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For more reading, see:

e Rasch, G. (1980)Probabilistic Models for Some Intelligence and Attainment
Tests.University of Chicago.

e DeBoeck, P. & Wilson, M. (2004)Explanatory Item Response ModehyY:
Springer.

e van der Linden R. J. & Hambleton, R. K. (199Handbook of Modern Item
Response TheoriNY: Springer.
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Multivariate Binary Response Data
Ubiquitous in
e Education (standardized testing);
e Psychology (positive and negative responses to stimuli);
e Social Science & Marketing (opinigattitudepreference data);
e and other areas.

For specificity, we use the language of educational testing:

For student and questiorj on a particular exam, define

1, if studenti got questionj correct
Yij =
0, else

say, fori = 1,...,N students ang = 1,..., J questions.

2 36-720 October 15, 2007



Viewing the data as a contingency table

e For atest of] questions, we constructlaway table, with each dimension of
the table corresponding to a single question, with two (@& wrong; 1=
right):

{ny : asyranges over all 2possible patternsy(, ..., y;)}

is a 2 table (J-way table with two levels each “way”).

e EvenifN =}, nislarge, the 2 table quickly becomes sparse: for examplg
with N = 100 and onlyJ = 8 questions, thermustbe over 100 sampling
zeros in the tabléwhy??)

e Thus, the usual hierarchical log-linear models for thésble won't be of
much use, because sampling zeros will frustrate many mdaeidimodel
comparison gorts.

However, there are log-linear models that are useful witf) and we will return
to this representation later.
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Viewing the data as two-way ANOVA data

Instead of considering the table of counfsve may consider the rectangular arra

» Yii Y2 o Yo ]
Yo1 Y22 o+ Va3
Y=
L Yn: YNz 0 YNg

e Thei'" row corresponds to the correct & incorrect answers given by
examinea to all J questions, and

e The j™ columncorresponds to the correct & incorrect answers given biall
examinees to th¢" question.

A logit analogue to the two-way additive ANOVA model for tlasray would be
Pi L
R @)

wherep;; = Ply;j = 1| 6;,;]. 6; is the row éfect andg; is the column &ect.

log
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Rasch Model
In the model log"- = 6, - B;,

e As ¢ increases so dogs;: 6; represents examinés proficiency
regardless of question.

e Aspjincreasesp;; decreasess; represents the questiordgficulty?.

The model in (1) is called thRasch Mode{after Rasch’s 1960
monograph); in logistic form it is written

Pl =116 8] xR0 -p
pij = Plyij =116i.8j]] = 1+ explo, ,BJ (2)

and is an example of atem response theory (IRModel. (“item”=
“survey or test question”).

aThe choice of sign here, i.@; — B; instead ofy; + g, is just a convention, but leads to
this nice interpretation fgs;.
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The likelihood for thé™ examinee is a product of Bernoulli likelihoods
for eachy;;:

: Py exptyi (6 - B))

PIyit, . Yis 1681, .. B] = | | YL - pyi = LACHE
[yia Yia 1651, . 8] L} P (1 - py) gl+eXp{0i—ﬁj}
(3)

We could formulate a joint likelihood for all examinees (drehce the
entire arrayy above) as

N J _
PlY|61,...,0N;B1,...,53 ]_[ 1_[ explyi; (¢ ) (4)
i=1 j=1

1+ expl6; —

and maximize ove#'s andg’s but it is well-knowrt that this will result in
inconsistent estimates akincreases, since the numbergpparameters
also increases.

8E.g. Haberman, S.J. (1977). Maximum likelihood estimatesxponential response
models.,The Annals of Statistics, B15-841.
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Rasch Marginal Likelihood asa GLMM

A way around this is to think of; as a randomfeect, so that the
likelihood for one examinee is really a mixture over the @mdsfect,

Iel
Pl Y B il = [ ]—[ixf{zx’;a_ @ 1o)ds ©

and the joint likelihood for all examinees is

PLY | BBy 0] = ]_[ f ]_[ixf{;’;;fé_ f@o 1 o)de, (6)

Often f(@ | o) is taken to be a normal density with mean 0 and variance
o? but in fact any parametric famil§(6 | o) would do.

This is essentially the likelihood that is maximized whenfivéhe Rasch
model as a GLMM withlmer () in R (or other software).
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One can use (6) in severalfidirent ways, e.qg.:

e MLE’s [3]- ando are useful in calibrating how easy offiitult the
guestion are. For fixed asN grows, the@,— 's ando” are consistent
and dficient estimators of thg;’s ando.

° Given,fi’j 's andd* we can produce predictoésof 6;'s (e.g.
conditional MLE’s, empirical Bayes posterior modes, ete.y. to
rank examinees, compare examinees’ performancefterelit tests
(given the right experimental design), etc.

¢ Fully Bayesian versions could be obtained by assigninggtmthe
Bj’s and too, and obtain a joint posterior distribution féy, . . ., Oy,
B1, ..., B3, o, providing similar information to the MLE’s and
predictors above.
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Rasch Marginal Likelihood asa L og-Linear Model
We can view the probability
p! = P[Ylw--,YJ |ﬁ1’~-~’ﬁ\];o-]

in equation (5) as a cell probability in a multinomial moded the 2
tableny. This turns out to be a certain log-linear model:

f(0lo)do

o J (0B
P(YL, ..., Y1) f_ exply;(6 - Bj)}

® o1 1+ expld - Bj}

J ~ 2 exply;6)
= | | —BiVi | | f(6|0)do
=1 SxRFi) Im i1 1+ explo - B} (1)

: v expley.)
= expl-BjY;) f f(6lc)do
H R | T v expo—py O

Therefore, l0@(y1, ..., Y3) = = 2-1BjYj + Ziey Yl iy, =k
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To maintain the hierarchy principal, we incorporate anrceet term,
writing
J J
logpy == > By + > Y.k ©)
=1 k=0
where we defing, = Zle yj, and 1y, —iy is a dummy variable that equals
1 wheny, = kand equals 0 otherwise. Note that

e Thep; in (x) are exactly the item diculties in the Rasch model;
e Thevyy can be written as:
¥ = E[(¢)"ly = (0.0....,0)]

I.e. they are moments of a positive random variable.

e They’s are constrained by thg's in a complicated way, but as a
first approximation the model can be fit, ignoring these aandis, as
a straightforward log-linear model.

Cressie & Holland (1981Pmk3; Holland (1990;Pmk3.

10 36-720 October 15, 2007



If we match up the terms in the model) (

J J
logpy = o - Zﬁjyj + Z Yiliy. =g
=1 k=0

with the non-redundant-terms in the usual hierarchical log-linear model
log Py = o+ Z Ujs + Z Z Ujkaa + Z Z Z Ujke11a + -+ + Ujgjpejy
j i<k j<k<t

we can see that

e Up =aanduj = -4, Vj;

® Uja1 = ¥2, Y], ki the two-way interactions aymmetric

® Ujsm11 = V3, V], K ¢ the three-way interactions asgmmetric
e etc. etc., i.e. each set efway interactions isymmetric

For these reasons;)(is sometimes called the model @fiasi-symmetty

The model osymmetrywould also have symmetric mairftects (alluj; equal to
each other); and is equivalent to asserting thayflseareexchangeableandom
variables.

11 36-720 October 15, 2007

Example

We return to the LSAT example that we used to illustrate GLMis| éif
the Rasch model last time.

We can directly compare estimates of the fix@eets 5;:

> rasch.lmer <- Imer(y ~ j-1 + (1]i),data=1lsat,
+ family=binomial,method="Laplace")
> summary (rasch.lmer)@coefs

Estimate Std. Error z value Pr(>lzl)
j1 2.7047288 0.12862039 21.028772 3.577920e-98
j2 0.9936196 0.07493543 13.259678 3.965962e-40
j3 0.2371917 0.06842979 3.466205 5.278602e-04
j4 1.2988310 0.08008535 16.218084 3.757348e-59
j5 2.0818837 0.10134168 20.543214 8.850748e-94
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> rasch.glm <- glm(n ~ .,data=lsat.table,family=poisson)
> summary (rasch.glm) $coef

Estimate Std. Error z value Pr(>|z])
(Intercept) 1.0986123 0.5773503 1.902852 5.705982e-02
Y.1 2.1758247 0.1561053 13.938183 3.712707e-44
Y.2 0.4447902 0.1354840 3.282972 1.027189%e-03
Y.3 -0.3162879 0.1349001 -2.344608 1.904710e-02
Y.4 0.7512857 0.1368979 5.487926 4.066813e-08
Y.5 1.5428685 0.1443920 10.685280 1.192882e-26
Yplusl -0.9874669 0.5148710 -1.917892 5.512471e-02
Yplus2 -1.3256284 0.3676781 -3.605405 3.116666e-04
Yplus3 -1.2098123 0.2472272 -4.893524 9.904602e-07
Yplus4 -0.8532626 0.1388691 -6.144367 8.028322e-10
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How are these related?

> plot(summary(rasch.lmer)@coefs[1:5,1], é;i
+ summary(rasch.glm)$coef[2:6,1]) .
> Im(summary(rasch.glm)$coef[2:6,1] ~

+ summary(rasch.lmer)@coefs[1:5,1])

Coefficients: U o
(Intercept) summary(rasch.lmer)@coefs[1:5, 1]
-0.558 1.010

Almost perfectly:

Pij
1-pj

log =6, - B =a([6 - 9)/a- [8; - dl/a)

The regression result above suggests1 andc = 0.558, so that the
random éects distribution implied by the log-linear fit has the sar&s
but is shifted down from the randonffects distribution estimated by
Imer. This is another change in parametrization that doesftert the fit.

14 36-720 October 15, 2007



