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Hagenaars, J. A. & McCutcheon, A. L. (2003).Applied Latent Class Analysis.

Cambridge Univ Press.

McLachlan, G. & Peel, D. (2000).Finite Mixture Models.NY: Wiley.
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Latent Class Models and Simpson’s Paradox
Simpson’s Paradox: If you collapse a table along one dimension, you may
introduce new dependencies in the data.
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Latent Class Model: Given a table of counts exhibiting dependence, find a
dimension along which you can separate observations in the table to make the
dependence go away!(Simpson in reverse. . . )
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The Many Siblings of Latent Class Analysis (LCA)

• To the extent that we are “assigning” some observations to the group “Z = 0”
and some to the group “Z = 1”, LCA is a kind ofmodel-based cluster
analysisand/or anunsupervised classifierfor multivariate discrete data.

• We will see below that LCA basically models the distributionof
{n00, n01, n10, n11} as the mixture of two log-linear models (one forZ = 0 and
one forZ = 1). Therefore LCA can also be viewed as a kind offinite mixture
modeling.

– Finite mixture models for continuous response data are perhaps more
familiar: mixture-of-normals density estimators, kernel density
estimators, etc.

– Other finite mixtures for discrete data, such aszero-inflated Poisson
models, are also closely related to LCA.

• Bayes Network modelsfor discrete data with discrete hidden nodes may also
be viewed as a kind of constrained LCA (each latent class is determined by a
unique set of values for the hidden nodes).

– These models are basic choices in AI/expert systems, computer-based
tutoring, cognitive diagnosis, etc.
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Latent Class Model for a Table of Counts

Latent class models are often used with item response data (like the Rasch

model) so we will consider that case as well. Once again let

yi j =



















1, if studenti got questionj correct

0, else

say, fori = 1, . . . ,N students andj = 1, . . . , J questions.

We begin by considering the 2J table

{ny : asy ranges over all 2J possible patterns (y1, . . . , yJ)}

directly.
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The latent class model says that there areW layers, or latent classes, that
we can split this table into:

n (1)
y = t (1)

y ny

n (2)
y = t (2)

y ny

...

n (W)
y = t (W)

y ny

where thet (w)
y is simply the proportion of observations in celly that get

assigned to layer, or latent class,w (so
∑

w t (w)
y = 1, for eachy; andt(w)

y

may be different for differenty).

Within each latent class we assume the model of independenceholds:

n (w)
y ∼ Multinom(p (w)

y ,Nw)

logm (w)
y = α (w) + β

(w)
1 y1 + · · · + β

(w)
J yJ

whereNw =
∑

y n (w)
y , andm (w)

y = Nwp (w)
y .

5 36-720 October 17, 2007



An Intuitive E-M Algorithm for Fitting Latent Class
Models

One way to fit a latent class model is with a kind of E-M algorithm:

Initialization: Make an initial guess ˜n (w)
y for the counts in thewth layer.

M step: Fit the log-linear model of independence to each table ˜n (w)
y ,

usingglm(), obtaining fitted valuesm (w)
y ;

E step: Recalculate

t̃ (w)
y =

m (w)
y

m (1)
y +m (2)

y + · · · +m (W)
y

, ñ (w)
y = t̃ (w)

y ny

Convergence check:If this iteration does not produce much change

from the previous iteration, then stop. Otherwise start over, with the

“M” step.
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Note that all of the datan (w)
y is missing, in every layer of the table along

W.

• Clearly the “E” step above is imputing this missing data by first

calculating the fitted probabilties̃t (w)
y thaty will be classified into

classw, and then computing the expected numbern (w)
y = t̃ (w)

y ny.

• The “M” step is just fitting the complete-data model (log-linear

model of independence) to the imputed tablesn (w)
y .

• Finally, any reasonable measure of fit can be used in the

“Convergence check”. One interesting possibility is to calculate

expected cell countsmy =
∑

w m (w)
y and then keep track of

G2 = 2
∑

y ny log(ny/my) for the original table. WhenG2 stops

changing, we can quit the E-M algorithm.
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Deriving the E-M Algorithm

Imitating our work for the Rasch model, we can see that the likelihood for

examineei in latent classw is

P[yi1, . . . , yiJ | w, pi1, . . . , piJ ] =
J
∏

j=1

p
yi j

w j(1− pw j)
yi j

If we treatw as a random effect (like we treatedθ in the Rasch model) we get the

mixture model

P[yi1, . . . , yiJ | pi1, . . . , piJ , λ1, . . . , λW] =
∑

w

λw

J
∏

j=1

p
yi j

w j(1− pw j)
yi j

whereλw is the (prior) probability that an examinee belongs to classw. This

equation is analogous to equation

P[yi1, . . . , yiJ | β1, . . . , βJ;σ] =
∫ ∞

−∞

J
∏

j=1

exp{yi j (θi − β j)}

1+ exp{θi − β j}
f (θi | σ) dθi

for the Rasch model.
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The joint model for all examinees

P[Y | pi j , all i, j; λ1, . . . , λW] =
N
∏

i=1

∑

w

λw

J
∏

j=1

p
yi j

w j(1− pw j)
yi j

is kind of unwieldy but it simplifies if we introduce adata augmentation

variable ziw = 1 if examineei is in latent classw andziw = 0 otherwise.

With this the complete data likelihood becomes

P[Y,Z| all pi j , allλw] =
∏

i

∏

w



















λw

∏

j

p
yi j

w j(1− pw j)
1−yi j



















ziw

Now if we apply the “standard” E-M algorithm with

Q(ϕ, ϕ (k)) = E[log P(Y,Z|ϕ) | ϕ (k),Y]

[where nowϕ = (all pi j , all λw)] we will eventually obtain the steps

above, witht̃ (w)
y

i
= P[ziw = 1 | y = y

i
].
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Example

We previously analyzed the Stouffer-Toby data using graphical log-linear

models and found the decomposable model

1 -- 2 -- 3

\ |

\ |

4

Recall that the data consist of role-conflict responses of 216 respondents

to four situations, with response “0” being “universalistic” and “1” being

“particularistic”. Goodman (2002, Chapter 1 ofApplied Latent Class

Analysis, Hagenaars & McCutcheon, eds, NY: Cambridge Univ Press)

considers a latent class analysis of the same data.

We will reproduce, with some modifications, Goodman’s analysis.

A pdf of Goodman’s chapter is included with these lecture notes.
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We begin with a barplot of the actual counts in each cell:

• There is clearly dependence in the data: for example

P[y2, y3, y4|y1 = 0] , P[y2, y3, y4|y1 = 1].

• This also suggests perhaps some latent class structure, driven

somehow by response to item 1.
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An E-M algorithm to fit the LC model can be coded easily in R:

lcm <- function(data,tstar=runif(dim(data)[1]),

fla1=n˜., fla2=n˜., tol=1, reps=100) {

cells <- dim(data)[1]

if (length(tstar)!=cells) {

tstar <- rep(abs(tstar[1]),cells)

}

tstar <- tstar/sum(tstar)

d1 <- data

d2 <- data

G1 <- 1e6

G2 <- 1e6

K <- 0

err <- 1e6

while ((err > tol)&&(K<reps)) {

K <- K+1

G1.old <- G1

G2.old <- G2

d1$n <- tstar*data$n

d2$n <- (1-tstar)*data$n

fit1 <- glm(fla1,data=d1,family=poisson)

fit2 <- glm(fla2,data=d2,family=poisson)

m1 <- fitted(fit1)

m2 <- fitted(fit2)

tstar <- m1/(m1+m2)

G1 <- summary(fit1)$deviance

G2 <- summary(fit2)$deviance

err <- abs((G1+G2)-(G1.old+G2.old))

}

return(list(K=K,err=err,tstar=tstar,

fit1=fit1,fit2=fit2,d1=d1,d2=d2))

}
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Fitting in R we get

> result <- lcm(stouffer,tol=0.00001)

There were 50 or more warnings

(use warnings() to see the first 50)

> warnings()

Warning messages:

1: non-integer x = 0.450371

2: non-integer x = 1.485916

[...]

50: non-integer x = 21.600592

• The non-integer cell counts are a consequence of the E-M algorithm;

you can verify that maximizing the Poisson or multinomial likelihood

still makes sense mathematically.

• We can look at barplots in each of the two latent classes to seehow

the LC model split up the data [see next slide]. . .
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• LC #1: individuals excessively
likely to respond 0 to most
questions. . .

• LC #2: y1 = 0 frequencies are
roughly proportional toy1 = 1
frequencies, allowing cond’l
indep.

• Note that the deviances in each
class add up to the overall
deviance:

> m <- fitted(result$fit1) + fitted(result$fit2)

> 2*sum(n*log(n/m))

[1] 2.719957

> result$fit1$deviance + result$fit2$deviance

[1] 2.719960

You should be able to prove
that this must happen!
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Issues and Warnings
Many other issues remain for latent class analysis. . .

• How many latent classes? We chose two. . .

– The best approaches to choosing the number of latent classestend to

involve Bayes Factor (or BIC) comparisons of models with different

numbers of latent classes.

• Reliable MLE optimization. . .

– LC models tend to have one or more secondary maxima, so that itis

difficult to see that you are at the global maximum without a lot of trial

and error with starting values.

• Label-switching issues

– “The” global maximum will actually occur atW! different locations on

the likelihood surface, due to equivalent re-labellings ofthe latent classes.

– This is an annoyance for careful inference using MLE methods. . .
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– For MCMC methods it can be a disaster, since the Markov Chain will

visit different ones of these modes and average over them, producing

mashed potatoes for parameter estimates. . .

• Interpretation. . .

– LC models for prediction have all of the above problems.

– In Social Science (and other) applications, wealsooften want to interpret

the latent classes in terms of the underlying science.

– This can be very useful, but it can also be dangerous—reifying apparent

structure in the latent classes that is’t scientifically justifiable.

– Similar problems occur with mixture-of-normal models, factor analysis

models, etc.

• Etc., etc., . . .
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Details and Difficulties

Marin, J.M., Mengersen, K. & Robert, C.P. (2004). Bayesian modelling and

inference on mixtures of distributions.Handbook of Statistics 25,D. Dey and

C.R. Rao (eds). Elsevier-Sciences (to appear).

only deals with continuous-data mixtures, but it addressesmost of the

computational and inferential issues found in current discussions of mixture

models by statisticians; the same issues apply to LCA.A pdf is included with these

lecture notes.

Fienberg, S. E., Hersh, P., Rinaldo, A., & Zhou, Y. (2007). Maximum Likelihood

Estimation in Latent Class Models For Contingency Table Data. Document

arXiv:0709.3535v1, available at http://arxiv.org/abs/0709.3535

provides an account of LC models from the point of view of algebraic statistics

and gives new examples suggesting that ML estimation of LC models can be quite

delicate.A pdf is also included with these lecture notes.
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