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Model Selection—Overview

e Model selection “should be” for a purpose, eggnerically,

— Description (of dependence structure)
— Prediction (of responses in regression)

When we havepecific informatiorabout how the model will be
used, this should influence our model selection.

e Basically we are going for a version of thes vs.
varianceuncertainty tradeg:

— More complex models tend to have less bias in prediction,
parameter estimation, etc.

— Less complex models tend to have less varianmoeertainty in
prediction, parameter estimation, etc.

e We will focus on choosing a goadkscriptivemodel. In this setting,
the biagvariance tradefd leads to considering tremallest model in
some class of models that is consistent with the.data
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e Most model-selection procedures agloratory especially because
there is typically not much control for multiple comparison

e There always isnodel uncertaintyThe best procedures tend to
produce aset of candidate modelghich can be

— Inspected for common features (“Hey, all these models say
Al B|CP).

— Inspected for “plausibility” given background knowleddaoat
the data generation process, how the model will be used, etc.

It is a good idea to compare the results of several modetisate

heuristics!
e Candidate models cghould also be checked for reasonable

residuals, influengkeverage, etc.
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Stepwise Procedures—Overview

e Three flavors of this heuristic
— Forward Selectiorstarts with a smalhitial modelthat doesn't fit the
data, adds terms to the model until you get a fitting model.

— Backward eliminatiorstarts with a larganitial modelthat fits the data,
deletes terms until any further deletion produces a modelrtb longer
fits.

— Bi-directional or stepwisegrocedures iterate between backwards and
forwards until no more changes are possible.

e Stepwise procedures lead tsiagle final modethat depends on

— The initial model chosen

— The order in which terms are added or deleted (the path throvaylel
space)
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e As with all model selection procedures, we select modelsiwe particular
family of models

— Hierarchy Principle
— Graphical Models

— Decomposable Models

Often easiest to do by focusing graph edgesthat is, two-way interactions,
and then “promoting” the models to hierarchjgadphicaldecomposable
form.

e Forlog-linear modelsve should always keep terms that are needed to be
consistent with the sampling model:

— Poisson Sampling: no special terms needed

— Multinomial Sampling: keep the intercept, correspnio..

— Product-Multinomial: keep terms corresponding to thevratlial
multinomial totals.
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The Initial Model(s)

e Itis a good idea to bound the search by selecting a smalldsh an
largest model you will consider. These can be [0] and [alides],

but often we can do better.

e All s-factor interactions:Successively fit the models

— Independence: [1][2][3] -
— All 2-way interactions: [12][13][14][23][24] -
— All 3-way interactions: [123][124][134][234] -
— All 4-way interactions: [1234][1235] -

until you have a largest non-fitting model doda smallest fitting
model. Model search then proceeds from (one of) these two.

e Test each term lasfThis is essentially equivalent to inspecting
t-statistics in R'ssummary (. ..) output. Bi-directional stepwise
might proceed from the model by deleting “non-significaefins.
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e Marginal and Partial Association tests.

— The Partial Association Teftr an s-factor term compare the “all
s-way interactions” model, vs. the same model with thédctor
term deleted.

E.g. in a 4-way table the partial association test for [123]
compares [123][124][134][234] with [124][134][234].

The Marginal Association Te$br an s-factor term compare the
saturated model with the “n@way interaction” model, on a table
that has been collapsed to just thefactors.

E.g. in a 4-way table the marginal association test for [123]
compares [123] with [12][13][23] (omittingcollapsing over [4]).
The initial model might be chosen to be

(a) All marginally significant terms

(b) All partially significant terms

(c) (@)u(b)

(d) (a)n (b)
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Several Stepwise Criteria

e Forward Selection vs. Backward Elimination
e Coherence

e Staying Within Model Families
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Forward Selection vs. Backward Elimination

e Backward Elimination

If we start from the saturated model (or some other modelfitsatwe are
always comparing\ ¢ M; whereM; is known to fit (but may be
overparameterized) antlly may or may not fitLR test statistics inherit their
null distribution fromAM,, and are designed to detect misfit whef fits but
Mg does not.

Forward Selection

We always start from a model that is too small to fit well (offé e.qg.).
Therefore we are comparingly ¢ My, where M, definitely does not fit, and
My may or may not fitLR test statistics inherit their null distributions from
Mo, but are not really designed to detect greater misfidifg when neither
Mo nor M, fits.

For these reasons, some people prbfamkward eliminationHowever, Edwards
(2000, Ch 6) points out that the two heuristics often yiefdikr results.
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Coherence

Thecoherence principlsays that

e If My c M, and the fit ofMg is accepted, then so 1%;.
o If My c M, and the fit ofM, is rejected, then so i84,.

In Backward Eliminationsuppose we tes\{ vs M \ [JK] and rejectM \ [JK].

e No submodel oM \ [JK] need be considered
e Subsequently, every model should havy&J in it.

Once [JK] is in the model, it stays in for good.

In Forward Selectionsuppose we tes vs M U [JK] and we accepM.

e Coherence would require [JK] to never be considered again.
e However,M is known not to fit. Maybe [JKouldbe involved in some
well-fitting modelM’, it just doesn’t help withM.

Once [JK] is out of the model, it stays out for good.

For these reasons, some people prefer the combination ef@ate with
backwards selection. Some “All subsets procedures” (e t&be described
below) also use coherence to prune the model space.
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Staying Within Model Families

¢ R has a stepwise procedure but it is termwis&#h and hence will not stay
within hierarchical interaction models.
MIM can check graphicality and decomposability at eachestagtepwise
variable selection.
Wermuth (1976)Backward Elimination among Decomposable Models.

. Start with a large decomposable modél(e.g. saturated).

. Test all the edgesIK] € M that arenotinvolved in more than one
cligue. Delete the least significant nonsignificant edge.

. ReplaceM with the new model, and go back to (2) until there are no
more nonsignificant edges.

Theorem: If My c M, are both decomposable, there is a sequence of
decomposable models formed by single edge-removals gamng A1, to
Mo.

Edwards & Havanek (1985): Considering all possitddge removals
producedBackward Elimination among Graphical Models.
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All-Subsets Methods

e If we haveQ possible terms in the model, compare &l@odels using a
measure that doesn’t depend on nesting, like BIG? — plog(n,), AIC
= G? - 2p, (Cp), etc.Only feasible if Q is small.

The Edwards-Havranek (EH) procedukeeps three lists, to search for the
best model in the family:
W { models with an accepted submodlel
WR { models with a rejected supermodel
| F\ (WA U WR)
At each stage, EH reducédy testing either the minimal or maximal models

in | (whichever list is shorter), untllis empty. Then the minimal accepted
models can be read from¥,. See Edwards (2000, Sect. 6.2).

EH is basically an all-subsets procedure with pruning byecenhce.
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Residuals, Influence, etc.

Residuals

e Pearson Residuals
(nc — mc)2
X? = A =
2

e Deviance Residuals

G? = ZZ nc log(ng/ i) = Z re%, ri=sgnfc—ic) v/2nc log(ne/ i)
C C

e Standardized Residuals

Ne— N . Ne—nN Nnc— N
s = ek , e.g. for Multinom.,s; = c— M c— M

o VRpe—P) el PO
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More generally, we can think of the algorithm for fitting a (gson)
GLM (Christensen, Ch 10, esp. sect 10.7) as an (iterativeyhied
least squares fit of the model

logm = XpB

whereX is the design matrix (determined by the shape of the table
and the interactions included in the model; see Christe@$eri0),
weighted by the expected cell counts.

In this case the appropriate “hat matrix” is

H = X(X"D(f)X) X" D(h) ,

whereX is the design matrix of the GLM and = diag(m). Then as
In ordinary linear regression, tlsandardized residuals

o

Ne — M
V(1 — hec)
will be approximately asymptoticall (0, 1).

SC:
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Cook’s Distance

Again exploiting the connection between GLM and weightegt@ssion, we can
construct aCook’s distanceneasure for deleting th@" cell in the table. If the log
linear model is

logm = Xg
then there are good approximations for gettifigcently fromg (the full MLE) to
B (the MLE with cellg missing). We can then calculate an approxin@oek’s
Distance
_ (B - B@)" X" D(MX(B - B) _
P

Cq

> 2 i [log(/a) |

wherenmyy is the fitted cell count for each cell (includirg= q') computed from
,@(q), andp is the df of the model.

Cook’s distances can be comparec%l\e% to see whether cef] has substantial
influence on the fit. Since it doesn’t hold marginal totalsdix€ook’s distance is
most appropriate for Poisson sampling.

15 36-720 September 26, 2007



Examples

(see in class examples!)
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