36-720: Latent Class Models

Brian Junker

October 17, 2007

Latent Class Models and Simpson’s Paradox
Latent Class Model for a Table of Counts
An Intuitive E-M Algorithm for Fitting Latent Class Models
Deriving the E-M Algorithm
Example
Issues and Warnings
For more reading, see:

Bartholomew, D. J. & Knott, M. M. (1999)_atent Variable Models and Factor
Analysis.Oxford Univ Press.
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Latent Class Models and Simpson’s Paradox

Simpson’s Paradoxf you collapse a table along one dimension, you may
introduce new dependencies in the data.

Yo Y,
| 0 1 0 1
O Nooo Moo + O Nt No11 = O | Noo, Nous
Yi o1 Nioo Ni10 Yi o1 N1o1 M1 Yi o1 Nior  Ni1s
(OR|Z=0)=1 (OR|Zz=1)=1 OR>1

Latent Class ModelGiven a table of counts exhibiting dependence, find a
dimension along which you can separate observations indhie to make the
dependence go awaysimpson in reverse...)
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The Many Siblings of Latent Class Analysis (LCA)

e To the extent that we are “assigning” some observationsagtoup Z = 0”
and some to the grouZ“= 1", LCA is a kind of model-based cluster
analysisandor anunsupervised classifiéor multivariate discrete data.

e We will see below that LCA basically models the distributimn
{Ngo, No1, N1, N11} @S the mixture of two log-linear models (one = 0 and
one forZ = 1). Therefore LCA can also be viewed as a kindioite mixture
modeling

— Finite mixture models for continuous response data aregpsrinore

familiar: mixture-of-normals density estimatpk®ernel density
estimatorsetc.

— Other finite mixtures for discrete data, suclzaso-inflated Poisson
models are also closely related to LCA.

Bayes Network modefsr discrete data with discrete hidden nodes may al
be viewed as a kind of constrained LCA (each latent classtexahéned by a
unique set of values for the hidden nodes).

— These models are basic choices iriekbert systems, computer-based
tutoring, cognitive diagnosis, etc.
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Latent Class Model for a Table of Counts

Latent class models are often used with item response degdl{e Rasch
model) so we will consider that case as well. Once again let

0, else

{ 1, if studenti got question| correct
Yij =

say, fori = 1,...,N studentsang = 1,.. ., J questions.

We begin by considering the’ 2able
{ny : asyranges over all 2possible patternsy, ..., vy;)}

directly.
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The latent class model says that there\&rkayers, or latent classes, that
we can split this table into:

1
t,ny

e
@)
ny

2
t, 9y

n (W) — t (W) ny

where thet, W s simply the proportion of observations in cgllhat get

assigned to layer, or latent clasz\s(sozw t ™ =1, for eachy andt(W)
may be diferent for diferenty).

Within each latent class we assume the model of independemds:
n"  ~ Multlnon(p(‘”) Nw)
logmy e

whereN,, = >, ny ), and
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An Intuitive E-M Algorithm for Fitting Latent Class
Models

One way to fit a latent class model is with a kind of E-M alganth

Initialization: Make an initial guess,* for the counts in the" layer.

M step: Fit the log-linear model of independence to each taﬁY@,”
usingglm(), obtaining fitted valuemy(w)

E step: Recalculate

(w)
" = Ty

D, Mm@ 4
my = +my

Convergence check:lf this iteration does not produce much change

from the previous iteration, then stop. Otherwise start,ovéh the
“M” step.

+my
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Note that all of the datay(w) IS missing, in every layer of the table along
W.

e Clearly the “E” step above is imputing this missing data bstfir
calculating the fitted probabiltieig"’ thaty will be classified into

classw, and then computing the expected numvh;é‘? = fy("")ny.

The “M” step is just fitting the complete-data model (logear

model of independence) to the imputed tahfle‘@.

Finally, any reasonable measure of fit can be used in the
“Convergence check”. One interesting possibility is tccaédte
expected cell countsy = >, my(W) and then keep track of

= 2%,y ny log(ny/my) for the original table. Whe®? stops
changlng we can quit the E-M algorithm.
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Deriving the E-M Algorithm

Imitating our work for the Rasch model, we can see that tredihkod for
examinea in latent classvis

PlYit, ..., Yis [ W, Pit, ..., Pia] = l_[ pwj(l— Pw;j)"!

If we treatw as a randomféect (like we treated in the Rasch model) we get the
mixture model

P[yil’~-',yiJ | pil"~" piJ,/ll’~-',/lW] - Z/lW]_[ pz\l/JJ(l_ pW])yIJ
w =1

whereA,, is the (prior) probability that an examinee belongs to clas$his
equation is analogous to equation

P[y|1,...,y|3 | B1, - .. ﬂJ,O‘] f l_[ ix—i_p{g;éél IB )} f(9| )d9|

for the Rasch model.
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The joint model for all examinees

J
PLY | pij. alli, j; A, dw] = [ ] el pup
j=1
Is kind of unwieldy but it simplifies if we introduce @ata augmentation
variable z, = 1 if examined is in latent classv andz, = 0 otherwise.
With this the complete data likelihood becomes

Ziw
PlY, Z]| all Pij » allay,] = 1_[ 1_[ {/lw 1_[ palj(l pWJ)l YJ}

Now if we apply the “standard” E-M algorithm with

Qle. ¢ ) = Ellog PV, Zlp) | ¢ ¥, V]

[where nowy = (all p;j, all Ay)] we will eventually obtain the steps
above, Wltl’fy(w) = P[Z|W =1 | X = XI]
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Example

We previously analyzed the Stiber-Toby data using graphical log-linear
models and found the decomposable model

1 -- 2 —- 3
\

\
4

Recall that the data consist of role-conflict responses 6fretpondents
to four situations, with response “0” being “universatstand “1” being
“particularistic”. Goodman (2002, Chapter 1Applied Latent Class
Analysis Hagenaars & McCutcheon, eds, NY: Cambridge Univ Press)
considers a latent class analysis of the same data.

We will reproduce, with some modifications, Goodman’s asialy

A pdf of Goodman’s chapter is included with these lecturesiot
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We begin with a barplot of the actual counts in each cell:

e There is clearly dependence in the data: for example
Ply2, ¥3, Yaly1 = O] # Ply2,ys, yaly1 = 1].

e This also suggests perhaps some latent class structwrendri
somehow by response to item 1.
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An E-M algorithm to fit the LC model can be coded easily in R:

lcm <- function(data,tstar=runif(dim(data)[1]), G2.0ld <- G2
flal=n"., fla2=n"., tol=1, reps=100) {
d1$n <- tstar*data$n
cells <- dim(data)[1] d2%$n <- (1-tstar)*data$n

if (length(tstar)!=cells) { fitl <- glm(flal,data=dl, family=poisson)
tstar <- rep(abs(tstar[1]),cells) fit2 <- glm(fla2,data=d2, family=poisson)
}
tstar <- tstar/sum(tstar) ml <- fitted(fitl)
m2 <- fitted(fit2)
dl <- data
d2 <- data tstar <- ml/(ml+m2)

Gl <- 1leb Gl <- summary(fitl)$deviance
G2 <- leb G2 <- summary(fit2)$deviance

K<-0 err <- abs((G1+G2)-(Gl.o0ld+G2.0l1ld))
err <- le6

while ((err > tol)&&(K<reps)) {
return(list (K=K, err=err, tstar=tstar,

K <- K+1 fitl=fitl,fit2=£fit2,d1=d1,d2=d2))

Gl.old <- G1
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Fitting in R we get

> result <- lcm(stouffer,tol=0.00001)
There were 50 or more warnings

(use warnings() to see the first 50)
> warnings()

Warning messages:

1: non-integer x = 0.450371

2: non-integer Xx 1.485916

[...]
50: non-integer x = 21.600592

e The non-integer cell counts are a consequence of the E-Mitidgg
you can verify that maximizing the Poisson or multinomikeélihood
still makes sense mathematically.

e \We can look at barplots in each of the two latent classes th@ee
the LC model split up the data [see next slide]. ..
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e LC #1: individuals excessively
likely to respond O to most
guestions. ..

LC #2:y; = O frequencies are | - D:D H
roughly proportional toy; = 1 Cgsziisziggg

frequencies, allowing cond’l e
Indep.

Note that the deviances in eacl’ "
class add up to the overall

deviance:

> m <- fitted(result$fitl) + fitted(result$fit2) Gounts for latentclass 2

> 2*sum(n*log(n/m))

[1] 2.719957

> result$fitl$deviance + result$fit2$deviance
[1] 2.719960

You should be able to prove
that this must happen!
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Issues and Warnings
Many other issues remain for latent class analysis. ..

e How many latent classes? We chose two. ..

— The best approaches to choosing the number of latent clessko
iInvolve Bayes Factor (or BIC) comparisons of models witffiesient
numbers of latent classes.

e Reliable MLE optimization...

— LC models tend to have one or more secondary maxima, so fikat it
difficult to see that you are at the global maximum without a lotiaf t
and error with starting values.

e Label-switching issues

— “The” global maximum will actually occur at! different locations on
the likelihood surface, due to equivalent re-labellingtheflatent classes.

— This is an annoyance for careful inference using MLE methads
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— For MCMC methods it can be a disaster, since the Markov Chdin w
visit different ones of these modes and average over them, producing
mashed potatoes for parameter estimates. . .

e Interpretation. ..

LC models for prediction have all of the above problems.

In Social Science (and other) applications, als&o often want to interpret
the latent classes in terms of the underlying science.

This can be very useful, but it can also be dangerous—rgfgpparent
structure in the latent classes that is’t scientificallytifiable.

Similar problems occur with mixture-of-normal models,ttaanalysis
models, etc.

e Etc., etc., ...
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Details and Difficulties

Marin, J.M., Mengersen, K. & Robert, C.P. (2004). Bayesiaailing and
inference on mixtures of distributionslandbook of Statistics 2H). Dey and
C.R. Rao (eds). Elsevier-Sciences (to appear).

only deals with continuous-data mixtures, but it addressest of the
computational and inferential issues found in currentus®ns of mixture
models by statisticians; the same issues apply to LABdf is included with these
lecture notes.

Fienberg, S. E., Hersh, P., Rinaldo, A., & Zhou, Y. (2007).xMaum Likelihood
Estimation in Latent Class Models For Contingency TableaDBXocument
arXiv:0709.3535v1, available at httfarxiv.orgabg0709.3535

provides an account of LC models from the point of view of hlgéc statistics
and gives new examples suggesting that ML estimation of L@eisocan be quite
delicate.A pdf is also included with these lecture notes.
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