
Prospective vs Retrospective Studies
Consider two studies of heart attacks

Study 1: Take 200 people, record covariates such as age, cholesterol, blood
pressure (and experimental condition, if this is an experiment) and then
determine whether each has had a heart attack.

In this study, each unique set of covariates determines a population for
multinomial sampling (really, binomial in this case) experiment with the
same multinomial categories:y = 1 or y = 0. This is aprospective study. It is
the usual setting in which logistic regression is easy to apply and interpret.

Study 2: Take 100 people who have had heart attacks, and 100 people who
haven’t, and record covariates for each.

In this study, there are two populations defined byy = 1 or y = 0.
Multinomial sampling in they = 1 population has whatever categories are
determined by the unique combinations of covariates found in that
population. Multinomial sampling in they = 0 population has a different set
of categories. This is aretrospective study.Logistic regression fory can still
be performed, but it is more difficult to interpret because

P[H.A.]/P[no H.A.] , P[H.A.]/(1− P[H.A.]).
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Logit vs. log-linear models

If the study involving binary variableY and discrete covariatesA, B, C, is

prospective, theneach unique combination of A, B, C, determines an

independent binomial experiment with fixed sample size nA,B,C, the

number of repetitions of that unique combination ofA, B, C.

Thus the tablenY,A,B,C cross-classifyingall of Y, A, B, C, has aproduct

multinomialstructure, where the fixed totals for the multinomials

(binomials really) are the [ABC] margins.

An alternative to fitting logistic regression models, e.g.{A}{B}{C}

would be to fit a log-linear model like [Y][ABC][possibly other stuff]

logmYABC(yi jk) = u+ uY(y) + uABC(i jk) + (possibly other stuff)

to the four-way table, wherewe have included [ABC] to reflect the

product multinomial structure.
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Logit models: Logistic Regression with Discrete
Covariates

We will concentrate onprospectivestudies that involve a binary response

variableY and discrete covariatesA, B, C, . . .

We begin with some notation. By analogy withu-terms for a log-linear

model, we can write logit models as follows:

log(pY(1)/pY(0)) = v+ vA(i) + vB( j) + vC(k)

log(pY(1)/pY(0)) = v+ vA(i) + vB( j) + vC(k) + vBC( jk)

etc.

Also, by analogy with our notation [A][B][C], [A][BC], etc.for log-linear

models we will write{A}{B}{C}, {A}{BC}, etc. for these models.

We use the new “{“ and “}” notation to emphasize thatthe presence or

absence interactions in the logit model implies nothing about conditional

independence relationships among the factors.
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Now let’s try to build some dependence betweenY andA, B, C into the log-linear
model, and see what happens. . .

• Try [YA][ABC], i.e.

logmYABC(yi jk) = u+ uY(y) + uA(i) + uYA(yi) + uABC(i jk)

so that

logit P[Y = 1|i, j, k] = logmYABC(1i jk) − logmYABC(0i jk)

= uY(1) − uY(0) + uYA(1i) − uYA(0i)

= v+ vA(i)

• Now try [YA][YBC][ABC], i.e.

logmYABC(yi jk) = u+ uY(y) + uA(i) + uYA(yi) + uYBC(y jk) + uABC(i jk)

and we get
logit P[Y = 1|i, j, k] = v+ vA(i) + vBC( jk)

(to which we should probably add lower-order terms to get thehierarchy
principle back).
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What do these log-linear models say about logistic regression (logit) models?

In what follows we will ignore most lower-order terms implied by the hierarchy
principle, WLOG, to simplify notation. . .

Examples:

• [Y][ABC] is the log-linear model

logmYABC(yi jk) = u+ uY(y) + uABC(i jk)

The conditional odds ofY = 1 vsY = 0 can be calculated usingm’s or p’s, so

logit P[Y = 1|A = i,B = j,C = k] = log pYABC(1i jk) − log pYABC(0i jk)

= logmYABC(1i jk) − logmYABC(0i jk)

= uY(1) − uY(0) ≡ (const.)

so, as expected from the log-linear form, [Y][ABC] implies that
Y ⊥⊥ (A,B,C), i.e. the “null” logistic regression model{0}:

logit P[Y = 1|A = i,B = j,C = k] = v
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A strategy for fitting and interpreting logit models, then, is

• Do variable selection either in logistic regression model forms, or the
equivalent log-linear forms(preserving margins for multinomial
sampling)—or switch back and forth if that is interesting. ..

Note: As we will see below,G2’s for the two different formulations of the
model are the same. However, we will aso see that penalized methods like
AIC and BIC may give different results because there are fewer parameters
(less penalty) in the logit formulation than in the corresponding log-linear
formulation.

• By definitionlogistic regression focuses on the conditional distribution
p(Y|A,B,C, . . .) and thus ignores dependence betweenA,B,C, . . ., while
log-linear models focus on the joint distributionp(Y,A,B,C, . . .) and thus
incorporates dependence betweenA,B,C, . . ..

Therefore, instead of interpreting the model in terms of conditional
independences amongA, B, C, etc., (none can be inferred from the logistic
regression model), we interpret the model in terms ofchanges in the log-odds
of Y= 1 as we move from one level of A, B, C, etc. to another, or
equivalently (log-)odds-ratios, fory = 1, etc.
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In general, this runs both ways:

There is an equivalence between

• Submodels of the log-linear model [YABC· · ·][ABC· · ·] that preserve

the [ABC· · ·] margin for product-binomial sampling; and

• Submodels of the logistic regression/logit model{ABC...} for

prospective sampling.
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The data set (see examples) is not in the form for logistic regression

T W M D

1 1 1 1

1 1 1 0

but instead is in the form for log-linear modeling

n T W M D

22 1 1 1 1

6 1 1 1 0

So for every logit submodel of{WMD} we want to fit, we will instead fit

log-linear submodels of [TWMD][WMD].

See also discussion of this data set on pp. 146–149 in Christensen’s text.

In what follows we will simply look at some results of automatic stepwise

procedures (see also R example file for this lecture).
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Example: Muscle Tension

In the data set

Drug (k)
[T]ension (ℓ) [W]eight (i) [M]uscle (j) [D]rug 1 Drug 2

High Type 1 3 21
Type 2 23 11

High
Low Type 1 22 32

Type 2 4 12

High Type 1 3 10
Type 2 41 21

Low
Low Type 1 45 23

Type 2 6 22

muscle tension [T] can be thought of as the response variable.
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Now let’s consider logistic regression variable selection:
> musc.logist <- data.frame(H=musc[1:8,1],L=musc[9:16,1],musc[1:8,2:4])

> resp <- as.matrix(musc.logist[,1:2])

> # note: for binomial (and not bernoulli) data

> # we have to specify both successes and failures!

> lmod0 <- glm(resp ˜ Wt+Mt+Dt,data=musc.logist,family=binomial)

> stepAIC(lmod0,list(lower=˜.,upper=˜.ˆ3),k=2)

[...]

Call: glm(formula = resp ˜ Wt + Mt + Dt + Mt:Dt, family = binomial,

data = musc.logist)

This is the model{W}{MD} which has W as a main effect:

logit P[T = High | i jk] = ν + νW(i) + νM( j) + νD(k) + νMD( jk)

Using BIC instead we get the impler model{W}{M}{D}. Finally,
Christensen, pp. 146–149, also provides evidence that{WM}{MD} is a
plausible model. Altogether we have four potential models to compare, in
two different nestings (because there is no nesting between{MD} and
{W}{M}{D}):

{MD} {W}{M}{D} [TMD][WMD] [TW][TM][TD][WMD]

{W}{MD} {W}{MD} or [TW][TMD][WMD] [TW][TMD][WMD]

{WM}{MD} {WM}{MD} [TWM][TMD][WMD] [TWM][TMD][WMD]
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First we consider log-linear variable selection:
> musc <- data.frame(n,Wt,Mt,Dt,Tn)

> library(MASS)

> basemodel <- glm(n ˜ Tn*Wt*Mt*Dt,data=musc,family=poisson)

> upper <- n ˜ Tn*Wt*Mt*Dt # examine only models nested between

> lower <- n ˜ Tn + Wt*Mt*Dt # [T][WMD] and [TWMD][WMD] = [TWMD]

> stepAIC(basemodel,list(lower=lower,upper=upper),k=2)

[...]

Call: glm(formula = n ˜ Tn + Wt + Mt + Dt + Tn:Mt + Wt:Mt + Tn:Dt +

Wt:Dt + Mt:Dt + Tn:Mt:Dt + Wt:Mt:Dt, family = poisson, data = musc)

This model corresponds to [TMD][WMD] as a log-linear model,or {MD}

as a logit model:

logit P[T = High | i jk] = ν + νM( j) + νD(k) + νMD( jk)

In this model it appears thatT ⊥⊥W, butT /⊥⊥(M,D).

If we do BIC model selection (k=log(sum(n))) instead of AIC (k=2),

we get the same final model, in this case.
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Now let’s compare as logit/ logistic regression models:
> mod1a <- glm(resp ˜ Mt*Dt ,data=musc.logist,family=binomial)

> mod1b <- glm(resp ˜ Wt + Mt + Dt,data=musc.logist,family=binomial)

> mod2 <- glm(resp ˜ Mt*Dt + Wt ,data=musc.logist,family=binomial)

> mod3 <- glm(resp ˜ Mt*Dt + Wt*Mt,data=musc.logist,family=binomial)

> anova(mod1a,mod2,mod3,test="Chisq")

[...]

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 4 1.52890 # {MD}

2 3 1.05961 1 0.46928 0.49332 # {W}{MD}

3 2 0.11952 1 0.94009 0.33225 # {WM}{MD}

> anova(mod1b,mod2,mod3,test="Chisq")

[...]

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 4 5.3106 # {W}{M}{D}

2 3 1.0596 1 4.2510 0.0392 # {W}{MD}

3 2 0.1195 1 0.9401 0.3323 # {WM}{MD}

We see from the first comparison (of either logit or log-linear models) that{MD},

{W}{MD}, and{WM}{MD} are all about equally good fits. From the second model

comparison it appears that{W}{M}{D} is a substantially less good fit.

So we should choose among the first three models if we need a final model:{MD},

{W}{MD}, or {WM}{MD}. If our only criterion is parsimony we would take{MD};

otherwise perhaps one of the two other models better reflectssome prior

knowledge we may have about the (experimental) process generating the data.
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Comparing first the log-linear versions of the models we get
> mod1a <- glm(n ˜ Tn*Mt*Dt + Wt*Mt*Dt,data=musc,family=poisson)

> mod1b <- glm(n ˜ Tn*Wt + Tn*Mt + Tn*Dt + Wt*Mt*Dt,data=musc,family=poisson)

> mod2 <- glm(n ˜ Tn*Mt*Dt + Tn*Wt + Wt*Mt*Dt,data=musc,family=poisson)

> mod3 <- glm(n ˜ Tn*Mt*Dt + Tn*Wt*Mt + Wt*Mt*Dt,data=musc,family=poisson)

> anova(mod1a,mod2,mod3,test="Chisq")

[...]

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 4 1.52890 # [TMD][WMD]

2 3 1.05961 1 0.46928 0.49332 # [TW][TMD][WMD]

3 2 0.11952 1 0.94009 0.33225 # [TWM][TMD][WMD]

> anova(mod1b,mod2,mod3,test="Chisq")

[...]

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 4 5.3106 # [TW][TM][TD][WMD]

2 3 1.0596 1 4.2510 0.0392 # [TW][TMD][WMD]

3 2 0.1195 1 0.9401 0.3323 # [TWM][TMD][WMD]

Note that the deviance and df calculations are exactly the same as for the

logistic regression (next slide).
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