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LOG-LINEAR MODELS FOR FREQUENCY DATA: SUFFICIENT
STATISTICS AND LIKELIHOOD EQUATIONS!

By SHELBY J. HABERMAN
University of Chicago

A general model is proposed for analysis of frequency tables. This
model includes conventional log-linear models for complete and incomplete
factorial tables and logit models for quantal response analysis. By use of
coordinate-free methods of linear algebra and differential calculus, com-
plete minimal sufficient statistics and likelihood equations for the maximum
likelihood estimate are derived. The maximum likelihood estimate isshown
to be unique if it exists, and necessary and sufficient conditions are given
for its existence.

1. Introduction. Log-linear models for contingency tables have received con-
siderable attention in recent years; however, with a few exceptions, discussion
has been confined to models corresponding to linear models used in the analysis
of variance. The log-linear models considered have not exploited ordering of
categories or the existence of covariates, and necessary and sufficient conditions
for existence of maximum likelihood estimates have not been given.

In this paper, models are considered which may be described in terms of linear
manifolds. These models include the hierarchical log-linear models for factorial
tables discussed by Bishop (1969), Fienberg (1970, 1972), and Goodman (1968,
1970), among others, together with the logit models of Finney (1952) and Dyke
and Patterson (1952). The treatment in terms of linear manifolds permits develop-
ment of a unified theory which allows examination of nonhierarchical log-linear
models, models for ordered classifications, and multinomial response models.

The proposed models may be employed to analyze tables which result from
Poisson or multinomial sampling. In Section 2, the model is defined and complete
minimal sufficient statistics are found.

Maximum likelihood estimation is investigated in Section 3. No matter what
sampling method is employed, maximum likelihood estimates are shown to be
unique whenever they exist, and necessary and sufficient conditions are given for
existence of these estimates. Maximum likelihood equations are given for the
two sampling methods and estimates for Poisson and multinomial sampling are
shown to coincide.

2. Basic properties of log-linear models. A log-linear model is used to describe
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618 SHELBY J. HABERMAN

a frequency table n = {n;: i € I} = {n,} indexed by a finite nonempty set I con-
taining ¢ elements. This table is an element of the ¢g-dimensional vector space R’
of real g-tuples x = {x;: i € I} with inner produce defined for x and y in R’ by

(2.1) (X, ¥) = Zier X:Ys -

In a log-linear model, n is assumed to have a mean m = {m,;} such that m;, > 0
for icI and g = {log m;} € .+, where _# is a p-dimensional linear manifold
contained in R” and 0 < p < ¢. Given this definition, the following are examples
of log-linear models.

ExampLE 2.1. Consider an r X c¢ contingency table with cell probabilities
pi; >0, 1<ig<r 1<j<c, derived from a single multinomial sample of size
N. If 7 is the set of integers from 1 to r and ¢ is the set of integers from 1 to c,
then I =7 X ¢, n = {n;;: (i, j) €7 X ¢}, and the mean m = {Np,;}. If the vari-
ables represented by the rows and columns of the table are independent, then

(2.2) Pij = Pi+ P+j >
where the summation notation

(2.3) Pi+ = 235=1Pi;
and

(2.4) P+i = 2t Pij

is employed. As Bishop and Fienberg (1969) show, (2.2) is equivalent to the
condition that g = {log m,;} be expressible in the form

(2.5) t=a+ Bi+71;,
where
(2'6) 2t B = Z§=1 Ti = 0.

The set _# of g which satisfy (2.5) and (2.6) for some a, {8,}, and {r,} is a linear
manifold with dimension r + ¢ — 1.

ExaMpLE 2.2. In a quantal response experiment, N; > 0 subjects receive a log
dosage ¢; of a drug, where 1 < j < r. Two responses 1 and 2 are possible. Of
the N; subjects, n;; have response 1 and n;, have response 2. If the probability
that a subject given log dosage ¢ has response 1 is 1/[1 4 exp —(a + S¢)], then
a logit model is used for the data (see Finney (1952)). In this example, ] = F x 2
and n = {n,,: (j, k) €7 x 2}. The assumption that the probability of response 1
given log dosage ¢; is 1/[1 4 exp —(a + Bf)] is equivalent to the condition

2.7) Pjn — tp = a + ft;.

If r = 2and ¢; = t;, if j # j', then the set _# of g such that (2.7) holds is a linear
manifold of dimension r + 2.

ExAMPLE 2.3. A number of models have been used in the analysis of complete
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rx ¢ x dtableswith I = 7 X ¢ X dandn = {n;;,}. In one model, the hypothe-
sis of no three-factor interaction, g is assumed to satisfy the equation

(2.8) Lo = U+ ut + u® + w0+ ufP w4 oulif, where
(2.9) i ut = 2o ”jB = Zi=1 wl = 3, ”fijB = 25 ”ij
= Diauy = i i = Do uil = Tiaui = 0.

The set _# of ¢ which satisfy (2.8) and (2.9) for some u, {u,*}, {u;%}, {u,°}, {uif},
{ufc}; and {uZ¢} is a linear manifold of dimension r¢ 4 rd + ¢cd —r — ¢ — d + 1.
This log-linear model has been examined by numerous authors. Goodman (1970)
provides a thorough discussion of this model, as well as other related models.

Other examples may be constructed. The important point is that _# is an
arbitrary linear manifold; therefore, any linear model appropriate for linear re-
gression or analysis of variance corresponds to a log-linear model.

No specification has been made yet concerning the underlying distribution of
n. In this paper, the principal probability models considered are the Poisson and

multinomial models. A generalization of these models which is of some interest
is the conditional Poisson model, which is discussed by Haberman (1970 and 1972).

2.1. The Poisson model. In the Poisson model, the elements of n are inde-
pendent Poisson random variables with E(n;) = m, for every i € I and m; > 0 for
each iel. If m(g) = {exp g} then the log likelihood may be written as

(2.10) Im, p) = Zies (n; log my(pe) — my(ge) — log nyl)
= (n’ :a) - Ziel et — Ziel 10g ”i!
In this equation, n is regarded as fixed and /(n, #) is a function defined for ¢z € _#.

Let P, be the orthogonal projection from R’ to _#. Since gge _~ and P, is
a symmetric operator,

(2.11) Im, pe) =, P p) — 3, e — 35, logn,!

= (P m, p) — T e — Xe  logn!
Therefore, the family of Poisson models such that g e _+ is an exponential
family. Since . and R? are isomorphic (see Halmos (1958)), P, n is a complete
minimal sufficient statistic for z. In addition, any nonsingular linear transfor-
mation of P_n is a complete minimal sufficient statistic. For example, if {g7 :
j € 5} spans _#, then {(#'?, ) : j € 5} is a complete minimal sufficient statistic.

ExampLE 2.4. Consider the hypothesis of no three-factor interaction of Ex-
ample 2.3. It is readily shown that _# is spanned by the vectors {x‘*:7}, {y‘*¥},
and {z'/"®}, where

(2.12) x{ii =1 if i=¢, j=/j,
=0 otherwise ;
(2.13) G =1 if i=¢, k=k,

=0 otherwise ,
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and
(2.14) @ =1 if j=j, k=k,
=0 otherwise .
The inner product
(2.15) (1, X7) = T i
=N, .
Similarly,
(2.16) (m, YR = ny,,
and
(2.17) (m, z9®) =n, ;.

Thus the marginal totals {n;;.}, {n;,,}, and {n, ;,} form a complete minimal suffi-
cient statistic under the Poisson model, as observed by Birch (1963) and Bishop
(1969) and implicit in Darroch (1962).

2.2. The multinomial model. In the multinomial model, I = J,.; [, where
the I,, k € 5, are disjoint. For each k €5, {n,: i € I,} has a multinomial distribu-
tion with mean {m,: i e I,}. The s collections of frequencies are independently
distributed, and for each k e §, it is assumed that

(2.18) vo = {y, () iel}e A,

where yx, is the characteristic function of /.

Complete sufficient statistics may be found by considering a direct sum decom-
position of _# into 4" and _.# — .4, where _#" is the manifold generated by
{v*®: k e5}and _#Z— 4 is the orthogonal complement of _#" relative to _#Z
(see Kruskal (1968)). Suppose that the sample size for {n:ie l,}isN,. If pe #
and {m,(¢): i € I,} is consistent with N, then

(2.19) (m(ge), »¥) = Ficr, mp) = Zicr, = N,
For x and y in R’, define x - y by {x;y,}. Then
(2.20) m(g) = m(P,,. p) - m(P,__.pt) .

For some {c,: k € §}, where ¢, is a constant for k € §, expression (2.18) and the
fact that each i is an element of exactly one /, imply that

(2.21) Pop= Ti,cu™
= {Zix (D) iel}
={c,:iel, and kes}.

Thus
(2.22) m(P  p) ={ex:iel, and ke 35}
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and

(2.23) (m(g), »©) = (M(P,.p2) - (P, __, fr), »'*)
= Dlier, my(P . p)ymy(P ,_ . pe)
= Dier, €my(P ,_  pe)
=e*(m(P ,_ , p), v'¥).
If i e I, then my(P_, p) = e and (2.19) and (2.23) imply that
, N,
m(P,_ ), »™)
Thus P, pisa functionof P ,_ ,ge. Since pis P .p + P ,_ g, g is a function
of P ,_ . p. A complete minimal sufficient statistic for P ,__ g is consequently

a complete minimal sufficient statistic for g.
The log likelihood function is

(2.24) myP, ) =

l(m)(n’ ﬂ)
= 2= [Ziezk n; log % + log Ny ! — Xier, log”i!:|
(P
(2.25) - ZLI[ZM,, n; log (m(’”l;( ”’";,")#3(,,,) +10gN,! — Ties, 1ogn,.q

=P P,  p)— YiaNdogmP,_ p), ")
+ 2o log N — 3. logny!
If p = dim _# > s, then _# — _4" is isomorphic to R*~*. The family of distri-
butions such that ¢ € _# and for each k e 5, (m(z), »*) = N,, is then an expo-
nential family with P ,___nas a complete minimal sufficient statistic for P ,_ . p.
If p = s, then the family contains only one distribution. As in the Poisson model,
alternate complete sufficient statistics may be obtained by use of nonsingular linear
transformations. In particular, P n is a complete minimal sufficient statistic.

ExaMPLE 2.5. In Example 2.1, a single multinomial sample is present, so that
s=1and I, =1 =F x ¢ The vector v® is the unit vector e = {1}, which is
an element of the manifold . defined by (2.5) and (2.6). Thus the model pro-
posed in Example 2.1 is a multinomial model. Since P _n is a complete minimal
sufficient statistic, an argument similar to that in Example 2.4 shows that the
marginal totals {n,,} and {n, ;} form a complete minimal sufficient statistic.

ExXAMPLE 2.6. In Example 2.2, if the N, are fixed, then multinomial sampling
is employed with s = r and I, = {(k, 1), (k, 2)}. The vector »* satisfies

(2.26) b — y® =0 =0+ 0r,
so y* ¢ _# for each k € §. As shown in Haberman (1972),
(2.27) A — A" = span {x, y},

where x;; = 1 and x;, = —1 for jeFand y;, = t;and y;,, = —¢, for je 7. Thus
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{(x, m), (y, m)} is a complete minimal sufficient statistic for g. Sincen;, = N; —n,,

(2.28) (x,m) = 3%, (n;; — nyy)
=2n,— N,

and

(2.29) 1) = on t5(ns — )

=2 Diaahnt; — Nt

Consequently (n,,, >;5., n;, ;) is a complete minimal sufficient statistic.

The complete minimal sufficient statistics found in this section can be applied
in some cases to construction of minimum variance unbiased estimates and exact
confidence intervals and hypothesis tests (see Lehmann (1959) and Haberman
(1972)); however, the principal application of these statistics is in maximum
likelihood estimation, the subject of the next section.

3. Maximum likelihood estimation. It is convenient to begin consideration of
maximum likelihood estimation with an examination of the Poisson model. Re-
sults for the multinomial model follow directly. In this section, existence and
uniqueness of estimates is investigated. This topic has been considered by Birch
(1963) in connection with hierarchical models for complete factorial tables such
as the model in Example 2.3. More recently, Fienberg (1970, 1972) has consid-
ered the problem in the case of incomplete multiway tables. Results in this sec-
tion are more general and sharper than those previously derived.

3.1. The Poisson model. In the maximum likelihood estimation problem for
the Poisson model, an element & of _# is sought such that
(3.1) (n, @) = sup,._, (m, pr)

If 22 exists, then it is a maximum likelihood estimate (MLE) of gz and m = {exp &}
is an MLE of m.

In order to examine the properties of £, it is necessary to consider the first and
second differentials of /(m, g£). The first differential at g is a linear function
dl,(n, v) defined for v € _# such that
(3.2) Im, £ + v) = I(n, ) + dl,(n, v) + o(v),

where o(v)/||»|| — 0 as ||v|| — 0. By elementary calculus,

(3.3) n(x +y) — e = (nx — &) + (my — &) + o(y) ,
where (1/y)o(y) — 0 as y — 0. Therefore,

(3.4) dl,(n, ») = (v,0 — m()) .

The second differential d% (n, §)(v) of I(n, #) at g is a linear function from _#
to the space _Z* of linear functionals on _#. This differential satisfies

(3.5) dl, (0, ) = dl,@, v) + d'L(n, §)(¥) + 0 () ,
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where

(3-6) lim, ¢, W;_” SUP) =1 [[0e(¥)]| — O .
Since

(3.7) dl, . (n,v) —dl,(m,v) = 3, v(ers — eritt)

= — Yicrvibieti + (v,08)) ,
where (1/]|§]))]|o(§)]| — 0 as ||§]| — 0, it follows that

(3.8) alm, §)(¥) = — Xiesvi€iei = — Yo v Eimp) .
If D(p){x;} = {e*ix;}, then one may write

(3.9) a’l,(m, §)(») = — (¥, D(p)§) -

Ify +0,ve. # and g e _+, then

(3.10) d’lm, v)(¥) = — X, vl < 0.

Thus I(n, g) is a strictly concave function of .
Given the results of the preceding paragraph, the following theorem can be
proven:

THEOREM 3.1. If an MLE f exists, then it is unique and satisfies the equation
(3.11) P,m=P _n.
Conversely, if for some fi € _# and i = {efs}, (3.11) is satisfied, then g is the MLE
of p.

Proor. Since I(n, g) is strictly concave, at most one critical point exists, and

this point must be a maximum. Therefore, only one MLE can exist. If the MLE
£ exists, then for every v e 7]

(3.12) dl;m,v) = (v,n —m) =0,

n—me.#Z* ={xeR': (x,p¢) =0Vuec 7}, and equation (3.11) must hold.
On the other hand, if m satisfies equation (3.11), then

(3.13) dlzm,y) = (¥»,n—m)= (P ,y,n—m)=(,P ,n—P m=0
for every v € _#Z. Thus a critical point exists at g. []

The likelihood equation (3.11) requires that m fit the sufficient statistic P n.
If {g'9: j € 5} spans _#, then equation (3.11) is equivalent to the condition

(3.14) (i, 27) = (m, ')
for every je 5. This equation is particularly suggestive if
(3.15) m =1 i iel,

=0 if iel—lj,
in which case

(3.16) Diier; My = 2lier; i
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Thus certain marginal totals must be equal for i and n. This relationship is
frequently used in the discussion of hierarchical models by Birch (1963), Fienberg
(1970, 1972), and Goodman (1968, 1970), among others, although general proofs
are not provided in these references.

So far, no conditions have been given for the existence of the maximum like-
lihood estimate. In order to rectify this situation, the following theorem is useful:

THEOREM 3.2. A necessary and sufficient condition that the MLE £ of p exists
is that there exist 8 € _#* such that n, 4+ 6, > 0 for every i e I.

Proor. To prove necessity, assume that g satisfies equation (3.11). Then
m —ne._*. Inaddition, m — n 4+ n = m, where 7, > 0 for each i ¢ /. Thus
4 = m — n has the desired properties.

To prove sufficiency, assume that there exists 8 € _Z" such that n, + d, > 0
for each i e 1. Suppose that

(3.17) o, p) = Dier (Mo, — ) = (m, po) — 3o €.
Then /*'(n, ) and I(n, p) differ only by a constant. Since de._Z", (n, g) =
(n + 3, ) and

(3.18) [0, p) = Tier[(n; + 3)p; — €] .
Each summand is bounded above. Therefore, if any summand is small enough,
then /»(n, o) < f"”(n, 0). For anyieln; + 6, > 0. Thusas |y — oo, (n;, +
d)p; — e'i — —oo. Suppose A = {ge . [P, p) = [»(n, 0)}. Then 4 is
bounded. Since l“’”(n, ) is continuous in g, A is closed. Therefore, /»(n, 2)
has a finite maximum for some g ¢ 4. []

The following corollary follows immediately:

CoRrOLLARY 3.1. If n; > O for every i € I, then the MLE g exists.

Proor. Use 8 = 0 and apply Theorem 3.2. []
A related condition to that of Theorem 3.2 is often useful:

THEOREM 3.3. A necessary and sufficient condition that the MLE g exist is that
there not exist p e # such that pp + 0, p; < O for every i€ I, and (n, p£) = 0.

Proor. Suppose that the MLE of g exists. Then there exists 8 € .#Z* such
thatn;, + 9, > Oforeachiel Ifpe _ (n, ) =0, p; < O for every i ¢ I, and
¢ # 0, then (n 4 8, ) < 0. Since (n, #) and (n + 3, x) are equal, a contradic-
tion results. Thus no such g exists.

On the other hand, suppose that the MLE does not exist. Then there does not
exist 8 € "+ such that n; + 9, > O for every i e I. Let I, be the set of indices
in 7 such that n, = 0. Suppose S = {xe R’: x; > 0Viel}. Then S and 7"
are disjoint convex sets. By the separating hyperplane theorem (see Blackwell
and Girshick (1954)), there exists g € R, g =+ 0, such thatif vy e .7, (g, ) = 0,
andifve S, (¢, v) < 0. Suppose jel — I,. If ve S, theny + 39 ¢ S for any
real-valued ¢, where 89 = {d,;: ie I} and 9,; is the Kronecker delta. Thus
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(#, 89) = p; = 0. Now suppose je [, Thenif ve S, + ¢ ¢ S for all posi-
tive c. Thus (g, 8%9) = pu; < 0. Tt is now sufficient to show that g e _#. This
result follows since if P ,. is the orthogonal projection from R’ to _Z*, then

(3.19) (=P o) = =[P a2 0.

Unless P . g is 0, there is a contradiction. []
The following corollaries may be proven:

CoOROLLARY 3.2. Suppose M, and M, are linear manifolds such that M, C M,.
Suppose pi") is the MLE for pe #, ie2. If g exists, then gV exists. If p®
does not exist, then p'® does not exist.

Proor. If @'® exists, then there exists 8 € _#;* such that n, 4+ 9, > 0 for each
iel. Since #Z* c M,*, 8 c _#*. Therefore, g* exists. The converse follows
immediately. []

CoROLLARY 3.3. Suppose I, = {iel: n, = 0}. Letp: R" — R"1 satisfy p{p,:
iel} ={p;iiel}. Let o(#Z") = {o(pe): pe #+}). If p(#Z*) = R, then the
MLE of g exists.

PrOOF. Suppose that (n, #) = 0, e _# p + 0, and p; < 0 for every iel
Then y; = O for every ie I — I,. If ((+, +)) denotes the standard inner product
for R%1, then ((o(g), p(¥))) = (¢, ¥) = 0 for vy e _#Z*. Thus p() is orthogonal
to all elements of p(.#*) = R%.. Therefore, p(¢) = 0. Thus gz = 0, a contra-
diction. Hence the MLE exists. []

COROLLARY 3.4. Suppose I, = {ieI: n, > 0}. Let n: R" — R’ satisfy n{y,:
iely ={p;:iel). Letn(#Z)={n(n): pe Y. Supposen(.+) hasdimension
k and I — I, has h elements. If p — k = h, then the MLE of p does not exist. If
p — k = 0, then the MLE exists.

Proor. The kernel of = has dimension p — k. This kernel is a submanifold
of {#e R': y, = 0Viel}. This latter manifold has dimension 4. Ifp — k = &,
then the kernel is equal to {gze R: p; = 0Vie I,}. Hence a g e _+ exists such
that p; < O for each ie I, (n, ) = 0, and g =+ 0. By Theorem 3.3, the MLE
of g does not exist. If p — k = 0, then the kernel of = is 0. Since no e .7
which is not equal to 0 exists such that (n, #) = Oand p, < 0 for i1, the MLE
exists. []

The following examples illustrate use of these theorems and corollaries in terms
of the r X ¢ x d table of Example 2.3.

ExampLE 3.1. Theorem 3.1 and the results of Example 2.4 imply that if _Z
is the linear manifold corresponding to the hypothesis of no three-factor interac-
tion and if m exists, then

(3.20) (m, x5 = i,
=Rt

(3.21) Mg = Mgy s
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and
(3.22) Py = Ny

(see Birch (1963)). Since —x®#, —y'# and —z'» are all in _+7 are nonzero,
and have no positive coordinates, Theorem 3.3 implies that m can only exist if
n;y > 0foriefand jeé, ny, > 0 for iefand jed, andn,,, > Oforjecand
k ed. These conditions are not, however, sufficient to ensure that m exists, as
will be shown in Example 3.2.

EXAMPLE 3.2. Suppose that in the preceding example, r = ¢ = d = 2. Then
#* is the span of p*, where

(3.22) e = —1 if i4+j+k iseven,
=1 if i+ j+k isodd.
Using tabular notation, one may write
1]—1 —1] 1
3.24 * =
(3:24) S U T I R

In this representation, the left block represents k = 1 and the right block repre-
sents k = 2. The first row in each block stands for i = 1, and the first column
stands for j = 1. Suppose J = {(i, j, k): i + j + k is odd}. Let K = {(i, j, k):
i + j+ kiseven}. Then a MLE of g exists if and only if either ; < J or I, C K,
where /, is defined as in Corollary 3.3. To verify this result, observe that if
I, C J, then n;;, + p¥, > 0 for each (i, j, k) €2 x 2 x 2. Thus the maximum
likelihood estimate exists. A similar result holds if 7, ¢ K. On the other hand,
if (i,j,k)eJ, (,, k') e K, and Njy = Ny = 0, then for any real c,

(3.25) N+ cpfy =c and
(3.26) Ryjop + Cfin = —c.

Thus there exists no 8 € _#* such that n,;, + d,;, > 0 for every (i, j, k) € 2 x
2 x 2. Hence the MLE does not exist.

To illustrate this result, it is useful to consider several different values of n,
employing the tabular notation of (3.24). If

(3.27) |2 81| 4 8
9/ 13| | 610

then I, ¢ J. Thus the MLE exists. In fact, whenever there is only one zero cell,
the MLE exists.

When there are two cells which are zero, then the MLE may or may not
exist. If

(3.28) n=|- 0| 0 | 4] 8}
9 13| | 610

the estimate does not exist since (1, 1, 1)eJ and (1,2, 1) e K. The result may
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also be verified by observing that the observed marginal total n,,, = 0 and
pt e, where

-1 |-1 0 0
0, 0 0| O

(3.29) ut =

Another case in which the MLE does not exist occurs when

0| 8 4| 8
913 6| 0

(3.30) n=

Although the marginal totals {n,;,}, {n,,,} and {n, ;,} are all positive, (1,1, 1) eJ
and (2, 2,2) e K. Thus ny,, + cpyy, and ny,, + cp,y, are of opposite signs. How-
ever, if

(3.31) n=| 2|8 418
9 o 6|10

then the MLE does exist since both (1, 1, 1)and (2, 2, 1) are inJ. The result also
follows directly from Theorem 3.2 since the elements of n 4 g* are all positive.
In general, rules for existence of MLE’s are more difficult to find than in the
preceding examples. Nevertheless, Theorems 3.2 and 3.3 and Corollaries 3.1,
3.2, 3.3, and 3.4 are readily applied to problems in which a specific n and _#
are considered. Further applications are given in Haberman (1970 and 1972).
The following example illustrates a possible procedure for a 3 X 3 x 3 table.

ExaMPLE 3.3. In Example 3.1, suppose that r = ¢ = d = 3 and assume that

in (2.8), ufl? = —ugf, 1 < j < 3. The likelihood equations are then
(3.32) My, = Mgy s
(3.33) By = Ny,
(3.34) Mipjp — Mgjy = Ryjy — Mgjy
Suppose
0| 5| 0 o 3| 0 0| 1| 2
(3.35) n=| 3| 0| 4 41 1] 6 2/ 1] 0
20/ 1] ]| 0] 1] 3 3/ 0] 3
To show that g exists, first note that g and g'® are in _#*, where
1|—-1, 0 1|—1] 0 1|—-1] 0
(3:36)  pP=|_2| 2| 0| |—2| 2] 0] [=2| 2| O
1j—-1] 0 1j—1] 0 1|—1] 0

and

(3.37) 2P =1 ol|=1] 1 0| 21|=2 0|—1| 1
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If 6 > 0 is sufficiently small, then n, ;; + (gl + pily) = 0 for 1 <i; <3,
1 <j < 3, and the inequality is strict except for the indices (1, 3, 1), (1, 3, 2),
(3,2, 1), and (3, 2, 3). Thusn + d(z#" + p®) has 6 fewer elements equal to 0

than n has. To eliminate the remaining four zeroes, define p® ¢ _Z* by

2 1] ] =2 1| 1| |—2] 1] 1
(3-38) L= 4|2 |-2 4(-2|=2 4 |—2 |-2
2| 1| 1] |=2] 1| 1| |=2| 1|1

If y > 0 is sufficiently small, then all elements of
0+ o + o) +rp®
are positive. Since
(e + p) + eV e AN,
the MLE exists.

3.2. The multinomial model. The multinomial model is closely related to the
Poisson model. In the maximum likelihood estimation problem for the multi-
nomial model, an element g™ of _#Z is sought such that

(3.39) ™, g™) = sup,. > I"™m, g),

where _#Z = (e #: Licp, e = Yier,m;Vkeshand I, ke 3, is defined as in
Section 2.2. It is assumed that _# has dimension greater than s. The fundamen-
tal result of this section is that if zZ is the MLE of g € _# for the Poisson model,
then # = ™. This equation means that if one side exists, then the other side
exists and the two sides are equal. This result is extremely useful since it implies
that conditions for existence of MLE’s under Poisson sampling also apply to
multinomial sampling, and it is important in both numerical and algebraic work
since it permits use of the relatively simple Poisson log likelihood in estimation
problems involving multinomial sampling. This point is discussed by Haberman
(1970 and 1972). Results of this section are related to those of Birch (1963), who
provides a detailed analysis of the complete three-way table.

In order to examine maximum likelihood estimation for the multinomial case,

the function
(3.40) i, g*) = (0, p*) — i, (0, v®) log (m(pe*), v*)

defined for g* € _# — ./ may be considered. By (2.24), toevery p* e .# — .4~
corresponds a unique g€ _# such that P, p = p*. One may write g as
w(ee*). If [™(n, ge*) has a maximum for g* = g*, then ['™(n, g) has a maximum
for g = w(z*). If l"'”(n ) has a maximum for p = f, then [m(n, g*) has a
maximum for g* = P ,_ 4. Thus maximization of I'™(n, ) for e 2 is
equivalent to maximization of [m(n, p*) for y*e A — N

To examine the properties of the MLE z™, it is necessary to examine the first
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and second differentials of /™ (n, #*). Since
(3.41)  I™m, g* + v) = I, pg*) + (n, »)
Zx (n, y(k))
- k=1

Ty, oy Dm0 - o),
it follows that if vy e _#Z — 47, then
(n, ”(k))

(3.42)  diP(n,v) = (v,n) — Zlf;:lW

Zier, mi(p v Py, .
If m(ge*) = {evi'*"}, then
(3.43) ditwm, v) = (v, n — m(g*)).

In order to find the second differential dzl‘i,’:”(n, §)(v), it is only necessary to note
that

fom) — dfm 3 .& . ov.Eom(p*
Gt dlzim ) = dipm») — Ti B W){zmk Eomy(u%)
. (ZieIk m«;(l‘*)”i)(Ziezk mi(#*)gi)} + 0,(v) .

(m(z*), v

Thus

. . . @, D)@, D(pryy®)
(3'45) d lp‘(n’ e)("') - - ("" D(la*)e) + Zk=1 (y(k), D(#*)”(k))
where D(p*){x;} = {m,(p*)x;}. If P_(p*) is the orthogonal projection on .4~
relative to the inner product ((+, +)) defined by ((x, y)) = (x, D(z*)y) for x € R!
and y € R’, then

(3.46) aimm, §)(v) = — (v, D(p*)I — P (#))8)

= —(Q. (&), D(*)Q_(1*)E) -
Here 0 (u*) = I — P (p*). Since —(Q,(p*)w, D(uw)0_, (u*)w) < 0 for v e
A — A, [™m, u¥)is concave. If —(Q  (p*)v, D(#*)Q ,(p*)v) = 0, then
0_(¢*)y = 0. Therefore, ve. 4" Sinceve 2 — .4, v = 0. Thus [™(n, p*)

is strictly concave for p*e #Z — 4.
The fundamental result for multinomial models now follows:

THEOREM 3.4. If p'™ is the MLE for a multinomial model for which p € _# and
if g is the corresponding estimate for a Poisson model for which pc _+#, then
A'™ = R, in the sense that when one side of the equation exists, then the other side
exists and the two sides are equal.

ProoF. Suppose z exists. Then for v e _#;
(3.47) (»»ya—m)=0.

Since (n, »*) = (m, »*) for kes, ge » If g* =P, p, then for any
ve # — .%/;

(3.48) dif’(m, v) = (v,n — /) = 0.
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Therefore, f"'”(n, #*) has a critical point at z*. Since i‘"”(n, o*) is strictly con-
cave, this critical point, a maximum, is the only point g* for which di(n, v)
isOforallyve #Z — ¢ Thus g'™ = w(g*) = 4.

On the other hand, suppose that g™ exists. Then forve 7 — 4/

(3.49) (¥,n— ™) =0,
where m™ = {e#i™}. If k € 3, then (»'*, m™) = (»**, n). Thus forany v € .7,
(3.50). (¥, n—@™) = 0.

By Theorem 3.1, z2 = g™. []

Since Theorem 3.4 holds, the results concerning necessary and sufficient con-
ditions for existence of MLE’s under Poisson sampling also apply to multinomial
sampling.

ExaMPLE 3.4. In the independence model for the r X ¢ contingency table of
Example 2.1, it is well known that whenever n,, > 0 for i e 7 and n,; > O for
jeé, then
(3.51) mm™ = n, n,;[N.

This result may be verified by use of Theorems 3.1 and 3.4, for whenever n,, > 0
foriefand n,; > 0 for je¢, {log (n;, n,;/N)} e  and

1 1 1
(352) P/tni+n+j/N = {7 n, + 7 n,; — ;N}
= P/n

(see Kruskal (1968)). On the other hand, if for some i’ €7, n,, = 0, then

(3.53) (m,x) =0

for

(3.54) X, = —1 it i=1,
=0 otherwise .

Sincex e 7, x #+ 0, and x;; < 0 for (i, j) e 7 x ¢, Theorems 3.3 and 3.4, together
with (3.35), imply that m™ does not exist. A similar argument shows that m™
does not exist if n, ;, = 0 for some j' ¢ ¢. Thus m™ exists if and only if n,, > 0
forieFand n,; > 0 for ie¢. If m™ exists, then it is given by (3.51).

ExampLE 3.5. Consider the quantal response model of Examples 2.2 and 2.6.
The linear manifold . is the span of x, y, and »®, k e F, where these vectors are
defined as in Example 2.6. Theorems 3.1 and 3.4 imply that if m™ exists, then
(3.55) (x, ™) = i) — iy

=Ny — Ny,
(3.56) (¥, m™) = X5, 1,(R — M)
= 2= ti(nj — ny)
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and

(3.57) (@9, ™) = A
=n,,
=N

for je 7. Since (3.57) implies that n;, = N; — n;, and {3’ = N;

; — M, (3.55)
and (3.56) may be replaced by the equations

(3.38) my = ny,

and

(3.59) 2= Y = Yo tingy
where m{7’ may be written

(3.60) N;J(1 + em @™+ ™)

and @™ and B are the MLE’s of a and f, respectively. These likelihood
equations are consistent with those given in standard works on quantal response
such as Finney (1952). It should be noted that (3.55), (3.56), and (3.57) are still
the likelihood equationsifthe n;,, 1 < j < r, 1 < k < 2, are independent Poisson
random variables or if n has been obtained from a single multinomial sample of
size N > 0.

To find necessary and sufficient conditions for the existence of m™, order the
t; so that 1; < 1, if j < j’. Given this condition, m'™ exists if and only if for no
J' € F is it the case that either (a) n;, = 0 for j < j’ and n;, = 0 for j > j’ or (b)
n; = 0 forj> j and n;, = 0 for j < j.

If m™ does not exist, Theorems 3.3 and 3.4 imply that for some uxe . 7,
p£#0, 4, <0forjerand ke2, and (n, g) = 0. If gze _; then for some a,
b, and {c;: jeF},

(3.61) g =ax 4 by 4+ 37, c; 9.

Since N; > O for each je 7, either nj; > Oorn;; > 0. If n;; >0, p;; =0, ¢c; =
—(a + bt;), and p;, = —2(a + bt,) < 0. Ifn;; >0, p;, =0,¢c; = a + bt;, and
i = 2(a+ bt;) < 0.

Suppose 4 = {jeF:n; >0 and n;, =0}, B={jer: n; >0 and n; = 0},
and C = {je7: n; > 0and n;, > 0}. Then 4, B and C are disjoint sets with
union 4 U BU C=7F. Thus a 4 bt; = 0 for je 4, a + bt; < 0 for je B, and
a + bt; = 0forje C. If C has 2 or more elements, then since ¢; = t,, if j + j,
a =5b=0and g = 0, a contradiction. Thus C has no more than 1 element.
There are now 3 possibilities: 5 > 0, 56 = 0, or b < 0. If 5 > 0, then for some
j eF,a+ bt; >0 forj>janda+ bt; < 0forj<j. Thusn;, =0 forj<j
and n;, = 0 for j > ;. Similarly, if & < 0, then for some j’ € 7, n;; = 0 forj > j’
and n;,, = 0 for j < j’. If b = 0, then in order that g2 0, a > 0 ora < 0. If
a>0,n; =0forall je? while if a < 0, n;, = 0 for all je 7. Thus (a) or (b)
holds for some j’ € F.
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On the other hand, suppose that for some j’ € 7, (a) or (b) holds. Without loss
of generality, suppose that (a) holds. Leta = —¢;,,6 = 1,and ¢; = —|a + bt}].
Suppose g satisfies (3.61). Then ge . #, p;, < Oforjefand ke 2, g + 0, and
(n, g£) = 0. Therefore, m™ does not exist. These conditions have been used in
the case r = 3 by Silverstone (1957).

4. Conclusion. In this paper, a general log-linear model for use with frequency
data has been proposed. This model has been applied to logit analysis and the
analysis of factorial tables. Discussion in this paper has emphasized construction
of complete minimal sufficient statistics and likelihood equations. Future papers
will consider computation of maximum likelihood estimates and determination
of asymptotic properties for these estimates.

REFERENCES

[1]1 BircH, M. M. (1963). Maximum likelihood in three-way contingency tables. J. Roy. Sta-
tist. Soc. Ser. B. 25 220-233.
[2] BisHor, Y. M. M. (1969). Full contingency tables, logits, and split contingency tables.
Biometrics 25 383-400.
[3] Bisuop, Y. M. M. and FIENBERG, S. E. (1969). Incomplete two-dimensional contingency
tables. Biometrics 25 119-128.
[4] BrackweLL, D. and GIRSHICK, M. A. (1954). Theory of Games and Statistical Decisions.
Wiley, New York.
[5] DARROCH, J. N. (1962). Interaction in multifactor contingency tables. J. Roy. Statist. Soc.
Ser. B 24 251-263.
[6] DykE, G. V. and PATTERSON, H. D. (1952). Analysis of factorial arrangements when the
data are proportions. Biometrics 8 1-12.
[7] FienBerg, S. E. (1970). Quasi-independence and maximum likelihood estimation in in-
complete contingency tables. J. Amer. Statist. Assoc. 65 1610-1616.
[8] FIENBERG, S. E. (1972). The analysis of incomplete multiway contingency tables. Biomet-
rics 28 177-202.
[9]1 FINNEY, D. J. (1952). Probit Analysis. Cambridge Univ. Press.
[10] GoopMAN, L. A. (1968). The analysis of cross-classified data: independence, quasi-inde-
pendence and interactions in contingency tables with or without missing entries. J.
Amer. Statist. Assoc. 63 1091-1131.
[11] GoopMAN, L. A. (1970). The multivariate analysis of qualitative data: interactions among
multiple classifications. J. Amer. Statist. Assoc. 65 226-256.
[12] HABERMAN, S. J. (1970). The general log-linear model. Ph. D. dissertation, Univ. of
Chicago.
[13] HABERMAN, S. J. (1972). The Analysis of Frequency Data. Submitted to IMS Monograph
Series.
[14] HaLMos, P. R. (1958). Finite Dimensional Vector Spaces. Van Nostrand, Princeton.
[15] KruskAL, W. H. (1968). Noteson analysis of variance. Unpublished MS, Univ. of Chicago.
[16] SILVERSTONE, H. (1957). Estimating the logistic curve. J. Amer. Statist. Assoc. 52 567-571.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CHICAGO
1118 EAST 5S8TH STREET
CHICAGO, ILLINOIS 60637



