
Model Selection—Overview

• Model selection “should be” for a purpose, e.g.generically,

– Description (of dependence structure)

– Prediction (of responses in regression)

When we havespecific informationabout how the model will be

used, this should influence our model selection.

• Basically we are going for a version of thebias vs.

variance/uncertainty tradeoff:

– More complex models tend to have less bias in prediction,

parameter estimation, etc.

– Less complex models tend to have less variance/uncertainty in

prediction, parameter estimation, etc.

• We will focus on choosing a gooddescriptivemodel. In this setting,

the bias/variance tradeoff leads to considering thesmallest model in

some class of models that is consistent with the data.
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Stepwise Procedures—Overview

• Three flavors of this heuristic

– Forward Selectionstarts with a smallinitial model that doesn’t fit the

data, adds terms to the model until you get a fitting model.

– Backward eliminationstarts with a largeinitial modelthat fits the data,

deletes terms until any further deletion produces a model that no longer

fits.

– Bi-directionalor stepwiseprocedures iterate between backwards and

forwards until no more changes are possible.

• Stepwise procedures lead to asingle final modelthat depends on

– The initial model chosen

– The order in which terms are added or deleted (the path through model

space)
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• Most model-selection procedures areexploratory, especially because

there is typically not much control for multiple comparisons.

• There always ismodel uncertainty. The best procedures tend to

produce aset of candidate modelswhich can be

– Inspected for common features (“Hey, all these models say

A ⊥⊥ B | C!”).

– Inspected for “plausibility” given background knowledge about

the data generation process, how the model will be used, etc.

It is a good idea to compare the results of several model-selection

heuristics!

• Candidate models can/should also be checked for reasonable

residuals, influence/leverage, etc.
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The Initial Model(s)

• It is a good idea to bound the search by selecting a smallest and a

largest model you will consider. These can be [0] and [all factors],

but often we can do better.

• All s-factor interactions:Successively fit the models

– Independence: [1][2][3]· · ·
– All 2-way interactions: [12][13][14][23][24]· · ·
– All 3-way interactions: [123][124][134][234]· · ·
– All 4-way interactions: [1234][1235]· · ·

until you have a largest non-fitting model and/or a smallest fitting

model. Model search then proceeds from (one of) these two.

• Test each term last. This is essentially equivalent to inspecting

t-statistics in R’ssummary(...) output. Bi-directional stepwise

might proceed from the model by deleting “non-significant” terms.
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• As with all model selection procedures, we select models within a particular

family of models

– Hierarchy Principle

– Graphical Models

– Decomposable Models

Often easiest to do by focusing ongraph edges, that is, two-way interactions,

and then “promoting” the models to hierarchical/graphical/decomposable

form.

• For log-linear modelswe should always keep terms that are needed to be

consistent with the sampling model:

– Poisson Sampling: no special terms needed

– Multinomial Sampling: keep the intercept, corresp. ton++···

– Product-Multinomial: keep terms corresponding to the individual

multinomial totals.
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Several Stepwise Criteria

• Forward Selection vs. Backward Elimination

• Coherence

• Staying Within Model Families
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• Marginal and Partial Association tests.
– The Partial Association Testfor ans-factor term compare the “all

s-way interactions” model, vs. the same model with thats-factor

term deleted.

E.g. in a 4-way table the partial association test for [123]

compares [123][124][134][234] with [124][134][234].

– The Marginal Association Testfor ans-factor term compare the

saturated model with the “nos-way interaction” model, on a table

that has been collapsed to just thoses factors.

E.g. in a 4-way table the marginal association test for [123]

compares [123] with [12][13][23] (omitting/collapsing over [4]).

– The initial model might be chosen to be

(a) All marginally significant terms

(b) All partially significant terms

(c) (a)∪ (b)

(d) (a)∩ (b)
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Coherence

Thecoherence principlesays that

• If M0 ⊂ M1 and the fit ofM0 is accepted, then so isM1.

• If M0 ⊂ M1 and the fit ofM1 is rejected, then so isM0.

In Backward Elimination, suppose we testM vsM\ [JK] and rejectM\ [JK].

• No submodel ofM\ [JK] need be considered

• Subsequently, every model should have [JK] in it.

Once [JK] is in the model, it stays in for good.

In Forward Selection, suppose we testM vsM∪ [JK] and we acceptM.

• Coherence would require [JK] to never be considered again.

• However,M is known not to fit. Maybe [JK]wouldbe involved in some

well-fitting modelM′, it just doesn’t help withM.

Once [JK] is out of the model, it stays out for good.

For these reasons, some people prefer the combination of coherence with

backwards selection. Some “All subsets procedures” (e.g. EH, to be described

below) also use coherence to prune the model space.
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Forward Selection vs. Backward Elimination

• Backward Elimination

If we start from the saturated model (or some other model thatfits) we are

always comparingM0 ⊂M1 whereM1 is known to fit (but may be

overparameterized) andM0 may or may not fit.LR test statistics inherit their

null distribution fromM0, and are designed to detect misfit whenM1 fits but

M0 does not.

• Forward Selection

We always start from a model that is too small to fit well (often[0], e.g.).

Therefore we are comparingM0 ⊂M1 whereM0 definitely does not fit, and

M1 may or may not fit.LR test statistics inherit their null distributions from

M0, but are not really designed to detect greater misfit inM0 when neither

M0 norM1 fits.

For these reasons, some people preferbackward elimination. However, Edwards

(2000, Ch 6) points out that the two heuristics often yield similar results.
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All-Subsets Methods

• If we haveQ possible terms in the model, compare all 2Q models using a

measure that doesn’t depend on nesting, like BIC= G2 − p log(n+), AIC

= G2 − 2p, (Cp), etc.Only feasible if Q is small.

• TheEdwards-Havránek (EH) procedurekeeps three lists, to search for the

best model in the familyF :

WA = {models with an accepted submodel}

WR = {models with a rejected supermodel}

I = F \ (WA ∪WR)

At each stage, EH reducesI by testing either the minimal or maximal models

in I (whichever list is shorter), untilI is empty. Then the minimal accepted

models can be read fromWA. See Edwards (2000, Sect. 6.2).

EH is basically an all-subsets procedure with pruning by coherence.
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Staying Within Model Families

• R has a stepwise procedure but it is termwise inXβ, and hence will not stay

within hierarchical interaction models.

• MIM can check graphicality and decomposability at each stage in stepwise

variable selection.

• Wermuth (1976):Backward Elimination among Decomposable Models.

1. Start with a large decomposable modelM (e.g. saturated).

2. Test all the edges [JK] ∈ M that arenot involved in more than one

clique. Delete the least significant nonsignificant edge.

3. ReplaceM with the new model, and go back to (2) until there are no

more nonsignificant edges.

Theorem: If M0 ⊂ M1 are both decomposable, there is a sequence of

decomposable models formed by single edge-removals going fromM1 to

M0.

• Edwards & Havŕanek (1985): Considering all possibleedge removals

producesBackward Elimination among Graphical Models.
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More generally, we can think of the algorithm for fitting a (poisson)

GLM (Christensen, Ch 10, esp. sect 10.7) as an (iterative) weighted

least squares fit of the model

logm= Xβ

whereX is the design matrix (determined by the shape of the table

and the interactions included in the model; see ChristensenCh. 10),

weighted by the expected cell counts.

In this case the appropriate “hat matrix” is

H = X(XT D(m̂)X)−1XT D(m̂) ,

whereX is the design matrix of the GLM andD = diag(m̂). Then as

in ordinary linear regression, thestandardized residuals

sc =
nc − m̂c√

m̂c(1− hcc)

will be approximately asymptoticallyN(0, 1).
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Residuals, Influence, etc.

Residuals

• Pearson Residuals

X2 =
∑

c

(nc − m̂c)2

m̂c
=
∑

c

r̃2
c , r̃c =

nc − m̂c√
m̂c

• Deviance Residuals

G2 = 2
∑

c

nc log(nc/m̂c) =
∑

c

r∗c
2
, r∗c = sgn(nc−m̂c)

√
2nc log(nc/m̂c)

• Standardized Residuals

sc =
nc − m̂c√
V̂ar (nc)

, e.g. for Multinom.,sc =
nc − m̂c√

n+ p̂c(1− p̂c)
=

nc − m̂c√
m̂c(1− p̂c)
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Examples

(see in class examples!)
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Cook’s Distance

Again exploiting the connection between GLM and weighted regression, we can

construct aCook’s distancemeasure for deleting theqth cell in the table. If the log

linear model is

logm= Xβ

then there are good approximations for getting efficiently fromβ̂ (the full MLE) to

β̂(q) (the MLE with cellq missing). We can then calculate an approximateCook’s

Distance

Cq =
(β̂ − β̂(q))T XTD(m̂)X(β̂ − β̂(q))

p
=

1
p

∑

c

m̂c

[
log(m̂c/m̂c(q))

]2

wherem̂c(q) is the fitted cell count for each cell (includingc = q!) computed from

β̂(q), andp is the df of the model.

Cook’s distances can be compared to1
pχ

2
p to see whether cellq has substantial

influence on the fit. Since it doesn’t hold marginal totals fixed, Cook’s distance is

most appropriate for Poisson sampling.
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