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For more reading, see:

Bartholomew, D. J. & Knott, M. M. (1999)_atent Variable Models and Factor
Analysis.Oxford Univ Press.

Hagenaars, J. A. & McCutcheon, A. L. (2003)pplied Latent Class Analysis.
Cambridge Univ Press.

McLachlan, G. & Peel, D. (2000Finite Mixture ModelsNY: Wiley.
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Latent Class Models and Simpson’s Paradox

Simpson’s Paradoxf you collapse a table along one dimension, you may
introduce new dependencies in the data.

Y Y Y
! ! o0 1
0| No Moo + 0| nN1 N1 = O | Noor  No1s
Y11 Moo Mo Y11 Mol M Yi1 Nio+ M1y
(OR|Zz=0)=1 OR|Zz=1)=1 OR>1

Latent Class ModelGiven a table of counts exhibiting dependence, find a
dimension along which you can separate observations inahie to make the
dependence go awaysimpson in reverse.. .)
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The Many Siblings of Latent Class Analysis (LCA)

e To the extent that we are “assigning” some observationsggtboup Z = 0”
and some to the grouZ‘= 1", LCA is a kind of model-based cluster
analysisandor anunsupervised classifidor multivariate discrete data.

e We will see below that LCA basically models the distributiin
{Noo, No1, N10, N11} @s the mixture of two log-linear models (one = 0 and
one forZ = 1). Therefore LCA can also be viewed as a kindioite mixture
modeling

— Finite mixture models for continuous response data aregpsrimore
familiar: mixture-of-normals density estimatokernel density
estimatorsetc.

— Other finite mixtures for discrete data, suchraso-inflated Poisson
models are also closely related to LCA.

e Bayes Network modeler discrete data with discrete hidden nodes may algp
be viewed as a kind of constrained LCA (each latent classtexakned by a
unique set of values for the hidden nodes).

— These models are basic choices iriekpert systems, computer-based
tutoring, cognitive diagnosis, etc.
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Latent Class Model for a Table of Counts

Latent class models are often used with item response dkealfe Rasch
model) so we will consider that case as well. Once again let

1, if studenti got questionj correct
Yij =
0, else

say, fori = 1,...,N students ang = 1,..., J questions.

We begin by considering the’ 2able

{ny : asy ranges over all Ppossible patternsgyq, . .., y;)}

directly.
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The latent class model says that there\Arkayers, or latent classes, that
we can split this table into:

1 1
o= ton
2 2

y? = 40
W — W
n = t"ny

where thety(w) is simply the proportion of observations in ceglihat get

assigned to layer, or latent class(so 3, t," = 1, for eachy; andt{"”
may be diferent for diferenty). - -

Within each latent class we assume the model of independenids:
Multinom(p,*, N,,)

¢

)
Ty
logm®™ = a® 4"y +... 4"y,

whereN,, = 3, ny(W), andm® = NWpy(W).

5 36-720 October 17, 2007



An Intuitive E-M Algorithm for Fitting Latent Class
Models

One way to fit a latent class model is with a kind of E-M alganth
Initialization: Make an initial guessyew) for the counts in the" layer.

M step: Fit the log-linear model of independence to each taw@,”
usingglm(), obtaining fitted valuesm,";

E step: Recalculate

W)
FW _ Ty RO FO),
Y T O m@am®W Y Y Y

Convergence check:If this iteration does not produce much change
from the previous iteration, then stop. Otherwise start,ovéh the
“M” step.
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Note that all of the datay(w) is missing, in every layer of the table along
W.

e Clearly the “E” step above is imputing this missing data bstfir
calculating the fitted probabiltig"” thaty will be classified into

classw, and then computing the expected numlh;éfY) = fy(W)ny.

e The “M” step is just fitting the complete-data model (logdar
model of independence) to the imputed tahﬂé‘@.

¢ Finally, any reasonable measure of fit can be used in the
“Convergence check”. One interesting possibility is taccoédte
expected cell countsy, = 3, m™ and then keep track of
G? = 23, nylog(ny/m,) for the original table. Whef? stops
changing, we can quit the E-M algorithm.
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Deriving the E-M Algorithm

Imitating our work for the Rasch model, we can see that thedilibod for
examinea in latent class is

Plyis, .. Yig [ W, Pig, ..., Pl = l—[ pajj(l— Pwj)
j=1
If we treatw as a randomféect (like we treated in the Rasch model) we get the
mixture model

PlYis, .-, Yia | Pits - - -s Pigs Ads - -, Aw] = Z/lwl_[ p\),l\l,',(l— Pw;j)”!

whereq,, is the (prior) probability that an examinee belongs to clas$his
equation is analogous to equation

Iel
Plyi. Yo | B 0] = fﬂiﬁp{ngéw_ f(6r| o) do

for the Rasch model.
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The joint model for all examinees
N
PLY | pij, alli, j; d1,...,Aw] = ]_[Zawﬂ Py (1= )V
i=1 w j=1

is kind of unwieldy but it simplifies if we introduce@ata augmentation
variable z, = 1 if examined is in latent classv andz, = O otherwise.
With this the complete data likelihood becomes

Ziw

PlY, Z| all pjj, alld,] = ]‘[ n Ay 1—[ I (1= pup)
Now if we apply the “standard” E-M algorithm with

Qe, ¢ ¥) = Ellog P, Zlw) | ¢ ¥, 1]

[where nowy = (all pjj, all Aw)] we will eventually obtain the steps
above, with,") = Pz, =1 |y = y]
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Example

We previously analyzed the Stiber-Toby data using graphical log-linear
models and found the decomposable model

1 --2--3
\

\ |
4

Recall that the data consist of role-conflict responses 6frédépondents
to four situations, with response “0” being “universatistand “1” being
“particularistic’. Goodman (2002, Chapter 1 Applied Latent Class

Analysis Hagenaars & McCutcheon, eds, NY: Cambridge Univ Press)

considers a latent class analysis of the same data.
We will reproduce, with some modifications, Goodman’s asialy

A pdf of Goodman'’s chapter is included with these lecturesiot
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We begin with a barplot of the actual counts in each cell:

40 —
30

20 —

Counts

10

[ .

(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0.1,1)
(0,1,0,0)
(0,1,0,1)
(0,1,1,0)
(0,1,1,1)
(1,1,1,0)
(1.1,1,1)

e There is clearly dependence in the data: for example

Ply2, Y3, Yalyr = O] # Ply2, Y3, Yaly1 = 1].
e This also suggests perhaps some latent class structurendri

somehow by response to item 1.
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An E-M algorithm to fit the LC model can be coded easily in R:

lcm <- function(data,tstar=runif(dim(data)[1]),
flal=n"., fla2=n"., tol=1, reps=100) {

cells <- dim(data)[1]
if (length(tstar)!=cells) {

tstar <- rep(abs(tstar[1]),cells)
}

tstar <- tstar/sum(tstar)

dl <- data
d2 <- data

Gl <- le6
G2 <- leb

K<-0
err <- le6

while ((err > tol)&&(K<reps)) {

K <- K+1

Gl.old <- G1

}

return(list (K=K, err=err,tstar=tstar,

G2.0ld <- G2

dl$n <- tstar*data$n
d2$n <- (l-tstar)*data$n

fitl <- glm(flal,data=dl, family=poisson)
fit2 <- glm(fla2,data=d2,family=poisson)

ml <- fitted(fitl)
m2 <- fitted(fit2)

tstar <- ml/(ml+m2)

Gl <- summary(fitl)$deviance
G2 <- summary(fit2)$deviance

err <- abs((G1+G2)-(Gl.0ld+G2.0ld))

fitl=fitl, fit2=fit2,d1=d1,d2=d2))
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Fitting in R we get

> result <- lcm(stouffer,tol=0.00001)

There were 50 or more warnings

(use warnings() to see the first 50)

> warnings()
Warning messages:

0.450371
1.485916

1: non-integer x

2: non-integer x
[...]
50: non-integer x = 21.600592

e The non-integer cell counts are a consequence of the E-Mitlgo
you can verify that maximizing the Poisson or multinomikélihood
still makes sense mathematically.

e We can look at barplots in each of the two latent classes these
the LC model split up the data [see next slide]. ..
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e LC #1: individuals excessively = _
likely to respond O to most
questions. ..

e LC#2:y, = 0 frequencies are | allmlm = = 0
roughly proportional toy; = 1 iz cszacgzeocsozoe:

frequencies, allowing cond’l |
indep.
e Note that the deviances in eacl *
class add up to the overall .
deviance: Dm::. _____ B

> m <- fitted(result$fitl) + fitted(result$fit2)

> 2*sum(n*log(n/m)) d
[1] 2.719957 B
> result$fitl$deviance + result$fit2$deviance

[1] 2.719960

You should be able to prove :DD mill ED:DEDDH

that this must happen!
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Issues and Warnings
Many other issues remain for latent class analysis. . .

e How many latent classes? We chose two. ..

— The best approaches to choosing the number of latent clessbtn
involve Bayes Factor (or BIC) comparisons of models witfiedent
numbers of latent classes.

e Reliable MLE optimization. ..

— LC models tend to have one or more secondary maxima, so fsat it
difficult to see that you are at the global maximum without a lotiaf t
and error with starting values.

e Label-switching issues

— “The” global maximum will actually occur at! different locations on
the likelihood surface, due to equivalent re-labellingtheflatent classes.

— This is an annoyance for careful inference using MLE methads
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— For MCMC methods it can be a disaster, since the Markov Chdin w
visit different ones of these modes and average over them, producing
mashed potatoes for parameter estimates. ..

¢ Interpretation. ..

LC models for prediction have all of the above problems.

In Social Science (and other) applications, algo often want to interpret
the latent classes in terms of the underlying science.

This can be very useful, but it can also be dangerous—regjfgpparent
structure in the latent classes that is’t scientificallytifieble.

Similar problems occur with mixture-of-normal models,ttacanalysis
models, etc.

e Etc., etc,, ...
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Details and Dfficulties

Marin, J.M., Mengersen, K. & Robert, C.P. (2004). Bayesiardailing and
inference on mixtures of distributionslandbook of Statistics 28. Dey and
C.R. Rao (eds). Elsevier-Sciences (to appear).

only deals with continuous-data mixtures, but it addressest of the
computational and inferential issues found in currentuisons of mixture
models by statisticians; the same issues apply to LEAdf is included with these
lecture notes.

Fienberg, S. E., Hersh, P., Rinaldo, A., & Zhou, Y. (2007).xvaum Likelihood
Estimation in Latent Class Models For Contingency TableaDBiocument
arXiv:0709.3535v1, available at httfarxiv.orgabg0709.3535

provides an account of LC models from the point of view of blgéc statistics
and gives new examples suggesting that ML estimation of L@atsocan be quite
delicate.A pdf is also included with these lecture notes.

17 36-720 October 17, 2007



