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For more reading, see:

e Rasch, G. (1980)Probabilistic Models for Some Intelligence and Attainmengt

Tests.University of Chicago.
e DeBoeck, P. & Wilson, M. (2004 Explanatory Item Response Moddi$Y:

Springer.

e van der Linden R. J. & Hambleton, R. K. (199Handbook of Modern Item
Response TheoriY: Springer.
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Multivariate Binary Response Data

Ubiquitous in

e Education (standardized testing);
e Psychology (positive and negative responses to stimuli);
e Social Science & Marketing (opinigattitudegpreference data);

e and other areas.

For specificity, we use the language of educational testing:

For student and questior] on a particular exam, define

0, else

{ 1, if studenti got questionj correct
Yij =

say, fori = 1,...,N studentsang = 1,.. ., J questions.
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Viewing the data as a contingency table

e For atest of] questions, we constructlway table, with each dimension of
the table corresponding to a single question, with two E{@E wrong; 1=
right):

{ny : asyranges over all 2possible patterngyq, . ..,y;))

is a 2 table (J-way table with two levels each “way”).

EvenifN = ), nyis large, the 2 table quickly becomes sparse: for example

with N = 100 and onlyJ = 8 questions, thermustbe over 100 sampling
zeros in the tabléwhy??)

Thus, the usual hierarchical log-linear models for théable won't be of
much use, because sampling zeros will frustrate many maddeidimodel
comparison #orts.

However, there are log-linear models that are useful ity and we will return
to this representation later.
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Viewing the data as two-way ANOVA data

Instead of considering the table of counjsve may consider the rectangular arra

FY11 Yi2 - le—
Yor Y22 o0 Y23

YN YN2 o YNo

e Thei'" row corresponds to the correct & incorrect answers given by
examinea to all J questions, and

e The j' columncorresponds to the correct & incorrect answers given b all
examinees to th¢" question.

A logit analogue to the two-way additive ANOVA model for tlasray would be

o 6 — i (1)

wherep;; = Ply;; = 116;,8;]. 6 is the row éfect ands; is the column fect.
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Rasch M odel
In the model logik- = 6 - B;,

e As ¢ increases so dogs;: 6; represents examings proficiency
regardless of question.

e Asgjincreasesp;j decreasess; represents the questiortgficulty’.

The model in (1) is called thRasch Mode{after Rasch’s 1960
monograph); in logistic form it is written

expioi — Bj}
1+ explo - Bj}

pij = Plyij =11 6:,8j] = (2)

and is an example of atem response theory (IRTodel. (“item”=
“survey or test question”).

®The choice of sign here, i.@; — Bj instead of; + gj, is just a convention, but leads to
this nice interpretation fqs;.
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The likelihood for theé™ examinee is a product of Bernoulli likelihoods
for eachy;;:

PlYit,...,Yis16i;81,...,.81] = 1_[ plyjIJ 2 explyi; (6 - B)))

1 + explo; — Bj}

(3)
We could formulate a joint likelihood for all examinees (drmhce the
entire arrayy above) as

J
| QI
PY |64,....08:B1,....8 Hixf{;/)ié{@ ﬁ,)}

| j=1

(4)

and maximize ovef’'s andg’s but it is well-knowrt that this will result in
Inconsistent estimates &kincreases, since the numberéparameters

also increases.

4e.g. Haberman, S.J. (1977). Maximum likelihood estimatesxponential response
models.,The Annals of Statistics, B15—-841.
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Rasch Marginal Likelihood asa GLMM

A way around this is to think of; as a randomféect, so that the
likelihood for one examinee is really a mixture over the @mddtect,

PlYi1,..-»Yia [ B1,- ... Ba 0] = f H:eLXer{;/;é{é f(6?. o)dg, (5)
j=1 '

and the joint likelihood for all examinees is

|9|_
PLY | i.....Bri0] = ]‘[ [ ﬂixf{eyx’é{gl SOLITNGC

Often f (¢ | o) is taken to be a normal density with mean 0 and variance
o2 but in fact any parametric famil§(6 | o) would do.

This is essentially the likelinood that is maximized whenfivéhe Rasch
model as a GLMM withlmer () in R (or other software).
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One can use (6) in severalfigirent ways, e.g.:

e MLE’s ,éj ando are useful in calibrating how easy offfitult the
guestion are. For fixed asN grows, theéj’s ando are consistent
and dficient estimators of thg;'s ando.

o Given,éj’s and& we can produce predictoésof 6;’s (e.g.
conditional MLE’s, empirical Bayes posterior modes, ete.j). to
rank examinees, compare examinees’ performanceftaret tests
(given the right experimental design), etc.

e Fully Bayesian versions could be obtained by assigninggtmthe
Bj’'s and too, and obtain a joint posterior distribution féy, .. ., 6y,
Ba, ..., B3, o, providing similar information to the MLE’s and
predictors above.
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Rasch Marginal Likelihood asa L og-Linear Model

We can view the probability

py = Plyi,....Y31B1,...,83 0]

in equation (5) as a cell probability in a multinomial modal the 2
tableny. This turns out to be a certain log-linear model:

f(0|0)do

o J (G_p
p(Y1, ..., Y3) j: exply; (6 - 5j)}

o1 11+ expto - Bj)
)

(J

1—[ expi—B;Yi}
\j=1 )
\

~ 7 explyif)
j:oo g 1+ expl6 — B} f(6lo)de

f ) - CXPOY. ) f(6l0)do
—oo [1521 1 + explo - Bj}

(J
1_[ expl—p;y;l

\j=1 )

Therefore, log(yi. . ... Y1) = — Xi_1BjYj + Zie1 Yl iy, k-
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To maintain the hierarchy principal, we incorporate annceet term,
writing

J J
logpy = @ - Zﬁjyj' + Z YkLiy, =k ()
=1 k=0

where we defing, = Zle yj, and 1y - IS a dummy variable that equals
1 wheny, = kand equals 0 otherwise. Note that

e Theg; in (x) are exactly the item diculties in the Rasch model;
e Thevy, can be written as:

¥ = El&)ly = (0,0....., 0)]

l.e. they are moments of a positive random variable.

e They’s are constrained by th&’s in a complicated way, but as a
first approximation the model can be fit, ignoring these gainsis, as
a straightforward log-linear model.

Cressie & Holland (1981Pmk3; Holland (1990Pmk3.
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If we match up the terms in the model) (

logpy = a - ZIBJYJ+ZVK1Y+

=1

with the non-redundant-terms in the usual hierarchical log-linear model

IOg py = Up + Z UJ]_ + Z Z ujkll + 7 7 7 Ujk5111+ e uj1j2"'jJ

j<k J<k<¢

we can see that

® Up =« anduj = —Bj, VJ;

® U1 = y2, V], ki the two-way interactions aymmetric

® Uis11 = Y3, V], K €2 the three-way interactions asgmmetric
e etc. etc., i.e. each set efway interactions isymmetric

For these reasonss)(is sometimes called the model @fiasi-symmetry

The model osymmetrywould also have symmetric maifftects (allu;; equal to
each other); and is equivalent to asserting thayflseareexchangeableandom
variables.
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Example

We return to the LSAT example that we used to illustrate GLMig! @if
the Rasch model last time.

We can directly compare estimates of the fix@i@ets 5;:

> rasch.lmer <- Imer(y ~ j-1 + (1]|1),data=lsat,
+ family=binomial ,method="Laplace")
> summary (rasch.lmer)@coefs

Estimate Std. Error z value Pr(>|z|)
j1 2.7047288 0.12862039 21.028772 3.577920e-98
j2 0.9936196 0.07493543 13.259678 3.965962e-40
j3 0.2371917 0.06842979 3.466205 5.278602e-04
j4 1.2988310 0.08008535 16.218084 3.757348e-59
j5 2.0818837 0.10134168 20.543214 8.850748e-94
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> rasch.glm <- glm(n ~

. ,data=1lsat.table,family=poisson)

> summary(rasch.glm)$coef
Pr(>|z]|)
.705982e-02

Estimate Std. Error z value
(Intercept) 1.0986123 0.5773503 1.902852

Y.1
Y.2
Y.3
Y.4
Y.5
Yplusl
Yplus?2
Yplus3
Yplus4

.1758247
.4447902
.3162879
. 7512857
. 5428685
.9874669
.3256284
.2098123
.8532626

S @ @ @ @ 0 2 @

.1561053
.1354840
.1349001
.1368979
. 1443920
.5148710
.3676781
2472272
. 1388691

13

.938183
. 282972
.344608
.487926
.685280
.917892
.605405
.893524
. 144367

.712707e-44
.027189e-03
.904710e-02
.066813e-08
.192882e-26
.512471e-02
.116666e-04
.904602e-07
.028322e-10

cO © W U1 P, B Rk =k W U
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How are these related?

plot (summary(rasch.lmer)@coefs[1:5,1],
summary (rasch.glm) $coef[2:6,1])
Im(summary(rasch.glm)$coef[2:6,1] ~

>
+
>
+

summary (rasch.lmer)@coefs[1:5,1])

Coefficients: i
(Intercept) summary(rasch.lmer)@coefs[1:5, 1]
-0.558 1.010
Almost perfectly:

Pij

1- pij =0 —-pj= a([ei —C)/a—[Bj - C]/a)

log
The regression result above suggests1 andc = 0.558, so that the
random &ects distribution implied by the log-linear fit has the sam&&
but is shifted down from the randonffects distribution estimated by
Imer. This is another change in parametrization that doesaffext the fit.
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