
The Logistic Regression Model
Unlike the log-linear modeling problems we have consideredso far in the course
there are many problems in which one variable is clearly a “response” variable,
and the others are “predictor” variables.

We will concentrate on the case where the responseY is abinary outcome,y = 0
or y = 1, and we have discrete or continuous predictor variablesx1, x2, . . . , xq.

We begin again by analogy with the normal-distribution linear model:

yi
indep
∼ N(mi, σ

2) , wheremi = β0 + β1xi1 + · · · + βq xiq (i = 1, . . . , I).

Recall that forcontingency tables, theyi were non-negative counts (we called
themni) and we considered alternative models such as

(y1, . . . , yI) ∼ Poiss(m1) × · · · × Poiss(mI) ,

(y1, . . . , yI) ∼ Multinom(N, (p1, . . . , pI))

etc.

whereN =
∑

i yi, mi = N pi, andmi followed a log-linear model

logmi = β0 + β1xi1 + · · · + βq xiq
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Since logp/(1− p) is the natural parameter (thinkexponential families!)

for the bernoulli and binomial distributions, then our model for binary

response variablesyi will be

yi
indep
∼ Bernoulli(pi)

wherepi = E[yi] is modeled vialogistic regression:

log
pi

1− pi
= β0 + β1xi1 + · · · + βqxiq

If there areni cases with the same covariate valuesxi1, . . . , xiq, then we

can also build a Binomial model

yi+
indep
∼ Binom(ni, pi)

(whereyi+ is the number of 1’s for that set of fixed covariates), and a

similar logistic regression model.

Note that the Bernoulli model above is a special case.
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When they’s arebinary a different transformation is needed, to account for range

restrictions, heterogeneous error variances, and other problems that would be

encountered if we tried ordinary regression whenyi = 0 or 1.

Again we model as

yi ∼ some distribution depending on the meanpi = E[Yi]

and sincepi ∈ [0, 1], we often use an s-shaped function to stretchpi out to the

whole real line (so unrestricted linear modeling is possible). Some common

choices are:

• Tangent transformation:θi = tan(π · (pi −
1
2 ))

• Probit transformation:θi = Φ−1(pi), whereΦ(z) is theN(0, 1) cdf (a.k.a.

“Normal ogive”).

• Logit transformation:θi = log pi
1−pi
= log-odds.

We will concentrate on the logit formθi = log pi
1−pi

. It is also known by the inverse

transformation, thelogistic transformation,pi =
expθi

1+expθi
.
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Example: Logistic Regression
Mosteller and Tukey (1977) collected data on average verbaltest scores for 6th
graders at 20 mid-Atlantic schools taken fromThe Coleman Report:

X1 X2 X3 X4 X5 Y Z

1 3.83 28.87 7.20 26.60 6.19 1 37.01

2 2.89 20.10 -11.71 24.40 5.17 0 26.51

3 2.86 69.05 12.32 25.70 7.04 0 36.51

4 2.92 65.40 14.28 25.70 7.10 1 40.70

5 3.06 29.59 6.31 25.40 6.15 1 37.10

6 2.07 44.82 6.16 21.60 6.41 0 33.90

7 2.52 77.37 12.70 24.90 6.86 1 41.80

8 2.45 24.67 -0.17 25.01 5.78 0 33.40

9 3.13 65.01 9.85 26.60 6.51 1 41.01

10 2.44 9.99 -0.05 28.01 5.57 1 37.20

11 2.09 12.20 -12.86 23.51 5.62 0 23.30

12 2.52 22.55 0.92 23.60 5.34 0 35.20

13 2.22 14.30 4.77 24.51 5.80 0 34.90

14 2.67 31.79 -0.96 25.80 6.19 0 33.10

15 2.71 11.60 -16.04 25.20 5.62 0 22.70

16 3.14 68.47 10.62 25.01 6.94 1 39.70

17 3.54 42.64 2.66 25.01 6.33 0 31.80

18 2.52 16.70 -10.99 24.80 6.01 0 31.70

19 2.68 86.27 15.03 25.51 7.51 1 43.10

20 2.37 76.73 12.77 24.51 6.96 1 41.01

Here, X1= staff salaries per pupil; X2= percent of fathers in white collar jobs,
X3 = socioeconomic status, X4= average verbal test scores forteachers at each
school, X5= (mothers’ years of schooling)/2, Z= mean verbat test scores for
students at each school; and Y= 1 if Z > 37 and Y= 0 if not (so Y is a cutoff that
might be used to evaluate school performance).
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Logistic regression models are again generalized linear models (see Ch’s 9 and 11
of Christensen) and so can be fitted withglm(..., family=binomial) in R.

Many of the model-selection strategies that we talked aboutbefore work in this
case too.

It is still meaningful t o look at Cook’s distances, which arecalculated using the
same sorts of approximations that we talked about for log-linear Cook’s distances.

Residual analysis is a little troublesome. For example, oneversion of the
standardized residuals for the “Bernoulli” version of the model look like this

ri =
yi − p̂i
√

p̂i(1− p̂i)

Both the numerator and the denominator can cause problems:

• If |yi − p̂i| ≈ 1, then the residual will be enormous (thedenominator is close
to zero!).

• Even if pi is not close to 0 or 1, the fact thatyi can only be zero or one in the
numerator usually causes lots of noticable “streaking” in residual plots, even
if the model fits well.

Similar problems exist with deviance residuals, etc. Theseproblems also cause
the residuals to not look very good in normal probability plots.

5 36-720 October 1, 2007



−20 −15 −10 −5 0 5

−
2.

5
−

1.
5

−
0.

5
0.

5

Predicted values

R
es

id
ua

ls

Residuals vs Fitted

3

516

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
td

. d
ev

ia
nc

e 
re

si
d.

Normal Q−Q plot

3

10

5

−20 −15 −10 −5 0 5

0.
0

0.
5

1.
0

1.
5

Predicted values

S
td

. d
ev

ia
nc

e 
re

si
d.

Scale−Location plot
3

10

5

5 10 15 20

0
2

4
6

8
10

Obs. number

C
oo

k’
s 

di
st

an
ce

Cook’s distance plot

10

5 12

8 36-720 October 1, 2007

Let us begin by fitting an additive (main effects only) logistic regression
model toy in the above data.
> schools <- read.table("mosteller-tukey.txt")

> summary(fit0 <- glm(y ˜ x1 + x2 + x3 +x4 +x5,data=schools,family=binomial))

Call:

glm(formula = y ˜ x1 + x2 + x3 + x4 + x5, family = binomial,

data = schools)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.234e+00 -8.112e-02 -8.213e-05 3.263e-01 8.441e-01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5635 33.1771 -0.138 0.891

x1 2.1346 3.3235 0.642 0.521

x2 0.1135 0.1592 0.713 0.476

x3 0.9789 0.8487 1.153 0.249

x4 2.0242 1.3251 1.528 0.127

x5 -10.0928 9.7992 -1.030 0.303

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.526 on 19 degrees of freedom

Residual deviance: 8.343 on 14 degrees of freedom

As the next slide shows, the residuals look terrible, but thefit is

apparently already pretty good: deviance=8.3 on 14 df.
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Let p(x1, . . . , x j, . . . , xq) be the success probability corresponding to

covariate values (x1, . . . , x j, . . . , xq). Then

log
p(x1, . . . , x j, . . . , xq)

1− p(x1, . . . , x j, . . . , xq)
= β0 + β1xi1 + β2xi2 + · · · + β jx j + · · · + βqxiq

and in particular if we increase thejth covariate by one unit, then

logOR[p(x1, . . . , (x j + 1), . . . , xq), p(x1, . . . , x j, . . . , xq)]

= (β0 − β0) + · · · + β j((x j + 1)− x j) + · · · + βq(xq − xq)

= β j

so thatβ j is the log-odds-ratio for a successful outcome, if we increase the

covariatex j by 1 unit.

Equivalentlyβ j is the increase in odds of a successful outcome for an

increase of 1 unit inx j (holding the otherx’s fixed).
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Interpreting the Coefficients

For log-linear models, main-effects only corresponded to the model of

independence, since the model formi’s (or pi’s) would then be

multiplicative:

mi = exp
{

β0 + β1xi1 + β2xi2 + · · · βqxiq

}

= a0 · a
xi1
1 · a

xi2
2 · · · a

xiq
q

For logistic regression models, the relationship isn’t so straightforward

pi =
exp
{

β0 + β1xi1 + β2xi2 + · · · βq xiq

}

1+ exp
{

β0 + β1xi1 + β2xi2 + · · · βq xiq

}

but there is a nice interpretation in terms of odds ratios (see next slide). . .
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Example: Variable Selection
We might try to seek a better model using stepwise variable selection or some

other model selection heuristic.
> library(MASS)

> basemodel <- glm(y ˜ x1 + x2 + x3 +x4 + x5 ,data=schools,family=binomial)

> fit1 <- eval(stepAIC(basemodel,

scope=list(lower=.˜ 1,upper=.˜x1 + x2 + x3 +x4 + x5,k=2))$call)

> anova(fit1,fit0,test="Chisq")

Analysis of Deviance Table

Model 1: y ˜ x3 + x4

Model 2: y ˜ x1 + x2 + x3 + x4 + x5

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 17 10.1414

2 14 8.3429 3 1.7984 0.6153

So it looks like the model involving only X3=SES and X4=teachers’ verbal scores

does about as well as the model involving all five main effects. Examining the

coefficient
> summary(fit1)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -41.8188 24.5239 -1.705 0.0882 .

x3 0.3646 0.1799 2.027 0.0426 *

x4 1.5615 0.9428 1.656 0.0977 .

we see that both SES and teachers’ verbal scores have positive effects on the

log-odds of a successful school (y = 1).
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Reading off the coefficients table in the example,

• If we increase staff salaries per pupil by 1 unit, the model predicts an
increase in log-odds of a successful school increase by 2.13;

• If we increase percent of fathers in white collar jobs, the model predicts an
increase in odds of a successful school increase by 0.11; etc.

Sinceβ j is a log-odds-ratio betweenx j and the outcomey, whenβ j is
(insignificantly different from) zero, we can infer thaty andx j are independent,
conditional on the otherx’s in the model.

In the case of the model in this example,none of the coefficients are significantly
different from zero! The problems here are the same as you might encounter in a
conventional regression analysis

• Small sample size—only 20 observations
• Collinearity in thex’s—indeed

> X <- model.matrix(fit0)

> round(eigen(t(X)%*%X)$values,2)

[1] 57561.25 3701.05 465.95 3.12 1.82 0.02

so we expect to see at most two or three significant predictorsafter variable
selection.

11 36-720 October 1, 2007



Finally we recall thaty is a dichotomized version ofz: y = 1 if z > 37 andy = 0
otherwise. What happens if we try variable selection on the usual normal-errors
linear regression model forz?
> basemodel <- lm(z ˜ x1 + x2 + x3 +x4 + x5 ,data=schools)

> norm1 <- eval(stepAIC(basemodel,

scope=list(lower=.˜ 1,upper=.˜(x1 + x2 + x3 +x4 + x5)ˆ5),

k=2)$call) # k=2 for AIC

> norm1$call

lm(formula = z ˜ x1 + x3 + x4, data = schools)

> norm2 <- eval(stepAIC(basemodel,

scope=list(lower=.˜ 1,upper=.˜(x1 + x2 + x3 +x4 + x5)ˆ5),

k=log(20))$call) # k=log(sample size) for BIC

> norm2$call

lm(formula = z ˜ x3 + x4, data = schools)

Even though the stepwise procedure had access to interactions of all orders, the
interactionx4*x5 was not in the final model forz.

This suggests that thex4*x5 interaction was useful for predicting the simpler
response surface ofy (dichotomizedz) than for predicting the more complex
response surface ofz itself.

We should dichotomize with care, and then only if the substantive question
requires it.

• Dichotomization always changes the information in the data.
• If you must dichotomize, I’d suggest doing a sensitivity analysis (try

different dichotomizations and see how that affects the results).
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If we try to expand the model search to consider interactionsof all orders,
something interesting happens:
> fit2 <- eval(stepAIC(basemodel,

scope=list(lower=.˜ 1,upper=.˜(x1 + x2 + x3 +x4 + x5)ˆ5,k=2))$call)

[...]

y ˜ x3 + x4 + x5 + x4:x5

[...]

There were 50 or more warnings (use warnings() to see the first 50)

> warnings()

Warning messages:

1: algorithm did not converge in:

glm.fit(X, y, wt, offset = object$offset, family = object$family, ...

2: fitted probabilities numerically 0 or 1 occurred in:

glm.fit(X, y, wt, offset = object$offset, family = object$family, ...

[etc.]

Comparingfitted(fit2) to the actual y’s you will see that they agree to 8 or
more decimal places—in other words, the modely ˜ x3 + x4*x5 is essentially
already thesaturated model, with |yi − p̂i| ≈ 0.

But with p̂i so close to zero or one, the left hand side of

log
p̂i

1− p̂i
= β̂0 + β̂1xi1 + · · · + β̂q xiq

is essentially infinite, and no MLE’ŝβ j can be found (hence “algorithm did
not converge” above).

This is a standard problem with saturated logistic regression models.
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