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Review: Generalized Linear Models (GLM's)

The Basic |ldea

Suppose; follows an exponential family distribution of the form

b(mi) + k(Y)y(mi)\ _ . b(mi) + Yin
h(T) - g(yl ’ T) exp h(T)

with 7 known, so that; is thenatural parameter andy; is thesufficient

statistic. You showed in homework, by filerentiating 1= f f(y; n, 7)dy,

that

f(yis s ) = O0Y; 7) exp(

pi = Elyil = -b'(m) = () (*)
and, by similar methods, you can show
Var(yi)) = —b"(m)h(r) = h(r)/¢ (w) (%)

Rewriting the natural parametgras a linear function of covariates,
we get

t(ui) = C(E[Yi]) = n
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Plugging this back into the density, and considering thelillood ofn
independeny;’s, we get

”  b(X i Vi
f0ayol8e7) = | o) eXD(Z' ‘X%Z yXﬂ)
=1

Settingdlog f(- - -)/9B; = 0 we obtain the normal equations

| — i) Xij
0= (Zib’(xiﬂ)xij + Ziyixij)/ h(T) — Zi (y h(/;:-)) J
or, cancellingh(r) and collecting terms,
(y-@)'X=0

These are “exactly” the same normal equations that we get $etting
% (Y — XiB8)? = 0in OLS, except that heng = ¢-1(X;8).

e From (x), ¢(E[y]) = X5; (") is called thenatural link function;
e From («xx), Var (y;) = h(r)/¢’(XiB); 7 is called adispersion parameter.

This is the basis ofienerlized linear models (GLM’s).
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Examples:

e Normal linear regressiomhe Normal density is,

1 1(Yi~Hi \2 1
fi10.0) = et —
o Varo Varo
soy; is the natural parametei(u;) = w; is the natural link function, ana? is
the dispersion parameter. So the GLM:is= X53.
e Poisson regressiolhe Poisson density iy, u) = pye*/y! =

(1/y") exp(-u + ylogu); the over-dispersed Poisson family has the form

f(yis i 7) = 9(yi; 7) €xp

—pi +Yi log i
T

In this family, logy; is the natural parameter,s the dispersion parameter,
and we build GLM’s of the form

logui = X8

We have also encountered this as libgelinear model for Poisson sampling.
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e Logistic regressionThe binomial density i$(y; p) = (;) PA-p"Y =

(§)eMest-Prieg 15 : the overdispersed binomial has the form

nlog(1- p) +yilog %

T

f(yi; pi, 7) = 9(yi; 7) exp

The natural parameter is Iqé'p—l 7 Is the dispersion parameter, and we builg
GLM'’s of the form

S
og 7o = X8

This is of course the form of tHegistic regression model.

Further examples are possible. ..

e Other location-scale members of the exponential family;
e Other link functions (the basic challenge of numericallivsw the normal
equations+ x x) iIs about the same);

... but Normal regression, Poisson regression, and logsfjression are quite
common.
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Generalized Linear Mixed Models (GLMM?’s)

The basic idea is to take a GLM
E(ui) = XipB
and add randomfiects by analogy with the LMM:
E(ui) = X + Zu

Once again we generally take~ N(O, V), but because the error structure
In a GLM is usually non-additive (it is handled by the underty
exponential family model), we do not add

The prototypical case is logistic regression (Stiratebird & Ware,
1984):

Pi
lo = XiB + Z;u
gl_pi Iﬁ |
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Examples

e Growth curves for binary outcomes. With practice, people generally
get better at problem solving. Lgt be the outcome (& incorrect, 1
= correct) for performing a task by persoon thet™" attempt. One
version of thepower law of learning says that the odds of performing
the task correctly should increase like a powet, of

P —a-t°, b<0

1-p
This leads to a logistic regression model (GLM) of the form

Pit
= Bo + B1 logt
1-p, o +p1log

but, since there may be small individualiérences in the rate of
learning, we may wish to build a GLMM instead:

Pit
1- pit

log

log = (Bo+Ugi) +(B1+Uug) logt = (Bo+p61 logt) + (U + Uy logt)
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e Discrete outcomesin clustered survey sampling. After taking a
survey we will analyze a cross-classified table of countsHer
discrete variables Sex £ 1, 2), Income { = 1, 2, 3), and Education
(k =1, 2,3). Normally this would lead to a log-linear model

logMyjic = Bo + i + B + Bic + Bij + -+~

However, in many national surveys, sampling is done in stafyest
we sample a census block (say), and then we sample indigidual
within the census block. Because they live close togetles@pie in
the same census block will be more alike than peopleftieidint
census blocks. A standard way to model this cluster-level
dependence is by adding randoffeets to the model:

109 Mjic = (Bo+UL)+ (81 +UiS) + (B +UiR) + (Bt Ug) +(Bij + U i)+ -

(note that thgg’s play the role ofu-terms in our earlier log-linear
work, and thau's are the randomfects here).
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Computational Notes

For LMM'’s we could handle the randontfects by computing a general
error variance/(w) = Var (g) + Z¥(w)Z', sidestepping an ugly integral.

For GLMM'’s, the random ffects introduce an integral into the likelihood
of the form

ffij(YijIUi,,B,‘P)f(UilData)dUi

(Molenberghs & Verbeke, 2005, Springer). There is no REMarstut,
and the full MLE’s are usually computed using one of three
approximations:

e Approximating the data: penalized quasi-likelihood (PQL)
e Approximating the integrand: Laplace’s method,;

e Approximating the integral: adaptive Gaussian quadrafeQ).

(EM is used bynlme; but apparently it is not very fast...)
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Penalized Quasi-Likelihood (PQL)
Replace the GLM

E(uij) = X6 + Z;u
with the nonlinear least-squares model
¥ij = h(;8 + Z;u) + &ij

Taylor expansion ofi(-) yields (in vector notation)

VY = ) + X8 + Z0i = X8 + Zu; + &

which gives a straightforward updating scheme, considdhe LHS as
pseudo data.

This is known agenalized quasi-likelihood because it obtains from
optimizing a quasi-likelinood (involving only 1st and 2ndrtvatives)
with a penalty term on the randonffects.
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Laplace’s Method

The integral amounts to a posterior mean, which can be appabed by
careful Taylor expansion of the log-integrand. The usuplegch is:

| fii(yijlui, 8, ¥) f (Dataju;) f (uj)du;
ff(Datalui)f(ui)dui

[e™MM™Wdy  \1/h (ur)e )

Eu[fij(yijlui, 8, ¥)|Data] =

[1+0O(n~?)]

[emwdy I/ (G)e @

(Tierney & Kadane, 198G]JASA).

The Hessiang” (u), h*””(u) and maximizersi,"u* come automatically
from optimization routines; andis an appropriate sample size.

Thus integration is replaced withfterentiation, which is faster and more
stable (as long as the Taylor expansion holds).
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Adaptive Gaussian Quadrature (AGQ)

Quadrature is another name for numerical integration using a weighted

sum of the form
f FOJdx = > wif(x)
i

When f(X) is a normal density, or has a log-quadratic factor, it can be
expanded in Hermite polynomials, and thenwe&an beGaussian
guadrature weights, which are #icient for the problem.

Adaptive quadrature optimizes over the placement and number ofxhe
and the choice oiv..

PROC MIXED/ PROC NLMIXED in SAS use AGQ); and AGQ is the
method of choice in Rabe-Hesketh, Skrondal & Pickles (2004,
Psychometrika) GGLAMM package foStata.
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Facilitiesin R
R (and Splus) provide one “default” package for GLMM anaysind other
packages exist:

e library(lme4) is a rewrite ofnlme that provideslmer (), for bothLMM’s
and GLMM'’s.

1lmer () has amethod= argument which can take the vallieaplace",
"PQL", or "AGQ". PQL is the default, and AGQ is not yet implemented.

e library(MASS) (for R or Splus) provideglmmPQL () (uses PQL).

e Other installable packages frdmtp://cran.r-project.org/ (R only)
includeglmmML (uses Laplace or AGQ) arnfdmmAK (extends to multinomial
logit models; se&GAM for the fixed-éfects-only case).

As with all things, R is great for “breadboarding”, and folafyrses of problems of
moderate size.

For larger problems, SAS provides PROC MIXED and PROC NLMDXEhat
provide approximately the same functionalitylag, nlme andlmer.
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Examples

e A meta analysis of published studies of the use of beta-blsclo prevent
death after heart attack; randoffiets are used since the size of tifieet of
beta-blockers varies moderately from study to study.

e Analysis of five cognitive items in a section of the LSAT exahhere are
1000 examinees and 5 items, so an additive fixéelees model would require
at least 1005 parameter estimates, very slow (after 4 hatopped trying!),
and inconsistent (Neyman-Scott problem; see also Andenseéitdaberman
on the Rasch model). If we treat the studeffiéets as random, then we have
only 6 parameters (5 fixedtects for the items, plus a variance component
for student &ects), and estimates are consistent as number of studemts.gr

[ See R notes in class]

Once again, these examples only scratch the surface. Ferdetails, see
Dalgaard’s or Ripley’s notes. Also, there are many simil@maples in the
“Examples” manuals of WinBUGS¢tp: //www.mrc-bsu.cam.ac.uk/bugs/)
software for doing applied Bayes via MCMC.
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