
Zero Counts in Tables
Sometimes we see tables that have 0 counts in them. For example,
consider the tables:

Z = 1 Z = 2
Y = 1 Y = 2 Y = 1 Y = 2

X = 1 58 69 11 34
X = 2 12 41 43 –

Z = 1 Z = 2
Y = 1 Y = 2 Y = 1 Y = 2

X = 1 0 69 11 34
X = 2 12 41 43 0

We have to think carefully about zeros because:

• SE’s, Pearson (and other) residuals,G2-tests,X2-tests, etc. all depend on
asymptotics (n→ ∞) for their distribution theory; and 0, ∞.

• Our main modeling tool is thelog-linear model, logm= Xβ, and while
ni jk ··· = 0 is ok, we cannot deal withmi jk ··· ≤ 0.

How we deal with 0’s in tables depends on why they are there!
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What to do with fixed zeros

• The term “fixed zeros” is a misnomer: These aren’t actually “zero

cells”, they are cells for which an observation cannot be made (i.e. a

kind of missing data).

• A table with a fixed zero is an“incomplete table”and instead of

putting a zero, we should just indicate no observation is possible, e.g.:

Z = 1 Z = 2
Y = 1 Y = 2 Y = 1 Y = 2

X = 1 58 69 11 34
X = 2 12 41 43 –

• In the Poisson log-linear modeling framework, fixed zeros are easy to

deal with: just as we omit them in the table, we should omit them in

the model.

• Calculating MLE’s will not be a problem. However forG2 and other

goodness of fit tests, be sure to checkdegrees of freedom, because the

missing cells do not contribute to saturated model df’s.
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Fixed (Structural) Zeros and Incomplete Tables

Fixed zeros are cells in the table that areforcedto be there, due to (a) the

nature of the things being cross-classified; or (b) the method of

observation. For example,

• For c objects we can form ac× c table of preference data, whereni j

is the number of respondents that prefer objecti to object j. Clearly

nii arefixed zeros.

• A capture-recapture experiment might takeX = “captured in first try”

andY = “captured in second try”. ClearlyX = “no” and Y = “no” is

afixed zero.

• An auto-insurance study might takeX =“has drivers’ license”,Y =

“has made insurance claim”,Z = “has had license suspended”, etc.

ClearlyX = “yes” andZ = “yes” is afixed zero, regardless ofY.
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We cannot test independence but we can assume it, fit the modeland estimate the
empty cell:

> unlist(predict(fit,newdata=data.frame(n=0,x=0,y=0),

+ type="response",se.fit=T))

fit se.fit residual.scale

132.90909 50.36126 1.00000

This is the same answer that we would have gotten by setting

n11n00

n10n01
= 1

and solving forn00: n̂00 = 1 · (43)(34)
(11) = 1 · n10n01

n11
= 132.91

(Note:
There is some issue about whether the SE above will be valid for the incomplete
table undermultinomial sampling, since we are in effect “conditioning on the
observed counts”, instead of conditioning onn++, but it will still be valid
asymptotically. See for example Darroch, Fienberg, Glonek& Junker, 1993,
JASA, and the references therein).
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Example 1

Consider a capture-recapture experiment whereX = 1 if captured on the first try,
Y = 1 if captured on the second try.

Y = 1 Y = 0
X = 1 11 34
X = 0 43 –

if we attempt to check the model of independence [X][Y], we get

> n <- c(11,34,43)

> x <- c(1,1,0)

> y <- c(1,0,1)

> summary(fit <- glm(n ˜ x + y,family=poisson))

[...]

Null deviance: 2.1354e+01 on 2 degrees of freedom

Residual deviance: -2.8399e-29 on 0 degrees of freedom

This should have been a 1 df test, but because the saturated model only has 2 df
instead of 3, it is a 0 df test (i.e. [X][Y] is already saturated for the incomplete
table!).
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We try again with [XY][XZ][YZ] and we discover

> summary(fit <- glm(n ˜ x*y*z - x:y:z,family=poisson))

Null deviance: 8.1717e+01 on 6 degrees of freedom

Residual deviance: 2.4425e-15 on 0 degrees of freedom

so this is the saturated model for the incomplete table. Again, we can estimate the
missing cell

> unlist(predict(fit,newdata=data.frame(n=0,x=0,y=0,z=0),

+ type="response",se.fit=T))

fit se.fit residual.scale

381.7123 203.0747 1.0000

and this is again equivalent to assuming that the odds ratiosare equal in the two
tables conditional onZ

n110n000

n100n010
=

n111n001

n101n011

and estimating ˆn000 =
n111n001
n101n011

·
n100n010

n110
=

(58)(41)
(69)(12) ·

(34)(43)
(11) = 381.71

8 36-720 September 24, 2007

Example 2

Now consider the incomplete 3-way table

Z = 1 Z = 0
Y = 1 Y = 0 Y = 1 Y = 0

X = 1 58 69 11 34
X = 0 12 41 43 –

HereX represents persons listed in the US census,Y represents persons found in a
“post-enumeration survey”, andZ represents persons found in administrative
records (drivers’ licenses, tax records, etc.). If we try tofit [X][Y][Z],

> n <- c(58,69,12,41,11,34,43)

> x <- rep(c(1,1,0,0),2)[-8]

> y <- rep(c(1,0),4)[-8]

> z <- c(rep(1,4),rep(0,4))[-8]

> summary(fit <- glm(n ˜ x + y + z,family=poisson))

Null deviance: 81.717 on 6 degrees of freedom

Residual deviance: 54.830 on 3 degrees of freedom

we see that R got the df right (should have been 4 df but only 3 because of the
missing cell), but the fit is terrible.
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Sampling (Random) Zeros and Small Samples
Fixed zerosoccur because the cell probabilitypi jk ··· really is zero.

Sampling zerosoccur whenpi jk ··· > 0 but no observations occurred in that
cell. If n+++··· were increased, we would eventually see counts in that
cell!!

It seems as though sampling zeros should be a small nuisance that we
could avoid by increasing the sample size.But. . .

• For many seemingly innocent problems, sampling zeros are virtually
unavoidable.

For example consider cross-classifying the responses on a 10-item
True/False test. There are210 = 1024cells. Some (many!) cells will
have probabilities at or below 0.001, and we will needa lotof
students to be confident of observations in every cell!

• Sampling zeros immediately suggest that asymptotics (G2, Pearson residuals,
etc.) may be problematic (especially for higher-order models).

• Sampling zeros have to be included in the model. This can playhavoc with
MLE calculations for log-linear models.
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Notes

• It does not always make sense to estimate the missing cell!For example in a
forced choice experiment whereni j is the number of respondents who prefer
Cola i to Cola j we may observe a table like

Cola A Cola B Cola C
Cola A – 5 6
Cola B 8 – 12
Cola C 12 15 –

In this case we might try fitting the [1][2] model, but it wouldn’t make sense
to estimatenii since this represents an impossible response!

• Although notation like [X][Y][Z] is still useful it does notquite have the
usual interpretation!. Knowing thatX = 0 in the capture-recapture
experiment, for example, is informative aboutY, since the table is not
rectangular!
For this reason, [X][Y][Z] is sometimes called the model of
quasi-independencefor an incomplete 3-way table (and similarly for other
models for other incomplete tables).
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• Now consider the model [XY][XZ][YZ]. The minimal sufficient statistics are

> n <- c(0,69,12,41,11,34,43,0)

> apply(array(n,c(2,2,2)),c(1,2),sum) # n_{ij+}

[,1] [,2]

[1,] 11 55

[2,] 103 41

> apply(array(n,c(2,2,2)),c(1,3),sum) # n_{i+k}

[,1] [,2]

[1,] 12 54

[2,] 110 34

> apply(array(n,c(2,2,2)),c(2,3),sum) # n_{+jk}

[,1] [,2]

[1,] 69 45

[2,] 53 43

yet there is still no MLE for this model. The reason (Haberman, 1973;
Rinaldo, 2005) is that there is no “nearby table” with all positive entries and
the same minimal sufficient statistics: If we add a little ton111 to make it
positive, we will have to take away fromn222 to preserve the sufficient
statistics, but this will maken222 negative.
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Example 3

Consider the table

Z = 1 Z = 2
Y = 1 Y = 2 Y = 1 Y = 2

X = 1 0 69 11 34
X = 2 12 41 43 0

• Consider the saturated model [XYZ]. Ignoring lower-order terms for
simplicity, we may parametrize this log-linear model as

logmi jk = u123(i jk)

for finite ui jk . But at the MLE, we must have observed= expected sufficient
statistics,

ni jk = m̂i jk ,

so that, e.g., ˆu123(111)= logm̂111 = logn111 = log 0= −∞.

Similarly, any model for which an observed minimal sufficient statistic equals
zero will fail to have an MLE.
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Neither of the above models “has” MLE’s!!! The output gives us two “hints”

• A large number of iterations in the modified Newton-Raphson algorithm
(Fisher Scoring) before the software “declares” convergence;

• Point estimates (not shown above) look strange and SE’s (also not shown) are
enormous.

but is not able to detect by itself that anything is wrong.

On the other hand the model of independence [X][Y][Z] does possess MLE’s for
this table (check!), and so we can fit

> summary(fit <- glm(n ˜ x + y + z,family=poisson))

[...]

Null deviance: 192.05 on 7 degrees of freedom

Residual deviance: 155.30 on 4 degrees of freedom

[...]

Number of Fisher Scoring iterations: 5

The fewer number of iterations is typical when the MLE exists.
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Note that computer software does not usually detect non-existence of MLE’s!

> n <- c(0,69,12,41,11,34,43,0)

> x <- rep(c(1,1,0,0),2)

> y <- rep(c(1,0),4)

> z <- c(rep(1,4),rep(0,4))

>

> summary(fit <- glm(n ˜ x*y*z,family=poisson))

[...]

Null deviance: 1.9205e+02 on 7 degrees of freedom

Residual deviance: 3.0331e-10 on 0 degrees of freedom

[...]

Number of Fisher Scoring iterations: 21

>

> summary(fit <- glm(n ˜ x*y*z - x:y:z,family=poisson))

[...]

Null deviance: 1.9205e+02 on 7 degrees of freedom

Residual deviance: 4.4414e-10 on 1 degrees of freedom

[...]

Number of Fisher Scoring iterations: 21
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Dealing with sampling zeros in practice

• Some authors[e.g. Christensen, Ch. 8] recommend

– Identify all the cells for which the model constraints implym̂i jk ··· = 0;
– Treat these cells as fixed zeros (drop them from the model); and analyze

the resulting incomplete table.

This is practical but somewhat unappealing (since the dropped cells aren’t
really fixed zeros!).

• Another traditional strategyis to add a littleε to all cells (say,ε = 0.01 if the
counts are “small”,ε = 0.5 or 1.0 if the counts are “large”) and work with
that table instead. The MLE’s for the new table are like posterior modes for a
Bayesian analysis with a certain Dirichlet prior on the cellprobabilities.

• Lower-order modelscan usually be fitted as well, as in the above example.
(Reason: lower order minimal sufficient margins sum over more cells, and
hence, impose less contraints on the individual table cells);

• Rinaldo (2005)provides an alternative to all this, in principle: Compute
extended MLE’s, and work with them instead.

– Rinaldo’s “extended MLE” is what theglm() function is trying to
converge to, when the MLE doesn’t exist.

16 36-720 September 24, 2007

Checking existence of MLE’s

Haberman (1973,Ann. Stat.) gives the following results, for log-linear

models (logm= Xβ):

• The log-likelihood is a strictly concave function of logm;

• If all individual cell countsni jk ··· > 0 then the MLE exists.

• If the MLE of mexists, it is unique and satisfiesnT X = mT X;

• If the MLE of mexists, then the minimal sufficient statistics will all

be strictly positive;

• The MLE of mexists, if and only if there is a table of real numbersδ

such thatδT X = 0, andn+ δ has strictly positive entries.

Rinaldo (2005;http://www.stat.cmu.edu/˜arinaldo/Thesis/)

gives a geometric interpretation, shows how to “hunt” for tables

with/without MLE’s, and shows how to calculate “extended MLE’s”,

corresponding testing procedures, etc., when the usual MLE’s do not

exist.
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