchical log linear model for a
multidimensional contingency table are considered and shown to be equivalent.
Necessary and sufficient conditions for collapsibility are found in terms of the generating
class. It is shown that log linear models are appropriate for tables with response and
explanatory variables if and only if they are collapsible onto the explanatory variables.

Some key words: Collapsibility; Contingency table; Graphical model; Interaction graph; Log linear model;
Response variable; S-sufficiency.

1. INTRODUCTION AND PRELIMINARIES

Two topics in the field of hierarchical log linear models for multidimensional
contingency tables, collapsibility and response variable models, are considered and
shown to be closely related.

Some models have the property that relations between a set of the classifying factors
may be studied by examination of the table of marginal totals formed by summing over
the remaining factors. Such models are said to be collapsible onto the given set of factors.
Collapsibility has important consequences for hypothesis testing and model selection,
and can be useful in data reduction. We consider various definitions of collapsibility and
show their equivalence. Furthermore, necessary and sufficient conditions for collapsi-
bility are found in terms of the generating class.

Many tables analysed in practice involve response variables. Simple examples, one of
which is given in § 3, suffice to show the importance of distinguishing between response
and explanatory variables: first, that inappropriate models may be avoided, and second
that natural and relevant models that are not log linear may be considered. This paper
characterizes appropriate and inappropriate log linear models for tables with response
variables and some alternative approaches for the analysis of such tables are briefly
considered. '

We consider a multidimensional contingency table N based on a set of classifying
factors I'. For a given subset @ of I" we are interested in the table of marginal totals N,
that is to say the table of cell counts summed over the remaining factors a°, that is the
complement of @ in I'. We identify a hierarchical log linear model L, that is the set of
probabilities p € L, with its generating class, whose elements, generators, are given in
square brackets: thus for example the model [4B][BCD] for a 4-way table corresponds
in the usual notation to

log myjy = A+ A2+ A8+ 25 + AP + A58+ M50+ 40P + 43P + A55°.
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We denote an arbitrary cell in NV as ¢ and the corresponding marginal cell as 7,. We denote
the number of objects in cell ¢ as n(z) and the number of objects in the marginal cell 7, as
n(1,). We are interested in the probabilities p(¢) of an object falling in cell 4, and the
corresponding marginal probabilities p(i,) formed by summing p(i) over . Similarly
m(:) denotes the expected number of objects in cell 7 and m(i,) the corresponding
marginal quantity.

We assume the distribution of the table is multinomial, that is

pr[N = {n(i)}] = {n!/I;n(i)!} L p()"",

where 7 is the total number of objects. It is well known that the maximum likelihood
estimate p of p € L is given as the unique solution to the system of equations:

(i) p € L,

(i) p(%) = n(i.)/n for all generators ¢ of L.
For a given log linear model L we define the interaction graph of L as the undirected
graph whose vertices correspond to the classifying factors in I' and whose edges are given
by the 2-factor interactions present in the model. See for example Fig. 1a. One may
interpret the interaction graph in the following way (Darroch, Lauritzen & Speed, 1980);
if two disjoint subsets of vertices a; and a, are separated by a subset a; in the sense that
all paths from a,; to a, go through a;, then the variables in @, are conditionally
independent of those in a, given the variables in a3.

(2)
A B

C ' D

Fig. 1a. The interaction graph of [AB][BCD] and [4B][BC][CD][BD].
Fig. 1b. The interaction graphs of [A BC][CD][DEF] and [ABC][CDF][DEF].

We use the notation @ L b| ¢ to denote the conditional independence of @ and b given c.

We say that two vertices in a graph are adjacent if there is an edge between them and
we define the boundary of a subset a of I', written da, as those vertices that are not in a
but are adjacent to some vertex in a. The closure of a is defined as the union of @ and its
boundary and is denoted cl(a). A set a is called complete if all possible edges between the
vertices of a are present in the graph.

We can define an equivalence relation on the graph as a ~ f if and only if there is a
path connecting o and . The subgraphs induced by the equivalence relation are termed
the connected components of the graph. .

Clearly, many different log linear models may have the same interaction graph, as long
as they contain the same 2-factor interactions. Models with the maximal permissible
higher-order interactions corresponding to a given graph are termed graphical models:
it is shown by Darroch et al. (1980) that all decomposable models are graphical. More
specifically, decomposable models are graphical models whose graphs are triangulated,
i.e. contain no cycle of length greater than 3 without a chord.

Graphical models are in many ways analogous to covariance selection models, as
shown by, for example, Wermuth (1976). Presumably much of the discussion of the
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present paper has counterparts within that framework as well, but we have not looked
into this.

2. COLLAPSIBILITY

For a given hierarchical log linear model L defined on N we define its restriction L, on
N, in the following way: the generating class of L, is formed by deleting all occurrences of
factors in a°, the complement of @ in T, in the generating class of L, and then remov-
ing unnecessary elements. Thus if a = (4,B,0) and L = [AB]|[BCD][AD], then
L, =[AB][BC][4] = [AB][BC].

Write the probability of cell ¢, under L, as say p,(z,).

Definition. L is collapsible onto a if one of the two following equivalent properties hold:

(i) for all p = p(3) € L, we have that p(s,) € L,,

(i) for all i,, Hlis) = Palia)- ‘

A further characterization in terms of S-sufficiency and motivation is given in §4,
while some discussion of the concept is given at the end of the present section. As
justification, we give here only a proof of the equivalence of the criteria. To prove that
(ii) implies (i), note that if p € L is the true probability measure, then as n tends to oo, p
tends to p and hence, since all p(i,) > 0,

p(iy) = lim p(i,) = lim p,(7,) € L,

To prove (i) implies (ii), note that if ¢ = a is contained in a generator, then p(i,) = n(i,)/n.
But in conjunction with p, € L, these are the equations determining $,. Thus p(i,) € L,
implies B,(i,) = (i,). |

It is easy to see that L is always collapsible onto a if @ is contained in a generator.
Further simple examples can be found in Theorem 2-1 and Corollary 2:2 below, and the
property is completely characterized in Theorem 2:3. The simplest example of non-
collapsibility is given by L = [AB][BC] and a = (4, C).

Note in connexion with (i) that always L, < {p(s,): p € L}.

Definition. Two subsets a and b form a decomposition of I' relative to a hierarchical log
linear model L if aub =T, a and b are separated by anb, and anb = ¢ for some
generator ¢ of L.

THEOREM 2:1. If a and b form a decomposition of T relative to L then

]’\)(7/) = f)a(ia)ﬁb(ib)/{n(ianb)/n}> i)(@a) = ﬁa(ia)‘
Proof. The first formula is given by Haberman (1974, p. 166 ff.) and Lauritzen (1982).

The second formula follows by summing over b\a and noting that P,(i,.,) = P(ignp) /T
since @ N b is contained in a generator of L,.

CoroLLARY 2-2. If 0(a°) S ¢ for some generator ¢ of L, then L is collapsible onto a.

Proof (Lauritzen, 1982). The sets @ and b = cl(a“) form a decomposition of I' relative to
L exactly when d(a‘) < ¢ for some generator ¢ of L.

THEOREM 2:3. A hierarchical log linear model L is collapsible onto a if and only if the
boundary of every connected component of af is contained in a generator of L.
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Proof. For sufficiency, let by, ...,b, be the connected components of a°. By Corollary
22, L is collapsible onto b = b9. Clearly the boundary of b, is contained in a generator of
L,, so that, again citing Corollary 2-2, L, is collapsible onto (b; Ub,)°. Thus L is
collapsible onto (b; U b,)° too. Continuing in this fashion, we obtain that L is collapsible
onto a as required.

For necessity, we show that if the stated condition does not hold we can construct a
P € L such that (i) does not hold. We consider first an illustrative particular example,
and then proceed to the general case.

Let L = [AD][BC][CD] and a = (4, B). Then the boundary of (C, D) is (4, B) and
since this set is not contained in a generator of L, the stated condition does not hold.
We construct a p € L as follows. Let

Piju = ¢(0) exp (477 + lﬁc +A0),
where

JcD 0 (k=l=1ork=1=2),
K= — o0 otherwise,

. ik — .
0 otherwise, '’ 0 otherwise,

AAD—{O (G=1=1), 4BC _ {0 (j=k=1),
il

and c(0) is a normalizing constant. Then

pij.. = c(0)Zy exp (A4° + A5+ D)
2
0) z exp (/?.E}(D+/lfkc)
=1

= ¢(0) (1 +exp [6{d(:, 1)+ (4, 1)}]),

where ¢ is the Kronecker delta.

If p;;.. € L,=[A][B], then the cross-product ratio between the cells (1,1) and
(2,2) is unity, that is Py, Py =P12..P21... Writing (=¢’ we obtain
(1+%) (1+£°% = (1+{)*. But this cannot be true for all {. Hence p;;  is not in L, and L is
not collapsible onto a.

We now consider the general case. There exists a connected component b of a° such
that 0b is not contained in ¢ for any generator ¢ of L. Write b= {Z,,...,Z,},
ob={Y,,...,Y,}anda = {Y,,...,Y,} say, where » > q. For each factor ¥;in db choose
an adjacent factor Z; in b. Define for Z;, Z, adjacent

0 (=27, =1orz =2 =2),
Az ) = J J
(=5, %) {—— oo otherwise,

and, for j=1,...,q,

0 (yj=25=1),
0 otherwise.

Uiy 2) = {
Then define

p(¢) = c(0) exp { 21 iy 2G)) + Zj.k A2 zk)}'
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Clearly p € L, and since b is connected we obtain

2
(%) = Mc(0) Z exp{il 1i(y;s k)},
j=

k=1

where M is the number of cells in N,;, where d = a°\b. Hence

p(i,) = Mc(0) (l +exp [9{21 o(ys, 1)}]). 1)

Now suppose that p(i,) € L,. Then the g-factor interaction between Y, ..., ¥, vanishes,
and hence the cross-product ratio between cells j; = {({y)sea: %, = 1 for all a} and
J2 = {(lp)aeat 1 = 2, o € 0b; i, = 1 otherwise} is unity, i.e.

M p(i,) = I p(i,), (2)

where the products on the left-hand side and right-hand side are respectively over

q
N {ia: ys=lor2,s=1,...,¢;y, =1L, s=q+1,....,15 Y y, even},
s=1
and S, the corresponding set for odd X y,. Inserting (1) in (2) and writing { = ¢ we
g Ys g g
obtain
[T a+®©= ] a+9,

k<gq,keven k<g,kodd

where (k) = q!{k!(g—k)!} ~'. This cannot hold for all {, since, for example, the constant
term is 2 on the left-hand side but 1 on the right-hand side. Hence L is not collapsible
onto a.

Before proceeding further, we give some remarks and examples to illustrate the
theorem. Note first that the connected components describe the maximal partitioning of
a‘ into subjects which are conditionally independent given the factors in a. Also, if L is
graphical, the condition simply means that the boundary of every connected component
is complete.

Example 1. Let I' = (4, B,C, D), a = (4, B,C) and
L =[AB][BC|[AC][AD][BD][CD].

Then the boundary of a° = (D) is (4, B, C) and since the term 4 BC is not contained in a
generator of L, L is not collapsible onto a.

Example 2. Let a=(A,B,C), b= (D,E) and L=[AC][ABD][BCE]. Then the
components of b are not connected, the boundary of D is (4, B), the boundary of £ is
(B, (), and since [4B] and [BC] are contained in generators of L, L is collapsible onto a.

CoroLLARY 24. If L is collapsible onto a, then

D(2) = Palia) Hb[f’ct(b)(ict(b))/{n(iab)/n}],

where the product is over connected components b of a’.

Proof. Apply Theorem 2:1 to each connected component in turn.
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COROLLARY 2:5. A graphical model is collapsible onto a if and only if

1,8, S a, a;la,|simpliesa; La,|sna.

Proof. We use here the easily proved fact that a; L a,|s if and only if s separates a,
and a,. Suppose first that L is collapsible onto a, and that the stated condition does not
hold, so that there exists a path from a; to a, which intersects s but not s N a. For each
connected component b; say of a° the path intersects, we can replace the segment in b; by
an edge in 0b, ¢; say, since 0b; is complete. The edges {¢;} must intersect s at some vertex,
for otherwise we have constructed a path from a, to a, that does not intersect s. Thus the
original path intersects s N a, contrary to assumption.

Conversely, if L is not collapsible onto a, there exist a connected component b of a° and
nonadjacent vertices a, f € 0b. Hence a L f|I"—a— f is true but a L f|a—a—f is not.

We note also that the condition stated in Corollary 2-5 is necessary, but not sufficient,
for the collapsibility of hierarchical, nongraphical models.

Expressed loosely, collapsibility onto a subset @ means that inference concerning the
factors in @ not contained in a boundary of a connected component of a° can be
performed in the marginal table N,. Suppose for example that two models L; = L, both
are collapsible onto @ and that they only differ in terms involving variables in a. Then L,
for b = cl(a®) is the same in both models and so the likelihood ratio test statistic for
testing L; against L, is

= 2%, n(:) log {p>(1)/p* (5)}
= 22 n(3,) log {2 (i,)/Di(3,)}

from Corollary 24, i.e. the test can be performed in the marginal table N,. The same
applies to Pearson’s test for goodness-of-fit. Since the marginal table always has larger
cell counts than the whole table, this enables asymptotic results to be cited with more
confidence.

Example. Let Ly = [ABC|[CD][DEF] and L, = [ABC][CDF][DEF] and consider
the test for L; = L,; see Fig. 1b. Here L, and L, differ with respect to the presence of the
terms A°PF and A°F; L, is collapsible onto (C, F) but L, is not. However, both L, and L,
are collapsible onto a = (C, D, F), so that the test can be performed in the marginal table
N,, that is as a test of C L F | D.

As suggested by a referee, collapsibility can be linked to the idea of invariance of
models when some variables are unobserved, as the following example shows. Consider
two possible models for a five-way table, L; = [ABC][DE] and L, = [ABC][CDE], and
suppose the factor ' were unobserved. If L, is the true model, then from collapsibility we
can see that L] = [AB][DE] holds for the observed factors. Inferences from this model,
for example that 4, B L D, E, are valid for the complete, unobserved table.

Under L,, however, the table of totals over C' would not simplify, since L, is not
collapsible onto (4, B, D, E). Latent class analysis could perhaps be attempted. Clearly it
makes no sense to fit latent class models that are collapsible onto the observed variables.

Bishop, Fienberg & Holland (1975, Chapter 2) and Whittemore (1978) have defined
collapsibility in a somewhat different spirit by stressing the log linear parameters. The
definition studied in the present paper was apparently first stated in the 1979 edition of
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Lauritzen (1982) in the form (ii), though Jensen (1978) has some related discussion
within the framework of hypothesis testing. One reason for adhering to this point of view
is the opinion that the log linear parameters are mainly a mathematical convenience of
little intrinsic interest and that the important feature of the model is rather the
specification of which interactions are present or not.

3. RESPONSE VARIABLES

As a simple example, suppose that we have a 3-way table of counts of individuals,
where S denotes sex, R denotes race and A attitude to some question of topical interest,
and where we suppose that the response A depends on both the individual’s sex and race.
If one performs a conventional analysis by choosing the log linear model with the best fit,
regardless of its interpretation, one may accept the model

log (mii?) = A+ A7+ AR+ A2 + 254 + ARA.

However this model asserts that sex and race are conditionally independent given
attitude, which is absurd. A more appropriate model is that sex and race are marginally
independent. Birch (1963) considered this model: it has explicit maximum likelihood
estimates given by

"’hijk = (ni..n.j./n...) (nijk/nij.) (3)

but is not log linear in the three variables. A closely related model also discussed by Birch
(1963) specifies in addition to marginal independence that there is no 3-factor interaction
between the three variables. This has maximum likelihood estimates given by

ﬁ"ijk = (ni..n.j./n...) (mz*jk/nij.)a

where m, are the fitted values obtained by fitting the model of no 3-factor interaction to
the whole table. Neither is this model log linear.

Thus ignoring the distinction between response and explanatory variables has two
dangers: first that inappropriate models may be used, and second that natural and
relevant models that are not log linear may be overlooked.

The class of appropriate models was defined by Goodman (1973); see also Fienberg
(1980, Chapter 7). To define the class, let @ be the set of explanatory variables, and b the
set of response variables. The joint density of (a, b) can be factorized into a product of the

marginal density of @ and the conditional density of b given a:

() = pM (i) PGy | 30)- (4)
The class of response variable models is then defined by specifying a log linear model M
for the marginal density of a, and a log linear model C for the conditional density of b
given a. In practice we can fit M in the ordinary way to the table of marginal totals N,.
Here C is fitted as a log linear model for the whole table: since we are conditioning on a

we must include all interactions between the variables in a.
The fitted values for the final joint model J are then obtained as

i’ (3) = M (3,) () [ n(da)}-

For example, the model whose fitted values are given in (3) has M = [S][R] and

C = [SRA]. :
Inference concerning the marginal model and conditional model can be performed

separately: useful here is the additivity of the residual deviances, which can easily be
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obtained: ;
—2log @, = 2 n(i) log {n(i)/m’ (i)}
= 2Zn(5) log [{n(i,) (i)} / {inM(i,) m€(i)} ]
= 22 n(i,) log {n(i,) /MM (i,)} + 2 Z (i) log {n(s)/Mm ()}
= —2log QM—Zlog Qc-

The corresponding degrees of freedom are similarly additive.

As we have seen, not all log linear models are response variable models and not all
response variable models are log linear. The next two theorems characterize the
intersection of these classes. Theorem 3-1 gives conditions for a log linear model to be a
response variable model, and Theorem 3-2 gives conditions for a response variable model
to be log linear. These results are important for several reasons. First, they enable us to
characterize appropriate and inappropriate joint log linear models for contingency tables
with response variables. Secondly, having fitted a marginal and a conditional model to a
table, it is useful to know when these can be combined to form a log linear model, since
these are more familiar and allow a better data reduction to sufficient marginal tables.
Thirdly, we can formulate model selection strategies based initially on joint log linear
models that may be more convenient to carry out in practice.

Fix now a and let Z be the set of hierarchical log linear models for N, M, be the set of
hierarchical log linear models for the marginal table V,, C, the set of conditional models,
i.e. containing all interactions between the factors in a, and J, the set of response
variable models generated from M, and C,.

TeEOREM 3'1. For L € &, L € J, if and only if L is collapsible onto a. In that case the log
linear model M for the marginal density of a is given by M = L, and the log linear model C
for the conditional density of a given a is given by C = [a] U L, where b = cl(a®).

For interpretation of the formula for C see the example below.

Proof. If L € J, then clearly p%(i,) = p™(3,) € M so that collapsibility will follow from
M < L, That this is indeed the case can be seen, for example, by taking ¢ = p©(i, | i,)
independent of i,, 4, in (4). Then c¢p™(i,) € L for all pM(i,) € M so that L must include at
least the interactions in M and this implies immediately that M < L,.

Conversely, suppose that L is collapsible onto ¢ and define M = L, and C = [a] U L,
where b = cl(a®). Thenifb,, ..., b, are the connected components of a°, it is easily seen that

PM(i,) = Daliy) = P(3,),
Zac l%4) n f’ (e | 4c) kHI f)cl(bk){icl(bk)}/ {n(iabk)/ "'}

=1
Forming the joint model J = (M, C) and using Corollary 2-4 shows that p’ = p. Hence
L=Jeld,

Example 3. Let L = [ABC][BD][CDE] and a = (B, C, D). Then, by Theorem 2-4, L is
collapsible onto @ and so by Theorem 31 it coincides with a response variable model
J = (M,C), where M = [BC]|[BD][CD] and

C = [BCD] u {{ABC][BD][CDE]} = [ABC][BCD][CDE].

R‘
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Example 4. Let L = [AB][BC1[AC][AD][BD][CD] and a = (4, B, (). By Theorem
2-4, L is not collapsible onto @ and hence does not coincide with a response variable
model.

THEOREM 3-2. ForJ = (M,C) € J,,J € &L if and only if the boundary of every connected
component of a° in C is contained in a generator of M. In that case L = M L C,, where
b = cl(af).

Proof. Suppose that J = (M, () coincides with the log linear model L. Then L is
collapsible and by Theorem 3-1 it follows that J coincides with the response variable
model (M',C") given by M' =L, (' =[a]u L,, where b= cl(a’). Since (M,C) are
uniquely determined, M’ = M and " = C. Thus the connected components of a° relative
to ¢ and L are the same and it is clear by collapsibility that db, < ¢, for generators ¢, of
Mk=1,..,0).

Conversely if the stated condition holds, then the log linear model L = M U C, is
collapsible and, by Corollary 24,

ALysse

p (l) = i) ia)ﬁc(iac l /éa) = i)J(@)

so that J = L is log linear.

Example 5. For I'=(4,B,C,D,E), let a=(4,B,C), M =[AB][BC][AC] and
C = [ABC][ABD][BCE]. Then J = (M, C) is hierarchical log linear since the boundary
of D, (4, B), and the boundary of K, (B,(), are contained in generators of M. The
generating class of J is [AC][ABD][BCE)].

The conditions we have obtained for log linear models to be appropriate for tables with
response variables can in part be interpreted in terms of conditional independence.
Corollary 25 stipulates that conditional independencies between the explanatory
variables must hold in the marginal distribution of the explanatory variables. Thus for
example if 4, B are explanatory and C a response variable the model L = [AC][BC] is
inappropriate since it implies that 4 L B|C but not that 4 1 B; L = [A][BC], on the
other hand, is appropriate since it implies both A L B|C and 4 1L B.

We note that, dependent, for example, on the sampling scheme, three approaches can
be adopted to the analysis of tables with response variables.

First, one can simply condition on the explanatory variables. This is a suitable
approach when there is no interest in the mutual dependencies exhibited by the
explanatory variables. It may be relevant, for example, when the explanatory variables
are demographic, and better demographic information is available from other sources.

Secondly, one can fit marginal and conditional models as described above. When a
final model has been selected, Theorem 3-2 can be cited to determine whether it is log
linear.

Thirdly, and this may be the more convenient approach in practice, one may choose to
remain within the class of log linear models that are collapsible onto the explanatory
variables as long as possible. When a ‘best’ model has been chosen, it may be examined
to see which marginal independence relations are not testable in the joint framework,
and these may be tested in the marginal table.

We finally mention that the results are easily extended to the models discussed by
Goodman (1973) and Fienberg (1980, Chapter 7), where a sequence of sets a, b, ..., b; is
given. Here the variables in the set b, (r ='1, ..., k) are responses to the variables in the
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sets a,...,b,_,, and themselves explanatory with regard to b,, , ..., b,. This framework
may for example be appropriate when the variables are measured in time sequence, and
we exclude the possibility that a variable can depend on another variable measured at a
subsequent point of time.

If we define the sets dy = a, d; =b,ud;_; (i = 1,..., k), the class of models is defined
by the equation

k
p’ = p(d,) l__ll p(dildi—y),

where Uy, Cy, ..., Oy are log linear models defined on the appropriate marginal tables. We
denote this class of models causal chain models, shown in Fig. 2. The theorems of the
previous section can easily be extended giving Theorem 3-3.

F o

Fig. 2. A causal chain model.

TueOREM 3-3. (a) Model L € & is a causal chain model if and only if it is collapsible onto
d;(1=0,....k—1). ,
(b) A causal chain model J = (Co, Cy, ..., Cy) is log linear if and only if the boundary of each
connected component of b, under C, is contained in a generator of C,_, (r=1,..., k).

A subclass of causal chain models is obtained when the sets b, ..., b, all consist of single
variables, C is the saturated model on N,, and Cj, ..., C, are graphical. These models
have been termed recursive models (Wermuth & Lauritzen, 1983).

Theorem 3-3 can be applied to give an interesting characterization of decomposable
models in terms of recursive models. Fulkerson & Gross (1965) proved that an undirected
graph is triangulated if and only if there exists an ordering ¢ = (v, ..., ;) of the vertices
such that each set X; = {v; € dv;: j > ¢} is complete; see also Golumbic (1980, Chapter 4).
We thus obtain, using Theorem 33, Corollary 3-4.

CoroLLARY 3-4. A graphical model is decomposable if and only if it is recursive.

This was obtained by Wermuth & Lauritzen (1983) by other means.

4. S-SUFFICIENCY
Let T = T(X) be statistics and suppose that the density of X factorizes as

Do,n(%) = Po(t) py(x 1), (5)

where the parameters 0, of the marginal distribution of 7', and #, of the conditional
distribution of X given 7', are variation independent. Then 7' is called S-sufficient for
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(Barndorff-Nielsen, 1978, p. 49). The notion was introduced by Fraser (1956) for
describing ‘. . . sufficiency for the parameter of interest’.

TuareorREM 4-1. A hierarchical log linear model L is collapsible onto a if and only if, for any
n, the marginal table N, is §-suﬁ‘icient for p(i,), or equivalently if and only if p(i) factorizes
as

(i) = Po(ta) Py(tac | 1a), (6)

where 0,n are variation independent.

Proof. We first note that (6) is equivalent to S-sufficiency for n = 1. Suppose first that
L is collapsible onto a. Then, by Theorem 3:1, L = (M, () and (4) shows immediately
that (6) holds. Thus S-sufficiency of N, for n > 1 follows now by elementary properties of
suificiency and conditioning along the following lines. Write N = I(1)+...+I(n), where
I(k) is the table for individual k£ and similarly N, = I,(1)+...+1,(n). By (6), the joint
density of the I(k) is

[T polia®)} TT paliactk) lialk)}-
k=1 k=1

Since N, is sufficient for M, the first factor can be factorized according to Neyman’s
criterion and the S-sufficiency of N,, based on observation of the I(k), follows easily. To
obtain the conclusion based on observation of N, appeal once more to Neyman’s
criterion and the sufficiency of N for L. We omit the details.

Suppose next that (6) holds. Since L always includes p with the factors in b = af
irrelevant, we can find # such that p,(i,|¢,) = ¢ independent of 4,,4,. Thus for any
0, p(t) = cpe(t,) € L by variation independence. But this implies py(i,) € L,, that is L
is collapsible onto a.

We would like to thank Steffen Lauritzen for stimulating discussions, and Sgren Tolver
Jensen, Nanny Wermuth and the referee for useful comments which helped clarify the
final formulation of the paper.
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