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e Logit models: Logistic Regression with Discrete Covasate
e Logitvs. log-linear models

e Example: Muscle Tension
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Prospective vs Retrospective Studies

Consider two studies of heart attacks

Study 1: Take 200 people, record covariates such as age, cholestéoald
pressure (and experimental condition, if this is an experithand then
determine whether each has had a heart attack.

In this study, each unique set of covariates determines algkgn for
multinomial sampling (really, binomial in this case) exipsent with the
same multinomial categorieg:= 1 ory = 0. This is aprospective studyt is
the usual setting in which logistic regression is easy tdyagpd interpret.

Study 2: Take 100 people who have had heart attacks, and 100 people who
haven't, and record covariates for each.

In this study, there are two populations definedyby 1 ory = O.
Multinomial sampling in they = 1 population has whatever categories are
determined by the unique combinations of covariates foartat
population. Multinomial sampling in thg= 0 population has a fferent set
of categories. This is eetrospective studyLogistic regression foy can still
be performed, but it is more fiiicult to interpret because

P[H.A.]/P[no HA] # P[H.A]]/(1 - P[H.Al]).
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L ogit models: Logistic Regression with Discrete
Covariates
We will concentrate oprospectivestudies that involve a binary responsg
variableY and discrete covariates B, C, . ..

We begin with some notation. By analogy witktterms for a log-linear
model, we can write logit models as follows:

log(pPv(1)/Pve) = V+ Vag) + Va(j) + Vei
log(Pv(1)/Pv@)) = V+Vag) + Va(j) + Ve + Vac(jk)
etc.

Also, by analogy with our notation [A][B][C], [A][BC], etcfor log-linear
models we will write{A}{B}{C}, {A}{BC}, etc. for these models.

We use the new{"“ and “}" notation to emphasize th#te presence or
absence interactions in the logit model implies nothingwtmmnditional
independence relationships among the factors.
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Logit vs. log-linear models

If the study involving binary variabl® and discrete covariatés B, C, is
prospectivetheneach unique combination of A, B, C, determines an
independent binomial experiment with fixed sample sizg-nthe
number of repetitions of that unique combinationfoB, C.

Thus the tablewa g c cross-classifyingll of Y, A, B, C, has gproduct
multinomialstructure, where the fixed totals for the multinomials
(binomials really) are the [ABC] margins.

An alternative to fitting logistic regression models, {4} {B}{C}
would be to fit a log-linear model like [Y][ABC][possibly oén stut]

log My aBayijk) = U + Uy(y) + Uagcgjk) + (POSSibly other stfi)

to the four-way table, whemnee have included [ABC] to reflect the
product multinomial structure

4 36-720 October 3, 2007



What do these log-linear models say about logistic regsag$bgit) models?

In what follows we will ignore most lower-order terms imgi®y the hierarchy
principle, WLOG, to simplify notation. ..

Examples:
e [Y][ABC] s the log-linear model

log My agqyij) = U + Uygy) + Uaggiijk)

The conditional odds of = 1 vsY = 0 can be calculated usimgs or p's, SO

logitP[Y =1|A=i,B=|,C=K] = l0gPpyasqiij — 109 Pyarqaij)
= logmy agquiijky — 109 My aBqoijk)
= Uya) — Uy = (const.)

s0, as expected from the log-linear form, [Y][ABC] implidsat
Y 1 (A, B,C), i.e. the “null” logistic regression modé¢B}:

logitP[Y = 1JA=i,B=j,C =K = v
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Now let’s try to build some dependence betweaeandA, B, C into the log-linear
model, and see what happens...

e Try [YA][ABC], i.e.

log My agayijy = U+ Uy(y) + Uag) + Uy Ayi) + UaBaijk)

so that

logit P[Y = 1]i, j, K] log My agquijk) — 109 My ABqijk)
Uy(1) — Uy(o) + Uy aai) — Uy Aoi)

V + Vag)

e Now try [YA][YBC][ABC], i.e.

log My aayijy = U + Uyy) + Uag) + Uvayi) + Uyeayjy + Uascijk)
and we get
Iogit P[Y = 1|I, j, k] =V+ VA(i) + VBC(jk)

(to which we should probably add lower-order terms to getiirearchy
principle back).
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In general, this runs both ways:

There is an equivalence between

e Submodels of the log-linear model [YABG[ABC- - -] that preserve
the [ABC - -] margin for product-binomial sampling; and

e Submodels of the logistic regresstogit model{ABC. . .} for
prospective sampling.
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A strategy for fitting and interpreting logit models, thes, i

e Dovariable selection either in logistic regression modelfiar, or the
equivalent log-linear form§preserving margins for multinomial
sampling)—or switch back and forth if that is interesting. .

Note: As we will see belowz?’s for the two diferent formulations of the
model are the same. However, we will aso see that penalizétbaeelike

AIC and BIC may give dierent results because there are fewer parameter
(less penalty) in the logit formulation than in the corresgiog log-linear
formulation.

vJ

¢ By definitionlogistic regression focuses on the conditional distrifuti
p(YIA, B,C,...) and thus ignores dependence betwageB, C, .. ., while
log-linear models focus on the joint distributigdy, A, B,C, ...) and thus
incorporates dependence betweée, C, .. ..

Therefore, instead of interpreting the model in terms ofditbonal
independences amomyg B, C, etc., (none can be inferred from the logistic
regression model), we interpret the model in termehanges in the log-odds
of Y = 1 as we move from one level of A, B, C, etc. to anqgtber
equivalently (log-)odds-ratios, fgr= 1, etc.
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Example: Muscle Tension

In the data set

Drug k)
[Tlension ¢) [WI]eight (i) [M]uscle (j) | [DJrug1l Drug 2
High Type 1 3 21
Type 2 23 11
High
Low Type 1 22 32
Type 2 4 12
High Type 1 3 10
Type 2 41 21
Low
Low Type 1 45 23
Type 2 6 22

muscle tension [T] can be thought of as the response variable
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The data set (see examples) is not in the form for logisticessjon

T W M D
1 1 1 1
11 1 0

but instead is in the form for log-linear modeling

n T W M D
22 1 1 1 1
6 1 1 1 0

So for every logit submodel dfWwMD} we want to fit, we will instead fit
log-linear submodels of [TWMD][WMD].

See also discussion of this data set on pp. 146—149 in Ohnsetés text.

In what follows we will simply look at some results of automcagtepwise
procedures (see also R example file for this lecture).

10 36-720 October 3, 2007



First we consider log-linear variable selection:

> musc <- data.frame(n,Wt,Mt,Dt,Tn)

> library(MASS)

> basemodel <- glm(n ~ Tn*Wt*Mt*Dt,data=musc, family=poisson)

> upper <- n ~ Tn*Wt*Mt*Dt # examine only models nested between

> lower <- n ~ Tn + Wt*Mt*Dt # [T][WMD] and [TWMD][WMD] = [TWMD]

> stepAIC(basemodel,list(lower=lower,upper=upper),k=2)

[...]

Call: glm(formula =n ~ Tn + Wt + Mt + Dt + Tn:Mt + Wt:Mt + Tn:Dt +
Wt:Dt + Mt:Dt + Tn:Mt:Dt + Wt:Mt:Dt, family = poisson, data = musc)

This model corresponds to [TMD][WMD] as a log-linear modmi {MD}
as a logit model:

logit P[T = High|ijk] = v + vm(j) + vbk) + YMD(jK)

In this model it appears that 1. W, butT (M, D).

If we do BIC model selectionkElog(sum(n))) instead of AIC k=2),
we get the same final model, in this case.

11 36-720 October 3, 2007

Now let’s consider logistic regression variable selection

> musc.logist <- data.frame(H=musc[1:8,1],L=musc[9:16,1],musc[1:8,2:4])

> resp <- as.matrix(musc.logist[,1:2])

> # note: for binomial (and not bernoulli) data

> # we have to specify both successes and failures!

> Imod® <- glm(resp ~ Wt+Mt+Dt,data=musc.logist,family=binomial)

> stepAIC(1mod®,list(lower="".,upper="."3),k=2)

[...]

Call: glm(formula = resp ~ Wt + Mt + Dt + Mt:Dt, family = binomial,
data = musc.logist)

This is the mode{w}{MD} which has W as a mainfect:
logit P[T = High|ijk] = v+ YW(i) T VM(j) T VD(K) T+ YMD(jK)

Using BIC instead we get the impler mod@i} {M}{D}. Finally,
Christensen, pp. 146-149, also provides evidence{ifgt{MD} is a
plausible model. Altogether we have four potential modelsampare, in
two different nestings (because there is no nesting betd@hand

{w}{M}{D}):

{MD} {W{M}{D} [TMD] [WMD] [Tw] [TM] [TD] [WMD]
{w}{Mp} {W}{MD} or [TW]J[TMD][WMD]  [TW][TMD][WMD]
{wM3}{MD} {WM}{MD} [TwWM] [TMD] [WMD]  [TWM] [TMD] [WMD]
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Comparing first the log-linear versions of the models we get

> modla <- glm(n ~ Tn*Mt*Dt + Wt*Mt*Dt,data=musc, family=poisson)
> modlb <- glm(n ~ Tn*Wt + Tn*Mt + Tn*Dt + Wt*Mt*Dt,data=musc, family=poisson)
> mod2 <- glm(n ~ Tn*Mt*Dt + Tn*Wt + Wt*Mt*Dt,data=musc, family=poisson)

> mod3 <- glm(n ~ Tn*Mt*Dt + Tn*Wt*Mt + Wt*Mt*Dt,data=musc, family=poisson)
> anova(modla,mod2,mod3, test="Chisq")
[...]

Resid. Df Resid. Dev Df Deviance P(>|Chil|)

1 4 1.52890 # [TMD] [WMD]
2 3 1.05961 1 0.46928 0.49332 # [TW][TMD][WMD]
3 2 0.11952 1 0.94009 0.33225 # [TWM][TMD][WMD]

> anova(modlb,mod2,mod3, test="Chisq")
[...]
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 4 5.3106 # [TwW][TM][TD] [WMD]
2 3 1.0596 1 4.2510 0.0392 # [TW][TMD] [WMD]
3 2 0.1195 1  0.9401 0.3323 # [TwM] [TMD] [WMD]

Note that the deviance and df calculations are exactly theeses for the
logistic regression (next slide).
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Now let's compare as logijtlogistic regression models:

> modla <- glm(resp ~ Mt*Dt ,data=musc.logist,family=binomial)
> modlb <- glm(resp ~ Wt + Mt + Dt,data=musc.logist,family=binomial)
> mod2 <- glm(resp ~ Mt*Dt + Wt ,data=musc.logist, family=binomial)
> mod3 <- glm(resp ~ Mt*Dt + Wt*Mt,data=musc.logist,family=binomial)
> anova(modla,mod2,mod3, test="Chisq")
[...]

Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 4 1.52890 # {MD}
2 3 1.05961 1 0.46928  0.49332 # {Wi}{MD}
3 2 0.11952 1 0.94009 0.33225 # {WM}{MD}
> anova(modlb,mod2,mod3, test="Chisq")
[...]

Resid. Df Resid. Dev Df Deviance P(>|Chil|)

4 5.3106 # {WH{MH{D}

2 3 1.0596 1 4.2510 0.0392 # {W}{MD}
3 2 0.1195 1 0.9401 0.3323 # {WM}{MD}

We see from the first comparison (of either logit or log-linewdels) tha{MD},
{w}{MD}, and{wM}{MD} are all about equally good fits. From the second mode
comparison it appears thé} {M}{D} is a substantially less good fit.

So we should choose among the first three models if we needl afouel: {MD},
{W}{MD}, or {wM}{MD}. If our only criterion is parsimony we would tak@D};
otherwise perhaps one of the two other models better reBeate prior
knowledge we may have about the (experimental) processaengthe data.
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