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For more reading, see:

• Rasch, G. (1980).Probabilistic Models for Some Intelligence and Attainment

Tests.University of Chicago.

• DeBoeck, P. & Wilson, M. (2004).Explanatory Item Response Models. NY:

Springer.

• van der Linden R. J. & Hambleton, R. K. (1997).Handbook of Modern Item

Response Theory.NY: Springer.
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Multivariate Binary Response Data

Ubiquitous in

• Education (standardized testing);

• Psychology (positive and negative responses to stimuli);

• Social Science & Marketing (opinion/attitude/preference data);

• and other areas.

For specificity, we use the language of educational testing:

For studenti and questionj on a particular exam, define

yi j =



















1, if studenti got questionj correct

0, else

say, fori = 1, . . . ,N students andj = 1, . . . , J questions.
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Viewing the data as a contingency table

• For a test ofJ questions, we construct aJ-way table, with each dimension of

the table corresponding to a single question, with two levels (0= wrong; 1=

right):

{ny : asy ranges over all 2J possible patterns (y1, . . . , yJ)}

is a 2J table (J-way table with two levels each “way”).

• Even if N =
∑

y ny is large, the 2J table quickly becomes sparse: for example,

with N = 100 and onlyJ = 8 questions, theremustbe over 100 sampling

zeros in the table(why??).

• Thus, the usual hierarchical log-linear models for the 2J table won’t be of

much use, because sampling zeros will frustrate many model fit and model

comparison efforts.

However, there are log-linear models that are useful with{ny} and we will return

to this representation later.
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Viewing the data as two-way ANOVA data

Instead of considering the table of countsny we may consider the rectangular array

Y =



















































y11 y12 · · · y1J

y21 y22 · · · y2J

.

.

.
.
.
.
. . .

.

.

.

yN1 yN2 · · · yNJ



















































• The ith row corresponds to the correct & incorrect answers given by

examineei to all J questions, and

• The jth columncorresponds to the correct & incorrect answers given by allN

examinees to thejth question.

A logit analogue to the two-way additive ANOVA model for thisarray would be

log
pi j

1− pi j
= θi − β j (1)

wherepi j = P[yi j = 1 | θi , β j ]. θi is the row effect andβ j is the column effect.

4 36-720 October 15, 2007



Rasch Model

In the model log pi j

1−pi j
= θi − β j ,

• As θi increases so doespi j : θi represents examineei’s proficiency,

regardless of question.

• As β j increases,pi j decreases:β j represents the question’sdifficultya.

The model in (1) is called theRasch Model(after Rasch’s 1960

monograph); in logistic form it is written

pi j = P[yi j = 1 | θi , β j ] =
exp{θi − β j}

1+ exp{θi − β j}
(2)

and is an example of anitem response theory (IRT)model. (“item”=

“survey or test question”).
aThe choice of sign here, i.e.θi − β j instead ofθi + β j , is just a convention, but leads to

this nice interpretation forβ j .
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The likelihood for theith examinee is a product of Bernoulli likelihoods

for eachyi j :

P[yi1, . . . , yiJ | θi ; β1, . . . , βJ] =
J
∏

j=1

p
yi j

i j (1− pi j )
yi j =

J
∏

j=1

exp{yi j (θi − β j)}

1+ exp{θi − β j}

(3)

We could formulate a joint likelihood for all examinees (andhence the

entire arrayY above) as

P[Y | θ1, . . . , θN; β1, . . . , βJ] =
N
∏

i=1

J
∏

j=1

exp{yi j (θi − β j)}

1+ exp{θi − β j}
(4)

and maximize overθ’s andβ’s but it is well-knowna that this will result in

inconsistent estimates asN increases, since the number ofθi parameters

also increases.
aE.g. Haberman, S.J. (1977). Maximum likelihood estimates in exponential response

models.,The Annals of Statistics, 5,815–841.
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Rasch Marginal Likelihood as a GLMM

A way around this is to think ofθi as a random effect, so that the

likelihood for one examinee is really a mixture over the random effect,

P[yi1, . . . , yiJ | β1, . . . , βJ;σ] =
∫ ∞

−∞

J
∏

j=1

exp{yi j (θi − β j)}

1+ exp{θi − β j}
f (θi | σ) dθi (5)

and the joint likelihood for all examinees is

P[Y | β1, . . . , βJ;σ] =
N
∏

i=1

∫ ∞

−∞

J
∏

j=1

exp{yi j (θi − β j)}

1+ exp{θi − β j}
f (θi | σ) dθi (6)

Often f (θ | σ) is taken to be a normal density with mean 0 and variance

σ2 but in fact any parametric familyf (θ | σ) would do.

This is essentially the likelihood that is maximized when wefit the Rasch

model as a GLMM withlmer() in R (or other software).
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One can use (6) in several different ways, e.g.:

• MLE’s β̂ j andσ̂ are useful in calibrating how easy or difficult the

question are. For fixedJ asN grows, theβ̂ j ’s andσ̂ are consistent

and efficient estimators of theβ j ’s andσ.

• Given β̂ j ’s andσ̂ we can produce predictorsθ̂i of θi ’s (e.g.

conditional MLE’s, empirical Bayes posterior modes, etc.), e.g. to

rank examinees, compare examinees’ performance on different tests

(given the right experimental design), etc.

• Fully Bayesian versions could be obtained by assigning priors to the

β j ’s and toσ, and obtain a joint posterior distribution forθ1, . . ., θN,

β1, . . ., βJ, σ, providing similar information to the MLE’s and

predictors above.
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Rasch Marginal Likelihood as a Log-Linear Model

We can view the probability

py = P[y1, . . . , yJ | β1, . . . , βJ;σ]

in equation (5) as a cell probability in a multinomial model for the 2J

tableny. This turns out to be a certain log-linear model:

p(y1, . . . , yJ) =

∫ ∞

−∞

J
∏

j=1

exp{yj(θ − β j)}

1+ exp{θ − β j}
f (θ|σ)dθ

=

















J
∏

j=1

exp{−β jyj}

















∫ ∞

−∞

J
∏

j=1

exp{yjθ}

1+ exp{θ − β j}
f (θ|σ)dθ

=

















J
∏

j=1

exp{−β jyj}

















∫ ∞

−∞

exp{θy+}
∏J

j=1 1+ exp{θ − β j}
f (θ|σ)dθ

Therefore, logp(y1, . . . , yJ) = −
∑J

j=1 β jyj +
∑J

k=1 γkI{y+=k}.
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To maintain the hierarchy principal, we incorporate an intercept term,

writing

log py = α −

J
∑

j=1

β jyj +

J
∑

k=0

γk1{y+=k} (∗)

where we definey+ =
∑J

j=1 yj , and 1{y+=k} is a dummy variable that equals

1 wheny+ = k and equals 0 otherwise. Note that

• Theβ j in (∗) are exactly the item difficulties in the Rasch model;

• Theγk can be written as:

γk = E[(eθ)k|y = (0, 0, . . . , 0)]

i.e. they are moments of a positive random variable.

• Theγk’s are constrained by theβ j ’s in a complicated way, but as a

first approximation the model can be fit, ignoring these constraints, as

a straightforward log-linear model.

Cressie & Holland (1981,Pmka); Holland (1990;Pmka).
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If we match up the terms in the model (∗)

log py = α −

J
∑

j=1

β jyj +

J
∑

k=0

γk1{y+=k}

with the non-redundantu-terms in the usual hierarchical log-linear model

log py = u0 +
∑

j

uj1 +
∑∑

j<k

ujk11 +
∑∑∑

j<k<ℓ

ujkℓ111+ · · · + uj1 j2··· jJ

we can see that

• u0 = α anduj1 = −β j , ∀ j;

• ujk11 ≡ γ2, ∀ j, k: the two-way interactions aresymmetric;

• ujkℓ111 ≡ γ3, ∀ j, k, ℓ: the three-way interactions aresymmetric;

• etc. etc., i.e. each set ofs-way interactions issymmetric.

For these reasons, (∗) is sometimes called the model ofquasi-symmetry.

The model ofsymmetrywould also have symmetric main effects (alluj1 equal to

each other); and is equivalent to asserting that theyj ’s areexchangeablerandom

variables.
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Example

We return to the LSAT example that we used to illustrate GLMM fits of

the Rasch model last time.

We can directly compare estimates of the fixed effects,β j :

> rasch.lmer <- lmer(y ˜ j-1 + (1|i),data=lsat,

+ family=binomial,method="Laplace")

> summary(rasch.lmer)@coefs

Estimate Std. Error z value Pr(>|z|)

j1 2.7047288 0.12862039 21.028772 3.577920e-98

j2 0.9936196 0.07493543 13.259678 3.965962e-40

j3 0.2371917 0.06842979 3.466205 5.278602e-04

j4 1.2988310 0.08008535 16.218084 3.757348e-59

j5 2.0818837 0.10134168 20.543214 8.850748e-94

12 36-720 October 15, 2007



> rasch.glm <- glm(n ˜ .,data=lsat.table,family=poisson)

> summary(rasch.glm)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0986123 0.5773503 1.902852 5.705982e-02

Y.1 2.1758247 0.1561053 13.938183 3.712707e-44

Y.2 0.4447902 0.1354840 3.282972 1.027189e-03

Y.3 -0.3162879 0.1349001 -2.344608 1.904710e-02

Y.4 0.7512857 0.1368979 5.487926 4.066813e-08

Y.5 1.5428685 0.1443920 10.685280 1.192882e-26

Yplus1 -0.9874669 0.5148710 -1.917892 5.512471e-02

Yplus2 -1.3256284 0.3676781 -3.605405 3.116666e-04

Yplus3 -1.2098123 0.2472272 -4.893524 9.904602e-07

Yplus4 -0.8532626 0.1388691 -6.144367 8.028322e-10
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How are these related?

> plot(summary(rasch.lmer)@coefs[1:5,1],

+ summary(rasch.glm)$coef[2:6,1])

> lm(summary(rasch.glm)$coef[2:6,1] ˜

+ summary(rasch.lmer)@coefs[1:5,1])

Coefficients:

(Intercept) summary(rasch.lmer)@coefs[1:5, 1]

-0.558 1.010
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Almost perfectly:

log
pi j

1− pi j
= θi − β j = a

(

[θi − c)/a− [β j − c]/a
)

The regression result above suggestsa ≈ 1 andc = 0.558, so that the

random effects distribution implied by the log-linear fit has the same scale

but is shifted down from the random effects distribution estimated by

lmer. This is another change in parametrization that does not affect the fit.
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