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Prospective vs Retrospective Studies

Consider two studies of heart attacks

Study 1. Take 200 people, record covariates such as age, choleshbdonid
pressure (and experimental condition, if this is an expenthand then
determine whether each has had a heart attack.

In this study, each unique set of covariates determines alg@togn for
multinomial sampling (really, binomial in this case) expagnt with the
same multinomial categorieg.= 1 ory = 0. This is aprospective studyit is
the usual setting in which logistic regression is easy tdyaapd interpret.

Study 2: Take 100 people who have had heart attacks, and 100 people who
haven’t, and record covariates for each.

In this study, there are two populations definedyy 1 ory = 0.
Multinomial sampling in they = 1 population has whatever categories are
determined by the unique combinations of covariates foartdat
population. Multinomial sampling in the= 0 population has a fierent set
of categories. This is eetrospective study.ogistic regression foy can still
be performed, but it is more fllicult to interpret because

P[H.A]/P[no HA] # P[H.A]/(1 - P[H.A]).
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L ogit models: Logistic Regression with Discrete
Covariates

We will concentrate omprospectivestudies that involve a binary responseg
variableY and discrete covariates B, C, ...

We begin with some notation. By analogy witkterms for a log-linear
model, we can write logit models as follows:

log(Pv(1)/ Pye) = V+ Vag) + V() + Ve

log(Pv(1)/Py) = V= Vag) + Va(j) + Vew + VBc(jk)

etc.

Also, by analogy with our notation [A][B][C], [A][BC], etcfor log-linear
models we will write{A} {B}{C}, {A}{BC}, etc. for these models.

We use the new{" and “}” notation to emphasize th#te presence or
absence interactions in the logit model implies nothingulmmnditional
Independence relationships among the factors.
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L ogit vs. log-linear models

If the study involving binary variabl® and discrete covariates B, C, is
prospectivetheneach unigue combination of A, B, C, determines an
iIndependent binomial experiment with fixed sample siza-nthe
number of repetitions of that unique combination?efB, C.

Thus the tablewy g c cross-classifyingll of Y, A, B, C, has goroduct
multinomialstructure, where the fixed totals for the multinomials
(binomials really) are the [ABC] margins.

An alternative to fitting logistic regression models, €4} {B}{C}
would be to fit a log-linear model like [Y][ABC][possibly oén stuf]

|Og My ABQyijk) = U+ Uyy) + UaBC(ijk) + (pOSSIb|y other SI@)

to the four-way table, whenee have included [ABC] to reflect the
product multinomial structure
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What do these log-linear models say about logistic regpag$ngit) models?

In what follows we will ignore most lower-order terms imgiey the hierarchy
principle, WLOG, to simplify notation. ..

Examples:

e [Y][ABC]is the log-linear model

log My agayijy = U+ Uvgy) + Uascijk)

The conditional odds of = 1 vsY = 0 can be calculated usings or p’s, so

logitP[Y =1A=1,B=],C =K = logpyasaiijk — 109 Pyaeqoijx)
= logmy agquijk) — 109 My aBqijk)

S0, as expected from the log-linear form, [Y][ABC] implidsat
Y 1L (A B,C), i.e. the “null” logistic regression modé¢b}:

logitP[Y = JA=i,B=,C=K =V
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Now let’s try to build some dependence betwé&eandA, B, C into the log-linear
model, and see what happens...

o Try [YA][ABC], i.e.

log My aayijk) = U+ Uygy) + Uag) + Uy ayi) + UaBGiijk)
so that
logit P[Y = 1Ji, |, K] log My agqiijk) — 109 My ABqoijK)

Uy(1) — Uy(0) + Uya1i) — Uy A0i)
V + VA(i)

e Now try [YA][YBC][ABC], i.e.

log My aayijk) = U+ Uygy) + Uag) + Uy ayi) + Uveayjk + UaBGjk)

and we get
|Ogit P[Y = lll, j, k] = V + Va@) t VBc(jk)

(to which we should probably add lower-order terms to getilearchy
principle back).
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In general, this runs both ways:

There is an equivalence between

e Submodels of the log-linear model [YABQ[ABC- - -] that preserve

the [ABC - -] margin for product-binomial sampling; and

e Submodels of the logistic regressiogit model{ABC. . .} for
prospective sampling.
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A strategy for fitting and interpreting logit models, thes, i

e Do variable selection either in logistic regression modehfigt, or the
equivalent log-linear formgpreserving margins for multinomial
sampling)—or switch back and forth if that is interesting. .

Note: As we will see belowG?'s for the two diferent formulations of the
model are the same. However, we will aso see that penalizéuwbohelike

AIC and BIC may give dierent results because there are fewer parameterg
(less penalty) in the logit formulation than in the corrasgiog log-linear
formulation.

By definitionlogistic regression focuses on the conditional distridouti
P(Y|A, B,C,...) and thus ignhores dependence betwAgeB, C, . . ., while
log-linear models focus on the joint distributiggY, A, B,C, .. .) and thus
incorporates dependence betwdeB, C, . . ..

Therefore, instead of interpreting the model in terms ofditbonal
independences amowyg B, C, etc., (none can be inferred from the logistic
regression model), we interpret the model in termshanges in the log-odds
of Y = 1 as we move from one level of A, B, C, etc. to anqtber
equivalently (log-)odds-ratios, fgr= 1, etc.
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Example: Muscle Tension

In the data set

Drug (k)
[Tlension ¢) [W]eight (i) [M]uscle (j) | [DJrugl Drug 2
High Type 1 3 21
Type 2 11

High
Low Type 1 32
Type 2 12

High Type 1 10
Type 2 21

Low Type 1 45 23
Type 2 6 22

muscle tension [T] can be thought of as the response variable
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The data set (see examples) is not in the form for logisticesesgion

T
1
1

but instead is in the form for log-linear modeling

n T W M D
22 1 1 1 1
6 1 1 1 ©

So for every logit submodel gfwMD} we want to fit, we will instead fit
log-linear submodels of [TWMD][WMD].

See also discussion of this data set on pp. 146—149 in Ohsextés text.

In what follows we will simply look at some results of automsadtepwise
procedures (see also R example file for this lecture).
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First we consider log-linear variable selection:

> musc <- data.frame(n,Wt,Mt,Dt,Tn)
> library (MASS)
> basemodel <- glm(n ~ Tn*Wt*Mt*Dt,data=musc, family=poisson)
> upper <- n ~ Tn*Wt*Mt*Dt # examine only models nested between
> lower <- n ~ Tn + Wt*Mt*Dt # [T][WMD] and [TWMD][WMD] = [TWMD]
> stepAIC(basemodel,list(lower=lower,upper=upper),k=2)
[...]
Call: glm(formula =n ~ Tn + Wt + Mt + Dt + Tn:Mt + Wt:Mt + Tn:Dt +
Wt:Dt + Mt:Dt + Tn:Mt:Dt + Wt:Mt:Dt, family = poisson, data = musc)

This model corresponds to [TMD][WMD] as a log-linear modwi ,{MD}
as a logit model:

|Ogit P[T = High | Ijk] =V + VYM(j) T VDK T YMD(jK)

In this model it appears that 1. W, butT (M, D).

If we do BIC model selectionkclog(sum(n))) instead of AIC k=2),
we get the same final model, in this case.
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Now let's consider logistic regression variable selection

> musc.logist <- data.frame(H=musc[1:8,1],L=musc[9:16,1],musc[1:8,2:4])

> resp <- as.matrix(musc.logist[,1:2])

>  # note: for binomial (and not bernoulli) data

> # we have to specify both successes and failures!

> Imod® <- glm(resp ~ Wt+Mt+Dt,data=musc.logist,family=binomial)

> stepAIC(1mod0®,list(lower=".,upper="."3),k=2)

[...]

Call: glm(formula = resp ~ Wt + Mt + Dt + Mt:Dt, family = binomial,
data = musc.logist)

This i1s the modefW} {MD} which has W as a mainiect:

Iogit P[T = High | ijk] =V + Yw(i) T YM(j) T YD) T YMD(jK)

Using BIC instead we get the impler mod@l} {M} {D}. Finally,
Christensen, pp. 146-149, also provides evidence{f¥t{MD} is a
plausible model. Altogether we have four potential modelsampare, in
two different nestings (because there is no nesting bet{dehand

{w}{M}{D3}):

{MD} {W3{M}{D} [TMD] [WMD] [Tw] [TM] [TD] [WMD]
{w}{MD} {W}{MD} or [TW][TMD][WMD]  [TW][TMD][WMD]
{WM}{MD} {WM}{MD} [TwM] [TMD] [WMD]  [TWM] [TMD] [WMD]
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Comparing first the log-linear versions of the models we get

modla <- glm(n ~ Tn*Mt*Dt + Wt*Mt*Dt,data=musc, family=poisson)
modlb <- glm(n ~ Tn*Wt + Tn*Mt + Tn*Dt + Wt*Mt*Dt,data=musc, family=poisson)
mod2 <- glm(n ~ Tn*Mt*Dt + Tn*Wt + Wt*Mt*Dt,data=musc, family=poisson)
mod3 <- glm(n ~ Tn*Mt*Dt + Tn*Wt*Mt + Wt*Mt*Dt,data=musc, family=poisson)
anova(modla,mod2,mod3,test="Chisq")
..
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
4 1.52890 [TMD] [WMD]
3 1.05961 1 0.46928 0.49332 [TWw] [TMD] [WMD]
2 0.11952 1 0.94009 0.33225 [TWwM] [TMD] [WMD]
anova(modlb,mod2,mod3,test="Chisq")
..
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
4 5.3106 [TwW] [TM] [TD] [WMD]
3 1.8596 1 4.2510 0.0392 [TWw] [TMD] [WMD]
2 0.1195 1 0.9401 0.3323 [TwM] [TMD] [WMD]

Note that the deviance and df calculations are exactly theesss for the
logistic regression (next slide).
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Now let’s compare as logjtlogistic regression models:

> modla <- glm(resp ~ Mt*Dt ,data=musc.logist,family=binomial)
> modlb <- glm(resp ~ Wt + Mt + Dt,data=musc.logist,family=binomial)
> mod2 <- glm(resp ~ Mt*Dt + Wt ,data=musc.logist,family=binomial)
> mod3 <- glm(resp ~ Mt*Dt + Wt*Mt,data=musc.logist,family=binomial)
> anova(modla,mod2,mod3, test="Chisq")
[...]
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
4 1.52890 # {MD}
3 1.05961 1 0.46928 0.49332 # {W}{MD}
2 0.11952 1 0.94009 0.33225 # {WM}{MD}
anova(modlb,mod2,mod3,test="Chisq")
ced]
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 4 5.3106 # {wr{M}{D}
2 3 1.8596 1 4.2510 0.0392 # {W}{MD}
3 2 0.1195 1 0.9401 0.3323 # {WM}{MD}

We see from the first comparison (of either logit or log-lineedels) thatMD},
{w}{MD}, and{wWM}{MD} are all about equally good fits. From the second mode
comparison it appears théi} {M} {D} is a substantially less good fit.

So we should choose among the first three models if we need| arfotkel: {MD},
{W}{MD}, or {WM}{MD}. If our only criterion is parsimony we would tak@D};
otherwise perhaps one of the two other models better reBeate prior
knowledge we may have about the (experimental) processatarmgethe data.
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