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TheLogistic Regression M odel

Unlike the log-linear modeling problems we have conside@éhr in the course
there are many problems in which one variable is clearly sgoase” variable,
and the others are “predictor” variables.

We will concentrate on the case where the respdhiseabinary outcomey = 0
ory = 1, and we have discrete or continuous predictor variakles,, . .., X,

We begin again by analogy with the normal-distribution éinenodel:

. d -
yi '~" N(m,c?), wherem = Bg + B1Xi1 +o+ BeXiqg (1=1,...,1).

Recall that forcontingency tables, they; were non-negative counts (we called
themn;) and we considered alternative models such as

(Y1,...,Y1) ~ Poiss(my) x --- x Poiss(m,) ,

(Y1,...,Y1)) ~  Multinom(N, (p,...,p1))
etc.

whereN = Y, y;, m = Np;, andm followed a log-linear model

logmy = Bo + B1Xi1 + - - - + ByXiq
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When they's arebinary a different transformation is needed, to account for rangg
restrictions, heterogeneous error variances, and otbbtgns that would be
encountered if we tried ordinary regression wiyea 0 or 1.

Again we model as
yi ~ some distribution depending on the mgan- E[Y/]

and sincep; € [0, 1], we often use an s-shaped function to strgicbut to the
whole real line (so unrestricted linear modeling is pogsibbome common
choices are:

e Tangent transformation®; = tangr - (p; — 3))

e Probit transformations; = ®1(p;), whered(2) is theN(0, 1) cdf (a.k.a.
“Normal ogive”).

e Logit transformations; = log l_L'pl = log-odds.

We will concentrate on the logit for# = log 1—Llp. It is also known by the inverse

expo;

transformation, théogistic transformationp; = Troxpd
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Since logp/(1 — p) is the natural parameter (thimkponential families!)
for the bernoulli and binomial distributions, then our mbfde binary
response variablag will be

Vi ndep Bernoulli(p;)

wherep; = E[Yi] is modeled vidogistic regression:

Pi
1-p
If there aren; cases with the same covariate valugs. . ., Xiq, then we
can also build a Binomial model

log = PBo + B1Xi1 + - -+ + B Xiq

Vit P By nom(n;, pi)

(wherey, is the number of 1’s for that set of fixed covariates), and a
similar logistic regression model.

Note that the Bernoulli model above is a special case.
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Logistic regression models are again generalized linealetsdsee Ch's 9 and 11
of Christensen) and so can be fitted wiglm(. .., family=binomial) in R.

Many of the model-selection strategies that we talked abetdre work in this
case too.

It is still meaningful t o look at Cook’s distances, which aedculated using the
same sorts of approximations that we talked about for logar Cook’s distances.

Residual analysis is a little troublesome. For example vansion of the
standardized residuals for the “Bernoulli” version of thedual look like this

r Yi — B

Yy

Both the numerator and the denominator can cause problems:

e If |yi — | = 1, then the residual will be enormous (tti@ominator is close
to zero!).

e Evenifp is not close to O or 1, the fact thgtcan only be zero or one in the
numerator usually causes lots of noticable “streaking” in residuakgleven
if the model fits well.

Similar problems exist with deviance residuals, etc. Theblems also cause
the residuals to not look very good in normal probabilitytplo

5 36-720 October 1, 2007



Example: Logistic Regression

Mosteller and Tukey (1977) collected data on average veéelsakcores for 6th
graders at 20 mid-Atlantic schools taken frdime Coleman Report:

X2 X3 X4

.83  28.87 7.20 26.60
.89  20.10 -11.71 24.40
.86  69.05 12.32 25.70
.92 65.40 14.28 25.70
.06 29.59 6.31 25.40
.07  44.82 6.16 21.60
.52 77 .37 12.70 24.90
.45  24.67 -0.17 25.01
.13 65.01 9.85 26.60
.44 9.99 -0.05 28.01
.09 12.20 -12.86 23.51
.52 22.55 0.92 23.60
.22 14.30 4.77 24.51
.67  31.79 -0.96 25.80
.71 11.60 -16.04 25.20
.14 68.47 10.62 25.01
.54  42.64 2.66 25.01
.52 16.70  -10.99 24.80
.68  86.27 15.03 25.51
.37 76.73 12.77 24.51

[y
(%a)

Z

37.01
26.51
36.51
40.70
37.10
33.90
41.80
33.40
41.01
37.20
23.30
35.20
34.90
33.10
22.70
39.70
31.80
31.70
43.10
41.01

.19
.17
.04
.10
.15
.41
.86
.78
.51
.57
.62
.34
.80
.19
.62
.94
.33
.01
.51
.96

CONOYUIL i WDN =

O

10
11
12
13
14
15
16
17
18
19
20

X
3
2
2
2
3
2
2
2
3
2
2
2
2
2
2
3
3
2
2
2

AN UV UVTUTULTUTO LTO OO NN U1 O
e == N e — I — I — N — R — R e e — R e e W — IR — R S

Here, X1= stdf salaries per pupil; X2 percent of fathers in white collar jobs,
X3 = socioeconomic status, X4 average verbal test scores feachers at each
school, X5= (mothers’ years of schoolinf), Z= mean verbat test scores for
students at each school; and ¥ 1if Z > 37 and Y= 0 if not (so Y is a cutff that
might be used to evaluate school performance).
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Let us begin by fitting an additive (mairfects only) logistic regression
model toy in the above data.

> schools <- read.table("mosteller-tukey.txt")
> summary (fit0® <- glm(y ~ x1 + x2 + x3 +x4 +x5,data=schools, family=binomial))

Call:
glm(formula =y ~ x1 + x2 + x3 + x4 + x5, family = binomial,
data = schools)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.234e+00 -8.112e-02 -8.213e-05 3.263e-01 8.441e-01

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.5635 33.1771 -0.138 0.891
x1 2.1346 .3235 0.642 .521
x2 0.1135 .1592 0.713 .476
x3 0.9789 .8487 1.153 .249
x4 2.0242 .3251 1.528 .127
x5 -10.0928 .7992 -1.030 .303

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.526 on 19 degrees of freedom
Residual deviance: 8.343 on 14 degrees of freedom

As the next slide shows, the residuals look terrible, bufithe
apparently already pretty good: deviag&e3 on 14 df.
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Residuals

4IStd. deviance resid.|

Residuals vs Fitted

T T T T
-20 -15 -10 -5 0

Predicted values

Scale-Location plot

30
100

50
©
o

o
o
[e]

o®

T T
-20 -15

Predicted values

Std. deviance resid.

Cook’s distance

Normal Q—-Q plot

Theoretical Quantiles

Cook’s distance plot

10

Obs. number

36-720 October 1, 2007



|nterpreting the Coefficients

Forlog-linear models, main-dfects only corresponded to the model of
iIndependence, since the model fis (or p;’s) would then be
multiplicative:

m eXp{,Bo + B1Xi1 + BaXi2 + - 'ﬁquQ}

aoa)l('la)z('zaq

For logistic regression models, the relationship isn’t so straightforward

- exp{,Bo + B1Xi1 + B2Xi2 + - - ':3qu<1}
1+ exp{,Bo + B1Xi1 + BaXi2 + - - ':3qu<1}

Pi

but there is a nice interpretation in terms of odds ratios (st slide). ..
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Let p(x1, ..., X, ..., Xq) be the success probability corresponding to
covariate valuesx, ..., Xj,..., Xg). Then

P(X1, ..o s Xjs oo 5 Xqg)
1-p(Xt,-..5 Xjs.--5Xg)

log = Bo + B1Xi1 + BoXia + -+ -+ BjXj + -+ - + BgXiq

and in particular if we increase thj# covariate by one unit, then

logOR[ p(X1, ..., (Xj +1),...,Xg), P(X1, .-, X, - - -, Xg)]
(Bo = Bo) + -+ + Bi((Xj + 1) = Xj) + -+ + Bq(Xg — Xq)
B

so thaig; Is the log-odds-ratio for a successful outcome, if we insegtie
covariatex; by 1 unit.

Equivalentlyg; is the increase in odds of a successful outcome for an
increase of 1 unit irx; (holding the othe’s fixed).
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Reading & the codficients table in the example,

e If we increase st salaries per pupil by 1 unit, the model predicts an
increase in log-odds of a successful school increase by 2.13

e If we increase percent of fathers in white collar jobs, thelgi@redicts an
increase in odds of a successful school increase by 0.11; etc

Sincep; is a log-odds-ratio between and the outcomg, wheng; is
(insignificantly dfferent from) zero, we can infer thptandx; are independent,
conditional on the othex’s in the model.

In the case of the model in this examphene of the codficients are significantly

different from zero! The problems here are the same as you mighteter in a
conventional regression analysis

e Small sample size—only 20 observations
e Collinearity in thex's—indeed

> X <- model.matrix(£it®)
> round(eigen(t (X)%*%X) $values,2)
[1] 57561.25 3701.05  465.95 3.12 1.82 0.02

SO we expect to see at most two or three significant predieftes variable
selection.
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Example: Variable Selection

We might try to seek a better model using stepwise varialdzsen or some
other model selection heuristic.

> library(MASS)
> basemodel <- glm(y ™ x1 + x2 + x3 +x4 + x5 ,data=schools, family=binomial)
> fitl <- eval(stepAIC(basemodel,

scope=list(lower=." 1,upper=."x1 + x2 + x3 +x4 + x5,k=2))$call)

> anova(fitl, fit®,test="Chisq")
Analysis of Deviance Table

Model 1: y = x3 + x4
Model 2: y " x1 + x2 + x3 + x4 + X5
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 17 10.1414
2 14 8.3429 3 1.7984 0.6153

So it looks like the model involving only X3SES and X4&teachers’ verbal scores
does about as well as the model involving all five mdtieets. Examining the
codficient

> summary(fitl) $coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -41.8188 24.5239 -1.705 0.0882 .
x3 0.3646 0.1799 2.027 0.0426 *
x4 1.5615 0.9428 1.656 0.0977 .

we see that both SES and teachers’ verbal scores have pafi@ets on the
log-odds of a successful schogl£ 1).
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If we try to expand the model search to consider interactodradl orders,
something interesting happens:

> fit2 <- eval(stepAIC(basemodel,
scope=list(lower=." 1,upper=."(x1 + x2 + x3 +x4 + x5)75,k=2))$%call)
[...]
" x3 + x4 + X5 + x4:%5

o]

There were 50 or more warnings (use warnings() to see the first 50)

> warnings()
Warning messages:
1: algorithm did not converge in:

glm.fit (X, y, wt, offset = object$offset, family = object§family,
2: fitted probabilities numerically ® or 1 occurred in:

glm.fit (X, y, wt, offset = object$offset, family = object§family,
[etc.]

Comparingfitted(fit2) to the actual y's you will see that they agree to 8 or
more decimal places—in other words, the moglet x3 + x4*x5 is essentially

already thesaturated model, with |y; — pi| = O.
But with p; so close to zero or one, the left hand side of

0g 775 = o+ Buxa + -+ Bk

Is essentially infinite, and no I\/ILE,fS,— can be found (hencaalgorithm did
not converge” above).

This is a standard problem with saturated logistic regoessiodels.
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Finally we recall thay is a dichotomized versiona y=1if z> 37 andy =0
otherwise. What happens if we try variable selection on gw@alnormal-errors
linear regression model faf?

> basemodel <- Im(z " x1 + x2 + x3 +x4 + x5 ,data=schools)

> norml <- eval(stepAIC(basemodel,
scope=list(lower=." 1,upper=."(x1 + x2 + X3 +x4 + x5)75),
k=2)$call) # k=2 for AIC

> norml$call

Im(formula = z ~ x1 + x3 + x4, data = schools)

> norm2 <- eval(stepAIC(basemodel,
scope=list(lower=." 1,upper=.~"(x1 + x2 + x3 +x4 + x5)75),
k=1og(20))$call) # k=log(sample size) for BIC

> norm2$call

Im(formula = z ~ x3 + x4, data = schools)

Even though the stepwise procedure had access to interadiall orders, the
interactionx4*x5 was not in the final model fat.

This suggests that thet*x5 interaction was useful for predicting the simpler
response surface gf(dichotomizedz) than for predicting the more complex
response surface afitself.

We should dichotomize with care, and then only if the sulistamuestion
requires it.

e Dichotomization always changes the information in the data
e If you must dichotomize, I'd suggest doing a sensitivity [ (try
different dichotomizations and see how thi@¢ets the results).
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