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Zero Counts in Tables

Sometimes we see tables that have 0 counts in them. For exampl
consider the tables:
Z=1 Z=2
Y=1 Y=2 Y=1 Y=2
X=1 58 69 11 34
X=2 12 41 43 —

Z=1 Z=2
Y=1 Y=2 Y=1 Y=2
X=1 0 69 11 34
X=2 12 41 43 0

We have to think carefully about zeros because:

e SE’s, Pearson (and other) residu&@s;tests X2-tests, etc. all depend on
asymptoticstf — oo) for their distribution theory; and  oo.

e Our main modeling tool is thiag-linear model, logm = XB, and while
Nij.. = 0 is ok, we cannot deal withy.. < 0.

How we deal with O’s in tables depends on why they are there!
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Fixed (Structural) Zeros and Incomplete Tables

Fixed zeros are cells in the table that &oecedto be there, due to (a) the
nature of the things being cross-classified; or (b) the ntketio
observation. For example,

e Forc objects we can form ax c table of preference data, whetg
is the number of respondents that prefer objéctobjectj. Clearly
n; arefixed zeros

e A capture-recapture experiment might take- “captured in first try”
andY = “captured in second try”. Clearl}{ = “no” andY = “no” is
afixed zero

¢ An auto-insurance study might take="has drivers’ license”Y =
“has made insurance claimZ, = “has had license suspended”, etc.
Clearly X = “yes” andZ = “yes” is afixed zergregardless oY.
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What to do with fixed zeros

e The term “fixed zeros” is a misnomer: These aren’t actualgréz
cells”, they are cells for which an observation cannot beer(ad. a
kind of missing data

¢ A table with a fixed zero is afincomplete table”and instead of
putting a zero, we should just indicate no observation isies, e.g.:

Z=1 Z=2
|Y:1 Y=2 Y=1 Y=2
X=1 58 69 11 34
X:Z‘ 12 41 43 -

¢ In the Poisson log-linear modeling framework, fixed zer@seasy to
deal with: just as we omit them in the table, we should omiirthe
the model.

e Calculating MLE’s will not be a problem. However f@&? and other
goodness of fit tests, be sure to cheegrees of freedonbecause the
missing cells do not contribute to saturated model df’s.
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Example 1

Consider a capture-recapture experiment whxetel if captured on the first try,
Y = 1 if captured on the second try.

| Y=1 Y=0
X=1] 11 34
X=0| 43 -

if we attempt to check the model of independence [X][Y], wé ge

>n <- c(11,34,43)
> x <- ¢(1,1,0)
>y <- c(1,0,1)
> summary(fit <- glm(n ~ x + y,family=poisson))
[...]
Null deviance: 2.1354e+01 on 2 degrees of freedom
Residual deviance: -2.8399e-29 on 0 degrees of freedom

This should have been a 1 df test, but because the saturatil omdy has 2 df
instead of 3, itis a O df test (i.e. [X][Y] is already saturéfer the incomplete
table!).
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We cannot test independence but we can assume it, fit the rande&lstimate the
empty cell:

> unlist(predict(fit,newdata=data.frame(n=0,x=0,y=0),
+ type="response",se.fit=T))
fit se.fit residual.scale
132.90909 50.36126 1.00000

This is the same answer that we would have gotten by setting

N11Noo 1
N1oMNo1
and solving fomgg: figo = 1 - (4(31)34) = 1. 500 = 132091

(Note:

There is some issue about whether the SE above will be valithéoincomplete
table undemultinomial samplingsince we are inféect “conditioning on the
observed counts”, instead of conditioningmn, but it will still be valid
asymptotically. See for example Darroch, Fienberg, Glaladkinker, 1993,
JASA and the references therein).
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Example 2
Now consider the incomplete 3-way table

Z=1 Z=0
‘Y:l Y=0 Y=1 Y=0
X=1 58 69 11 34
X=0 12 41 43 -

HereX represents persons listed in the US censugpresents persons found in
“post-enumeration survey”, arflrepresents persons found in administrative
records (drivers’ licenses, tax records, etc.). If we trfittpX][Y][Z],

n <- c(58,69,12,41,11,34,43)

x <- rep(c(1,1,0,0),2)[-8]

y <- rep(c(1,0),4)[-8]

z <- c(rep(1,4),rep(0,4))[-8]

summary (fit <- glm(n ~ x + y + z,family=poisson))
Null deviance: 81.717 on 6 degrees of freedom

Residual deviance: 54.830 on 3 degrees of freedom

we see that R got the df right (should have been 4 df but onlycaudse of the
missing cell), but the fit is terrible.

V V V V V

7 36-720 September 24, 2007

We try again with [XY][XZ][YZ] and we discover

> summary(fit <- glm(n ~ x*y*z - x:y:z,family=poisson))
Null deviance: 8.1717e+01 on 6 degrees of freedom
Residual deviance: 2.4425e-15 on ® degrees of freedom

so this is the saturated model for the incomplete table. Agaé can estimate the
missing cell

> unlist(predict(fit,newdata=data.frame(n=0,x=0,y=0,z=0),
+ type="response",se.fit=T))
fit se.fit residual.scale
381.7123 203.0747 1.0000

and this is again equivalent to assuming that the odds rat@equal in the two

tables conditional o@
Mi1oMooo  Mi11Moo1

NiooMo1o  Nio1Mo11

. . ~ 58)(41 34)(43
and estimatingigpo = piiol . fodtoi0 — Eeggflzg- ( (1)5) ) = 381.71
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Notes

¢ It does not always make sense to estimate the missingrceléxample in a
forced choice experiment wheng is the number of respondents who prefen
Colai to Colaj we may observe a table like

| ColaA ColaB ColaC

Cola A — 5 6
ColaB 8 - 12
ColaC 12 15 -

In this case we might try fitting the [1][2] model, but it wounltl make sense
to estimaten; since this represents an impossible response!

e Although notation like [X][Y][Z] is still useful it does najuite have the
usual interpretation! Knowing thatX = 0 in the capture-recapture
experiment, for example, is informative abd(tsince the table is not
rectangular!

For this reason, [X][Y][Z] is sometimes called the model of
quasi-independender an incomplete 3-way table (and similarly for other
models for other incomplete tables).
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Sampling (Random) Zeros and Small Samples

Fixed zerosoccur because the cell probabiliyy... really is zero.

Sampling zerosccur whenp;j.. > 0 but no observations occurred in tha
cell. If n,,,.. were increased, we would eventually see counts in that
cell!!

It seems as though sampling zeros should be a small nuidaaioed
could avoid by increasing the sample siBeit. . .

e For many seemingly innocent problems, sampling zeros ateallly
unavoidable.
For example consider cross-classifying the responses dhitein
TrueFalse test. There arg'® = 1024cells. Some (many!) cells will
have probabilities at or below 0.001, and we will neelbt of
students to be confident of observations in every cell!

e Sampling zeros immediately suggest that asympto@ésRearson residuals,
etc.) may be problematic (especially for higher-order nis)de

e Sampling zeros have to be included in the model. This canhagc with
MLE calculations for log-linear models.
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Example 3

Consider the table

Z=1 Z=2
‘Y=1 Y=2 Y=1 Y=2
X=1 0 69 11 34
X:Z‘ 12 41 43 0

e Consider the saturated model [XYZ]. Ignoring lower-ordemts for
simplicity, we may parametrize this log-linear model as

log Mk = U123k

for finite u;j. But at the MLE, we must have observedxpected sflicient
statistics,

Nijk = Mijkc ,
so that, e.g.th23111)= 10911 = logM; = log 0 = —co.
Similarly, any model for which an observed minimgfsient statistic equals
zero will fail to have an MLE.
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¢ Now consider the model [XY][XZ][YZ]. The minimal dticient statistics are

>n <- c(0,69,12,41,11,34,43,0)

> apply(array(n,c(2,2,2)),c(1,2),sum) # n_{ij+}
[,11 [,2]

[1,] 11 55

[2,] 103 41

> apply(array(n,c(2,2,2)),c(1,3),sum) # n_{i+k}
[,11 [,2]

[1,] 12 54

[2,] 110 34

> apply(array(n,c(2,2,2)),c(2,3),sum) # n_{+jk}
[,11 [,2]

[1,] 69 45

[2,] 53 43

yet there is still no MLE for this modeThe reason (Haberman, 1973,
Rinaldo, 2005) is that there is no “nearby table” with all iti@e entries and
the same minimal dficient statistics: If we add a little tm,;,1 to make it
positive, we will have to take away from,; to preserve the sticient
statistics, but this will make,,, negative.
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Note that computer software does not usually detect nostenge of MLE’s!

n <- c(0,69,12,41,11,34,43,0)
x <- rep(c(1,1,0,0),2)

y <- rep(c(1,0),4)

z <- c(rep(1,4),rep(0,4))

summary (fit <- glm(n ~ x*y*z,family=poisson))
..

Null deviance: 1.9205e+02 on 7 degrees of freedom
Residual deviance: 3.0331e-10 on 0 degrees of freedom
[...]

Number of Fisher Scoring iterations: 21
>
> summary(fit <- glm(n ~ x*y*z - x:y:z,family=poisson))
[...]

Null deviance: 1.9205e+02 on 7 degrees of freedom
Residual deviance: 4.4414e-10 on 1 degrees of freedom
[...]

Number of Fisher Scoring iterations: 21

—, VvV V V V V V
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Neither of the above models “has” MLE's!!! The output givestwo “hints”

e A large number of iterations in the modified Newton-Raphdgorithm
(Fisher Scoring) before the software “declares” convergen

¢ Point estimates (not shown above) look strange and SEB alsshown) are
enormous.

but is not able to detect by itself that anything is wrong.

On the other hand the model of independence [X][Y][Z] doessess MLE'’s for
this table (check!), and so we can fit

> summary (fit <- glm(n ™ x + y + z,family=poisson))

[...]

Null deviance: 192.05 on 7 degrees of freedom
Residual deviance: 155.30 on 4 degrees of freedom

[...]

Number of Fisher Scoring iterations: 5

The fewer number of iterations is typical when the MLE exists
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Checking existence of MLE’s

Haberman (1973Ann. Stai. gives the following results, for log-linear
models (logn = XA):

e The log-likelihood is a strictly concave function of log

o If all individual cell countsnjj... > 0 then the MLE exists.

e If the MLE of mexists, it is unique and satisfie§X = m' X;

¢ If the MLE of mexists, then the minimal dicient statistics will all
be strictly positive;

e The MLE of mexists, if and only if there is a table of real numbérs
such that™ X = 0, andn + § has strictly positive entries.

Rinaldo (2005http://www.stat.cmu.edu/ arinaldo/Thesis/)
gives a geometric interpretation, shows how to “hunt” fdiés
with/without MLE’s, and shows how to calculate “extended MLE’s”,
corresponding testing procedures, etc., when the usualdvtddnot
exist.
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Dealing with sampling zeros in practice

Some authorge.g. Christensen, Ch. 8] recommend

— ldentify all the cells for which the model constraints impify.. = O;
— Treat these cells as fixed zeros (drop them from the moded)aaalyze
the resulting incomplete table.

This is practical but somewhat unappealing (since the drdells aren’t
really fixed zeros!).

¢ Another traditional strategys to add a littles to all cells (sayg = 0.01 if the
counts are “small’g = 0.5 or 1.0 if the counts are “large”) and work with
that table instead. The MLE'’s for the new table are like pistenodes for a
Bayesian analysis with a certain Dirichlet prior on the petibabilities.

e Lower-order modelsan usually be fitted as well, as in the above example.
(Reason: lower order minimal ficient margins sum over more cells, and
hence, impose less contraints on the individual table)gells

¢ Rinaldo (2005)provides an alternative to all this, in principle: Compute
extended MLE'’s, and work with them instead.

— Rinaldo’s “extended MLE” is what thglm() function is trying to
converge to, when the MLE doesn't exist.
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