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The Logistic Regression M odel

Unlike the log-linear modeling problems we have consideseéhr in the course
there are many problems in which one variable is clearly sgoase” variable,
and the others are “predictor” variables.

We will concentrate on the case where the respdhiseabinary outcomey = 0
ory =1, and we have discrete or continuous predictor variakles, ..., X

We begin again by analogy with the normal-distribution éinenodel:
v P N(mML0?) . wherem =g+ BiXig + - +BXiq (i =1.....1).

Recall that forcontingency tables, they; were non-negative counts (we called
themn;) and we considered alternative models such as

(Y1,...,1) ~ Poiss(m) x --- x Poiss(my),
(ylv'-~7y|) - MUItinOrn(Na(plw'-va)
etc.

whereN = Y yi, m = Np;, andm followed a log-linear model

logm = Bo + BiXi1 + - - + ByXiq
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When they’s arebinary a different transformation is needed, to account for ranJe
restrictions, heterogeneous error variances, and otbbigms that would be
encountered if we tried ordinary regression wiges 0 or 1.

Again we model as
yi ~ some distribution depending on the mgan- E[Y]]

and sincep; € [0, 1], we often use an s-shaped function to stregcbut to the
whole real line (so unrestricted linear modeling is pogibbome common
choices are:

e Tangent transformation®, = tanr - (p; — %))

e Probit transformations, = ®~(p;), whered(2) is theN(0, 1) cdf (a.k.a.
“Normal ogive”).

e Logit transformations; = log 1% = log-odds.

We will concentrate on the logit for® = log ﬁ Itis also known by the inverse

transformation, théogistic transformationp; = 1322?& .
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Since logp/(1 — p) is the natural parameter (thirekponential families!)
for the bernoulli and binomial distributions, then our mbide binary
response variableg will be

Vi incse Bernoulli(p;)
wherep; = E[y;] is modeled vidogistic regression:

Pi
= Bo + P1Xi1 + - - + PgX
1-p Bo + B1Xi1 BaXiq

log

If there aren; cases with the same covariate valugs. . ., X, then we
can also build a Binomial model

Yis P g nom(n;, pi)

(wherey, is the number of 1's for that set of fixed covariates), and a
similar logistic regression model.

Note that the Bernoulli model above is a special case.
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Logistic regression models are again generalized linealetsdsee Ch's 9 and 11
of Christensen) and so can be fitted wiftm(. .., family=binomial) in R.

Many of the model-selection strategies that we talked abefdre work in this
case too.

It is still meaningful t o look at Cook’s distances, which aedculated using the
same sorts of approximations that we talked about for logai Cook’s distances.

Residual analysis is a little troublesome. For example vemsion of the
standardized residuals for the “Bernoulli” version of thedal look like this

Y — bi
VRi(1-[)

Both the numerator and the denominator can cause problems:

I =

e If |y, — pil ~ 1, then the residual will be enormous (tt@ominator is close
to zero!).

e Evenifp; is not close to 0 or 1, the fact thgtcan only be zero or one in the
numerator usually causes lots of noticable “streaking” in residuatgl even
if the model fits well.

Similar problems exist with deviance residuals, etc. Thmeblems also cause
the residuals to not look very good in normal probabilitytplo
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Example: Logistic Regression

Mosteller and Tukey (1977) collected data on average veeisakcores for 6th
graders at 20 mid-Atlantic schools taken frdime Coleman Report:

X1 X2 X3 X4 X5 Y Z
1 3.83 28.87 7.20 26.60 6.19 1 37.01
2 2.89 20.10 -11.71 24.40 5.17 0 26.51
3 2.86 69.05 12.32 25.70  7.04 0 36.51
4 2.92 65.40 14.28 25.70  7.16 1 40.70
5 3.06 29.59 6.31 25.40  6.15 1 37.10
6 2.07 44.82 6.16 21.60 6.41 0 33.90
7 2.52 77.37 12.70 24.99 6.86 1 41.80
8 2.45 24.67 -0.17 25.01 5.78 0 33.40
9 3.13 65.01 9.85 26.60 6.51 1 41.01
10 2.44 9.99 -0.05 28.01 5.57 1 37.20
11 2.09 12.20 -12.86 23.51 5.62 0 23.30
12 2.52  22.55 0.92 23.60 5.34 0 35.20
13 2.22 14.30 4.77 24.51 5.80 0 34.90
14 2.67 31.79 -0.96 25.80 6.19 6 33.10
15 2.71 11.60 -16.04 25.20 5.62 0 22.70
16 3.14 68.47 10.62 25.01 6.94 1 39.70
17 3.54 42.64 2.66 25.01 6.33 0 31.80
18 2.52 16.70  -10.99 24.80 6.01 0 31.70
19 2.68 86.27 15.03 25.51 7.51 1 43.10
20 2.37 76.73 12.77 24.51 6.96 1 41.01

Here, X1= stdf salaries per pupil; X2 percent of fathers in white collar jobs,
X3 = socioeconomic status, X4 average verbal test scores feachers at each
school, X5= (mothers’ years of schoolingg), Z= mean verbat test scores for
students at each school; and ¥ 1 if Z > 37 and Y= 0 if not (so Y is a cutff that
might be used to evaluate school performance).
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Let us begin by fitting an additive (mairtects only) logistic regression
model toy in the above data.

> schools <- read.table("mosteller-tukey.txt")
> summary(fit® <- glm(y ~ x1 + x2 + x3 +x4 +x5,data=schools, family=binomial))

Call:
glm(formula = y ~ x1 + x2 + x3 + x4 + x5, family = binomial,
data = schools)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.234e+00 -8.112e-02 -8.213e-05 3.263e-01 8.441e-01

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -4.5635 33.1771 -0.138 0.891
x1 2.1346 3.3235 0.642 0.521
X2 0.1135 0.1592 0.713 0.476
x3 0.9789 0.8487 1.153 0.249
x4 2.0242 1.3251 1.528 0.127
x5 -10.0928 9.7992 -1.030 0.303

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.526 on 19 degrees of freedom
Residual deviance: 8.343 on 14 degrees of freedom

As the next slide shows, the residuals look terrible, bufithie
apparently already pretty good: deviaa8e3 on 14 df.
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Residuals vs Fitted Normal Q-Q plot
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| nter preting the Coefficients

Forlog-linear models, main-dtects only corresponded to the model of
independence, since the model mfs (or p;’s) would then be
multiplicative:

m exp{,Bo + B1Xi1 + BaXiz + - 'ﬁquQ}

ao.aiil.agz...aéiq

Forlogistic regression models, the relationship isn’t so straightforward

~ exp{,Bo + B1Xi1 + BaXiz + - 'ﬁquQ}
1+ exp{,Bo + B1Xi1 + BaXiz + - - 'ﬁqxiq}

but there is a nice interpretation in terms of odds ratios (st slide). ..
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Let p(X1,...,Xj,..., Xq) be the success probability corresponding to
covariate valuesx, ..., X, ..., Xg). Then

PX1, -y Xy - v s Xg)
1-p(Xt,-..sXjs. ..y Xq)

log = o+ B1Xi1 + BaXiz + -+ + BjXj + - - + ByXiq

and in particular if we increase thj# covariate by one unit, then

logOR[ p(X1, ..., (Xj + 1),...,Xg), P(X1, ..., Xj, ..., Xg)]
= (Bo—Po) + -+ (X + 1) = Xj) + -+ + Bg(Xq — Xq)
so thaig; is the log-odds-ratio for a successful outcome, if we inseghe
covariatex; by 1 unit.

Equivalentlyg; is the increase in odds of a successful outcome for an
increase of 1 unit irx; (holding the othex's fixed).
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Reading & the codficients table in the example,

e If we increase st salaries per pupil by 1 unit, the model predicts an
increase in log-odds of a successful school increase by 2.13

¢ |f we increase percent of fathers in white collar jobs, thalgigpredicts an
increase in odds of a successful school increase by 0.11; etc

Sinceg; is a log-odds-ratio betweeq and the outcomg, wheng; is
(insignificantly diterent from) zero, we can infer thaandx; are independent,
conditional on the othex’s in the model.

In the case of the model in this examphene of the codficients are significantly
different from zero! The problems here are the same as you migbtieter in a
conventional regression analysis

e Small sample size—only 20 observations
e Collinearity in thexXs—indeed

> X <- model.matrix(£fit0®)
> round(eigen(t (X)%*%X) $values,2)

[1] 57561.25 3701.05 465.95 3.12 1.82 0.02
SO we expect to see at most two or three significant prediaftes variable
selection.
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Example: Variable Selection

We might try to seek a better model using stepwise varialdzgen or some
other model selection heuristic.

> library(MASS)
> basemodel <- glm(y ~ x1 + x2 + x3 +x4 + x5 ,data=schools, family=binomial)
> fitl <- eval(stepAIC(basemodel,

scope=list(lower=." 1,upper=.~x1 + x2 + x3 +x4 + x5,k=2))$call)

> anova(fitl, fit@,test="Chisq")
Analysis of Deviance Table

Model 1: y ~ x3 + x4
Model 2: y ” x1 + x2 + x3 + x4 + x5
Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 17 10.1414
2 14 8.3429 3 1.7984 0.6153

So it looks like the model involving only X3SES and X4&teachers’ verbal scores
does about as well as the model involving all five matiees. Examining the
codficient

> summary(fitl)$coefficients

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -41.8188 24.5239 -1.705 0.0882 .
x3 0.3646 0.1799 2.027 0.0426 *
x4 1.5615 0.9428 1.656 0.0977 .

we see that both SES and teachers’ verbal scores have pafiiéiets on the
log-odds of a successful schogl£ 1).
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If we try to expand the model search to consider interactojradl orders,
something interesting happens:

> fit2 <- eval(stepAIC(basemodel,
scope=list(lower=." 1,upper=.~(x1 + x2 + x3 +x4 + x5)"5,k=2))$call)
[...]
y " x3 + x4 + x5 + x4:x5
[...]

There were 50 or more warnings (use warnings() to see the first 50)

> warnings()
Warning messages:
1: algorithm did not converge in:

glm.fit(X, y, wt, offset = object$offset, family = object$family,
2: fitted probabilities numerically ® or 1 occurred in:

glm.fit(X, y, wt, offset = object$offset, family = object$family,
[etc.]

Comparingfitted(£it2) to the actual y's you will see that they agree to 8 or
more decimal places—in other words, the moglet x3 + x4*x5 is essentially
already thesaturated model, with |y, — pi| ~ O.

But with p; so close to zero or one, the left hand side of

|091f%i:Bo+ﬁMu+“'+ﬁﬁm

is essentially infinite, and no MLE,Z%,- can be found (hencealgorithm did
not converge” above).

This is a standard problem with saturated logistic regoessiodels.
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Finally we recall thay is a dichotomized versiona y=1if z> 37 andy =0
otherwise. What happens if we try variable selection on tw@lnormal-errors
linear regression model faf?

> basemodel <- Im(z ~ x1 + x2 + x3 +x4 + x5 ,data=schools)

> norml <- eval(stepAIC(basemodel,
scope=list(lower=." 1,upper=."(x1 + x2 + X3 +x4 + x5)°5),
k=2)$call) # k=2 for AIC

> norml$call

Im(formula = z ~ x1 + x3 + x4, data = schools)

> norm2 <- eval(stepAIC(basemodel,
scope=list(lower=." 1,upper=.~(x1 + x2 + x3 +x4 + x5)75),
k=1log(20))$call) # k=log(sample size) for BIC

> norm2$call

Im(formula = z ~ x3 + x4, data = schools)

Even though the stepwise procedure had access to interadi@ll orders, the
interactionx4*x5 was not in the final model far.

This suggests that thet*x5 interaction was useful for predicting the simpler
response surface gf(dichotomizedz) than for predicting the more complex
response surface afitself.

We should dichotomize with care, and then only if the sulistammuestion
requires it.

¢ Dichotomization always changes the information in the data
¢ |f you must dichotomize, I'd suggest doing a sensitivity lstais (try
different dichotomizations and see how thid¢ets the results).
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