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P. Robert 1

‘But, as you have already pointed out, we do not need any more
disjointed clues,’ said Bartholomew. ‘That has been our problem all
along: we have a mass of small facts and small scraps of information,
but we are unable to make any sense out of them. The last thing we
need is more.’

Susanna Gregory, A Summer of Discontent

1.1 Introduction

Today’s data analysts and modellers are in the luxurious position of being
able to more closely describe, estimate, predict and infer about complex
systems of interest, thanks to ever more powerful computational methods
but also wider ranges of modelling distributions. Mixture models constitute
a fascinating illustration of these aspects: while within a parametric family,
they offer malleable approximations in non-parametric settings; although
based on standard distributions, they pose highly complex computational
challenges; and they are both easy to constrain to meet identifiability re-
quirements and fall within the class of ill-posed problems. They also provide
an endless benchmark for assessing new techniques, from the EM algo-
rithm to reversible jump methodology. In particular, they exemplify the

1Jean-Michel Marin is lecturer in Université Paris Dauphine, Kerrie Mengersen
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in Université Paris Dauphine and head of the Statistics Laboratory of CREST.
K. Mengersen acknowledges support from an Australian Research Council Dis-
covery Project. Part of this chapter was written while C. Robert was visiting the
Australian Mathematical Science Institute, Melbourne, for the Australian Re-
search Council Center of Excellence for Mathematics and Statistics of Complex
Systems workshop on Monte Carlo, whose support he most gratefully acknowl-
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formidable opportunity provided by new computational technologies like
Markov chain Monte Carlo (MCMC) algorithms. It is no coincidence that
the Gibbs sampling algorithm for the estimation of mixtures was proposed
before (Tanner and Wong 1987) and immediately after (Diebolt and Robert
1990c) the seminal paper of Gelfand and Smith (1990): before MCMC was
popularised, there simply was no satisfactory approach to the computation
of Bayes estimators for mixtures of distributions, even though older impor-
tance sampling algorithms were later discovered to apply to the simulation
of posterior distributions of mixture parameters (Casella et al. 2002).

Mixture distributions comprise a finite or infinite number of components,
possibly of different distributional types, that can describe different features
of data. They thus facilitate much more careful description of complex sys-
tems, as evidenced by the enthusiasm with which they have been adopted in
such diverse areas as astronomy, ecology, bioinformatics, computer science,
ecology, economics, engineering, robotics and biostatistics. For instance, in
genetics, location of quantitative traits on a chromosome and interpreta-
tion of microarrays both relate to mixtures, while, in computer science,
spam filters and web context analysis (Jordan 2004) start from a mixture
assumption to distinguish spams from regular emails and group pages by
topic, respectively.

Bayesian approaches to mixture modelling have attracted great interest
among researchers and practitioners alike. The Bayesian paradigm (Berger
1985, Besag et al. 1995, Robert 2001, see, e.g.,) allows for probability state-
ments to be made directly about the unknown parameters, prior or expert
opinion to be included in the analysis, and hierarchical descriptions of both
local-scale and global features of the model. This framework also allows the
complicated structure of a mixture model to be decomposed into a set of
simpler structures through the use of hidden or latent variables. When the
number of components is unknown, it can well be argued that the Bayesian
paradigm is the only sensible approach to its estimation (Richardson and
Green 1997).

This chapter aims to introduce the reader to the construction, prior mod-
elling, estimation and evaluation of mixture distributions in a Bayesian
paradigm. We will show that mixture distributions provide a flexible, para-
metric framework for statistical modelling and analysis. Focus is on meth-
ods rather than advanced examples, in the hope that an understanding
of the practical aspects of such modelling can be carried into many disci-
plines. It also stresses implementation via specific MCMC algorithms that
can be easily reproduced by the reader. In Section 1.2, we detail some ba-
sic properties of mixtures, along with two different motivations. Section 1.3
points out the fundamental difficulty in doing inference with such objects,
along with a discussion about prior modelling, which is more restrictive
than usual, and the constructions of estimators, which also is more in-
volved than the standard posterior mean solution. Section 1.4 describes
the completion and non-completion MCMC algorithms that can be used
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for the approximation to the posterior distribution on mixture parameters,
followed by an extension of this analysis in Section 1.5 to the case in which
the number of components is unknown and may be estimated by Green’s
(1995) reversible jump algorithm and Stephens’ 2000 birth-and-death pro-
cedure. Section 1.6 gives some pointers to related models and problems
like mixtures of regressions (or conditional mixtures) and hidden Markov
models (or dependent mixtures), as well as Dirichlet priors.

1.2 The finite mixture framework

1.2.1 Definition

The description of a mixture of distributions is straightforward: any convex
combination

(1.1)
k∑

i=1

pifi(x) ,

k∑

i=1

pi = 1 k > 1 ,

of other distributions fi is a mixture. While continuous mixtures

g(x) =
∫

Θ

f(x|θ)h(θ)dθ

are also considered in the literature, we will not treat them here. In most
cases, the fi’s are from a parametric family, with unknown parameter θi,
leading to the parametric mixture model

(1.2)
k∑

i=1

pif(x|θi) .

In the particular case in which the f(x|θ)’s are all normal distributions,
with θ representing the unknown mean and variance, the range of shapes
and features of the mixture (1.2) can widely vary, as shown2 by Figure 1.

Since we will motivate mixtures as approximations to unknown distribu-
tions (Section 1.2.3), note at this stage that the tail behaviour of a mixture
is always described by one or two of its components and that it therefore
reflects the choice of the parametric family f(·|θ). Note also that the repre-
sentation of mixtures as convex combinations of distributions implies that

2To draw this set of densities, we generated the weights from a Dirichlet
D(1, . . . , 1) distribution, the means from a uniform U [0, 5 log(k)] distribution,
and the variances from a Beta Be(1/(0.5+0.1 log(k)), 1), which means in partic-
ular that the variances are all less than 1. The resulting shapes reflect this choice,
as the reader can easily check by running her or his own simulation experiment.
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FIGURE 1. Some normal mixture densities for K = 2 (first row), K = 5 (second
row), K = 25 (third row) and K = 50 (last row).

the moments of (1.1) are convex combinations of the moments of the fj ’s:

E[Xm] =
k∑

i=1

piEfi [Xm] .

This fact was exploited as early as 1894 by Karl Pearson to derive a moment
estimator of the parameters of a normal mixture with two components,

(1.3) pϕ (x;µ1, σ1) + (1− p) ϕ (x;µ2, σ2) .

where ϕ(·; µ, σ) denotes the density of the N (µ, σ2) distribution.
Unfortunately, the representation of the mixture model given by (1.2) is

detrimental to the derivation of the maximum likelihood estimator (when
it exists) and of Bayes estimators. To see this, consider the case of n iid
observations x = (x1, . . . , xn) from this model. Defining p = (p1 . . . , pk)
and theta = (θ1, . . . , θk), we see that even though conjugate priors may
be used for each component parameter (pi, θi), the explicit representation
of the corresponding posterior expectation involves the expansion of the
likelihood

(1.4) L(θ, p|x) =
n∏

i=1

k∑

j=1

pjf (xi|θj)

into kn terms, which is computationally too expensive to be used for more
than a few observations (see Diebolt and Robert 1990a,b, and Section
1.3.1). Unsurprisingly, one of the first occurrences of the Expectation-
Maximization (EM) algorithm of Dempster et al. (1977) addresses the
problem of solving the likelihood equations for mixtures of distributions,
as detailed in Section 1.3.2. Other approaches to overcoming this compu-
tational hurdle are described in the following sections.
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1.2.2 Missing data approach

There are several motivations for considering mixtures of distributions as
a useful extension to “standard” distributions. The most natural approach
is to envisage a dataset as constituted of several strata or subpopulations.
One of the early occurrences of mixture modeling can be found in Bertillon
(1887) where the bimodal structure on the height of (military) conscripts
in central France can be explained by the mixing of two populations of
young men, one from the plains and one from the mountains (or hills). The
mixture structure appears because the origin of each observation, that is,
the allocation to a specific subpopulation or stratum, is lost. Each of the
xi’s is thus a priori distributed from either of the fj ’s with probability pj .
Depending on the setting, the inferential goal may be either to reconstitute
the groups, usually called clustering, to provide estimators for the param-
eters of the different groups or even to estimate the number of groups.

While, as seen below, this is not always the reason for modelling by mix-
tures, the missing structure inherent to this distribution can be exploited
as a technical device to facilitate estimation. By a demarginalization ar-
gument, it is always possible to associate to a random variable X from a
mixture of k distributions (1.2) another random variable Zi such that

(1.5) Xi|Zi = z ∼ f(x|θz), Zi ∼ Mk(1; p1, ..., pk) ,

where Mk(1; p1, ..., pk) denotes the multinomial distribution with k modal-
ities and a single observation. This auxiliary variable identifies to which
component the observation xi belongs. Depending on the focus of infer-
ence, the Zi’s will or will not be part of the quantities to be estimated.3

1.2.3 Nonparametric approach

A different approach to the interpretation and estimation mixtures is semi-
parametric. Noticing that very few phenomena obey the most standard dis-
tributions, it is a trade-off between fair representation of the phenomenon
and efficient estimation of the underlying distribution to choose the rep-
resentation (1.2) for an unknown distribution. If k is large enough, there
is support for the argument that (1.2) provides a good approximation to
most distributions. Hence a mixture distribution can be approached as a
type of basis approximation of unknown distributions, in a spirit similar to
wavelets and such, but with a more intuitive flavour. This argument will be
pursued in Section 1.3.5 with the construction of a new parameterisation

3 It is always awkward to talk of the Zi’s as parameters because, on the one
hand, they may be purely artificial, and thus not pertain to the distribution of
the observables, and, on the other hand, the fact that they increase in dimension
at the same speed as the observables creates a difficulty in terms of asymptotic
validation of inferential procedures (Diaconis and Freedman 1986). We thus prefer
to call them auxiliary variables as in other simulation setups.
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of the normal mixture model through its representation as a sequence of
perturbations of the original normal model.

Note first that the most standard non-parametric density estimator,
namely the Nadaraya–Watson kernel (Hastie et al. 2001) estimator, is based
on a (usually Gaussian) mixture representation of the density,

k̂n(x|x) =
1

nhn

n∑

i=1

ϕ (x; xi, hn) ,

where x = (x1, . . . , xn) is the sample of iid observations. Under weak con-
ditions on the so-called bandwidth hn, k̂n(x) does converge (in L2 norm and
pointwise) to the true density f(x) (Silverman 1986).4

The most common approach in Bayesian non-parametric Statistics is
to use the so-called Dirichlet process distribution, D(F0, α), where F0 is
a cdf and α is a precision parameter (Ferguson 1974). This prior distri-
bution enjoys the coherency property that, if F ∼ D(F0, α), the vector
(F (A1), . . . , F (Ap)) is distributed as a Dirichlet variable in the usual sense

Dp(αF0(A1), . . . , αF0(Ap))

for every partition (A1, . . . , Ap). But, more importantly, it leads to a mix-
ture representation of the posterior distribution on the unknown distribu-
tion: if x1, . . . , xn are distributed from F and F ∼ D(F0, α), the marginal
conditional cdf of x1 given (x2, . . . , xn) is

(
α

α + n− 1

)
F0(x1) +

(
1

α + n− 1

) n∑

i=2

Ixi≤x1 .

Another approach is to be found in the Bayesian nonparametric pa-
pers of Verdinelli and Wasserman (1998), Barron et al. (1999) and Petrone
and Wasserman (2002), under the name of Bernstein polynomials, where
bounded continuous densities with supports on [0, 1] are approximated by
(infinite) Beta mixtures

∑

(αk,βk)∈N2
+

pk Be(αk, βk) ,

with integer parameters (in the sense that the posterior and the predictive
distributions are consistent under mild conditions). More specifically, the
prior distribution on the distribution is that it is a Beta mixture

k∑

j=1

ωkj Be(j, k + 1− j)

4A remark peripheral to this chapter but related to footnote 3 is that the
Bayesian estimation of hn does not produce a consistent estimator of the density.
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with probability pk = P(K = k) (k = 1, . . .) and ωkj = F (j/k) − F (j −
1/k) for a certain cdf F . Given a sample x = (x1, . . . , xn), the associated
predictive is then

f̂n(x|x) =
∞∑

k=1

Eπ[ωkj |x] Be(j, k + 1− j)P(K = k|x) .

The sum is formally infinite but for obvious practical reasons it needs to be
truncated to k ≤ kn, with kn ∝ nα, α < 1 (Petrone and Wasserman 2002).
Figure 2 represents a few simulations from the Bernstein prior when K is
distributed from a Poisson P(λ) distribution and F is the Be(α, β) cdf.

As a final illustration, consider the goodness of fit approach proposed by
Robert and Rousseau (2002). The central problem is to test whether or not
a given parametric model is compatible with the data at hand. If the null
hypothesis holds, the cdf distribution of the sample is U (0, 1). When it
does not hold, the cdf can be any cdf on [0, 1]. The choice made in Robert
and Rousseau (2002) is to use a general mixture of Beta distributions,

(1.6) p0 U (0, 1) + (1− p0)
K∑

k=1

pk Be(αk, βk) ,

to represent the alternative by singling out the U (0, 1) component, which
also is a Be(1, 1) density. Robert and Rousseau (2002) prove the consis-
tency of this approximation for a large class of densities on [0, 1], a class
that obviously contains the continuous bounded densities already well-
approximated by Bernstein polynomials. Given that this is an approxi-
mation of the true distribution, the number of components in the mixture
is unknown and needs to be estimated. Figure 3 shows a few densities cor-
responding to various choices of K and pk, αk, βk. Depending on the range
of the (αk, βk)’s, different behaviours can be observed in the vicinities of
0 and 1, with much more variability than with the Bernstein prior which
restricts the (αk, βk)’s to be integers.

An alternative to mixtures of Beta distributions for modelling unknown
distributions is considered in Perron and Mengersen (2001) in the context
of non-parametric regression. Here, mixtures of triangular distributions are
used instead and compare favourably with Beta equivalents for certain
types of regression, particularly those with sizeable jumps or changepoints.

1.2.4 Reading

Very early references to mixture modelling start with Pearson (1894), even
though earlier writings by Quetelet and other 19th century statisticians
mention these objects and sometimes try to recover the components. Early
(modern) references to mixture modelling include Dempster, Laird and
Rubin (1977), who considered maximum likelihood for incomplete data via
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FIGURE 2. Realisations from the
Bernstein prior when K ∼ P(λ) and
F is the Be(α, β) cdf for various val-
ues of (λ, α, β).
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FIGURE 3. Some beta mixture den-
sities for K = 10 (upper row),
K = 100 (central row) and K = 500
(lower row).

the EM algorithm. In the 1980’s, increasing interest in mixtures included
Bayesian analysis of simple mixture models (Bernardo and Giron, 1988),
stochastic EM derived for the mixture problem (Celeux and Diebolt, 1985),
and approximation of priors by mixtures of natural conjugate priors (Red-
ner and Walker, 1984). The 1990’s saw an explosion of publications on the
topic, with many papers directly addressing mixture estimation and many
more using mixtures of distributions as in, e.g., Kim et al. (1998). Semi-
nal texts for finite mixture distributions include Titterington, Smith and
Makov (1985), McLachlan and Basford (1987), and McLachlan and Peel
(2000).

1.3 The mixture conundrum

If these finite mixture models are so easy to construct and have such widely
recognised potential, then why are they not universally adopted? One major
obstacle is the difficulty of estimation, which occurs at various levels: the
model itself, the prior distribution and the resulting inference.

Example 1

To get a first impression of the complexity of estimating mixture distribu-
tions, consider the simple case of a two component normal mixture

(1.7) p N (µ1, 1) + (1− p)N (µ2, 1)

where the weight p 6= 0.5 is known. The parameter space is then R2 and the
parameters are identifiable: the switching phenomenon presented in Section
1.3.4 does not occur because µ1 cannot be confused with µ2 when p is known
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and different from 0.5. Nonetheless, the log-likelihood surface represented in
Figure 4 exhibits two modes: one close to the true value of the parameters
used to simulate the corresponding dataset and one being a “spurious” mode
that does not mean much in terms of the true values of the parameters, but
is always present. Obviously, if we plot the likelihood, only one mode is visible
because of the difference in the magnitudes.

−1 0 1 2 3 4

−
1

0
1

2
3

4

µ1

µ 2

FIGURE 4. R image representation of the log-likelihood of the mixture (1.7) for
a simulated dataset of 500 observations and true value (µ1, µ2, p) = (0, 2.5, 0.7).

1.3.1 Combinatorics

As noted earlier, the likelihood function (1.4) leads to kn terms when the
inner sums are expanded. While this expansion is not necessary to compute
the likelihood at a given value

(
θ, p

)
, which is feasible in O(nk) operations

as demonstrated by the representation in Figure 4, the computational dif-
ficulty in using the expanded version of (1.4) precludes analytic solutions
via maximum likelihood or Bayes estimators (Diebolt and Robert 1990b).
Indeed, let us consider the case of n iid observations from model (1.2)
and let us denote by π

(
θ, p

)
the prior distribution on

(
θ, p

)
. The posterior

distribution is then

(1.8) π
(
θ, p|x) ∝




n∏

i=1

k∑

j=1

pjf (xi|θj)


 π

(
θ, p

)
.

Example 2
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As an illustration of this frustrating combinatoric explosion, consider the case
of n observations x = (x1, . . . , xn) from a normal mixture

(1.9) pϕ(x; µ1, σ1) + (1− p)ϕ(x; µ2, σ2)

under the pseudo-conjugate priors (i = 1, 2)

µi|σi ∼ N (ζi, σ
2
i /λi), σ−2

i ∼ G a(νi/2, s2
i /2), p ∼ Be(α, β) ,

where G a(ν, s) denotes the Gamma distribution. Note that the hyperparame-
ters ζi, σi, νi, si, α and β need to be specified or endowed with an hyperprior
when they cannot be specified. In this case θ =

(
µ1, µ2, σ

2
1 , σ2

2

)
, p = p and

the posterior is

π (θ, p|x) ∝
n∏

j=1

{pϕ(xj ; µ1, σ1) + (1− p)ϕ(xj ;µ2, σ2)}π (θ, p) .

This likelihood could be computed at a given value (θ, p) in O(2n) oper-
ations. Unfortunately, the computational burden is that there are 2n terms
in this sum and it is impossible to give analytical derivations of maximum
likelihood and Bayes estimators.

We will now present another decomposition of expression (1.8) which
shows that only very few values of the kn terms have a non-negligible
influence. Let us consider the auxiliary variables z = (z1, . . . , zn) which
identify to which component the observations x = (x1, . . . , xn) belong.
Moreover, let us denote by Z the set of all kn allocation vectors z. The set Z
has a rich and interesting structure. In particular, for k labeled components,
we can decompose Z into a partition of sets as follows. For a given allocation
vector (n1, . . . , nk), where n1 + . . . + nk = n, let us define the set

Zi =

{
z :

n∑

i=1

Izi=1 = n1, . . . ,

n∑

i=1

Izi=k = nk

}

which consists of all allocations with the given allocation vector (n1, . . . , nk),
relabelled by i ∈ N. The number of nonnegative integer solutions of the de-
composition of n into k parts such that n1 + . . . + nk = n is equal to

r =
(

n + k − 1
n

)
.

Thus, we have the partition Z = ∪r
i=1Zi. Although the total number of el-

ements of Z is the typically unmanageable kn, the number of partition sets
is much more manageable since it is of order nk−1/(k − 1)!. The posterior
distribution can be written as

(1.10) π
(
θ, p|x)

=
r∑

i=1

∑

z∈Zi

ω (z)π
(
θ, p|x, z

)
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where ω (z) represents the posterior probability of the given allocation z.
Note that with this representation, a Bayes estimator of

(
θ, p

)
could be

written as

(1.11)
r∑

i=1

∑

z∈Zi

ω (z)Eπ
[
θ, p|x, z

]

This decomposition makes a lot of sense from an inferential point of view:
the Bayes posterior distribution simply considers each possible allocation
z of the dataset, allocates a posterior probability ω (z) to this allocation,
and then constructs a posterior distribution for the parameters conditional
on this allocation. Unfortunately, as for the likelihood, the computational
burden is that there are kn terms in this sum. This is even more frustrating
given that the overwhelming majority of the posterior probabilities ω (z)
will be close to zero. In a Monte Carlo study, Casella et al. (2000) have
showed that the non-negligible weights correspond to very few values of
the partition sizes. For instance, the analysis of a dataset with k = 4
components, presented in Example 4 below, leads to the set of allocations
with the partition sizes (n1, n2, n3, n4) = (7, 34, 38, 3) with probability 0.59
and (n1, n2, n3, n4) = (7, 30, 27, 18) with probability 0.32, with no other
size group getting a probability above 0.01.

Example 1 (continued)

In the special case of model (1.7), if we take the same normal prior on
both µ1 and µ2, µ1, µ2 ∼ N (0, 10) , the posterior weight associated with an
allocation z for which l values are attached to the first component, ie such
that

∑n
i=1 Izi=1 = l, will simply be

ω (z) ∝
√

(l + 1/4)(n− l + 1/4) pl(1− p)n−l,

because the marginal distribution of x is then independent of z. Thus, when the
prior does not discriminate between the two means, the posterior distribution
of the allocation z only depends on l and the repartition of the partition size
l simply follows a distribution close to a binomial B(n, p) distribution. If,
instead, we take two different normal priors on the means,

µ1 ∼ N (0, 4) , µ2 ∼ N (2, 4) ,

the posterior weight of a given allocation z is now

ω (z) ∝
√

(l + 1/4)(n− l + 1/4) pl(1− p)n−l×
exp

{−[(l + 1/4)ŝ1 (z) + l{x̄1 (z)}2/4]/2
}×

exp
{−[(n− l + 1/4)ŝ2 (z) + (n− l){x̄2 (z)− 2}2/4]/2

}
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where

x̄1 (z) =
1
l

n∑

i=1

Izi=1xi, x̄2 (z) =
1

n− l

n∑

i=1

Izi=2xi

ŝ1 (z) =
n∑

i=1

Izi=1 (xi − x̄1 (z))2 , ŝ2 (z) =
n∑

i=1

Izi=2 (xi − x̄2 (z))2 .

This distribution obviously depends on both z and the dataset. While the
computation of the weight of all partitions of size l by a complete listing of the
corresponding z’s is impossible when n is large, this weight can be approximated
by a Monte Carlo experiment, when drawing the z’s at random. For instance, a
sample of 45 points simulated from (1.7) when p = 0.7, µ1 = 0 and µ2 = 2.5
leads to l = 23 as the most likely partition, with a weight approximated by
0.962. Figure 5 gives the repartition of the log ω (z)’s in the cases l = 23
and l = 27. In the latter case, the weight is approximated by 4.56 10−11.
(The binomial factor

(
n
l

)
that corresponds to the actual number of different

partitions with l allocations to the first component was taken into account for
the approximation of the posterior probability of the partition size.) Note that
both distributions of weights are quite concentrated, with only a few weights
contributing to the posterior probability of the partition. Figure 6 represents
the 10 highest weights associated with each partition size ` and confirms the
observation by Casella et al. (2000) that the number of likely partitions is quite
limited. Figure 7 shows how observations are allocated to each component in
an occurrence where a single5 allocation z took all the weight in the simulation
and resulted in a posterior probability of 1.

1.3.2 The EM algorithm

For maximum likelihood computations, it is possible to use numerical op-
timisation procedures like the EM algorithm (Dempster et al. 1977), but
these may fail to converge to the major mode of the likelihood, as illus-
trated below. Note also that, for location-scale problems, it is most often
the case that the likelihood is unbounded and therefore the resultant like-
lihood estimator is only a local maximum For example, in (1.3), the limit
of the likelihood (1.4) is infinite if σ1 goes to 0.

Let us recall here the form of the EM algorithm, for later connections with
the Gibbs sampler and other MCMC algorithms. This algorithm is based
on the missing data representation introduced in Section 1.2.2, namely that

5Note however that, given this extreme situation, the output of the simulation
experiment must be taken with a pinch of salt: while we simulated a total of about
450, 000 permutations, this is to be compared with a total of 245 permutations
many of which could have a posterior probability at least as large as those found
by the simulations.
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FIGURE 5. Comparison of the distribution of the ω (z)’s (up to an additive
constant) when l = 23 and when l = 29 for a simulated dataset of 45 observations
and true values (µ1, µ2, p) = (0, 2.5, 0.7).
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FIGURE 6. Ten highest log-weights ω (z) (up to an additive constant) found
in the simulation of random allocations for each partition size l for the same
simulated dataset as in Figure 5. (Triangles represent the highest weights.)

−2 −1 0 1 2 3 4

0.0
0.1

0.2
0.3

0.4
0.5

FIGURE 7. Histogram, true components, and most likely allocation found over
440, 000 simulations of z’s for a simulated dataset of 45 observations and true
values as in Figure 5. Full dots are associated with observations allocated to
the first component and empty dots with observations allocated to the second
component.
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the distribution of the sample x can be written as

f(x|θ) =
∫

g(x, z|θ) dz

=
∫

f(x|θ) k(z|x, θ) dz(1.12)

leading to a complete (unobserved) log-likelihood

Lc(θ|x, z) = L(θ|x) + log k(z|x, θ)

where L is the observed log-likelihood. The EM algorithm is then based on
a sequence of completions of the missing variables z based on k(z|x, θ) and
of maximisations of the expected complete log-likelihood (in θ):

General EM algorithm

0. Initialization: choose θ(0),

1. Step t. For t = 1, . . .

1.1 The E-step, compute

Q
(
θ|θ(t−1), x

)
= Eθ(t−1) [logLc (θ|x,Z)] ,

where Z ∼ k
(
z|θ(t−1), x

)
.

1.2 The M-step, maximize Q
(
θ|θ(t−1), x

)
in θ and take

θ(t) = arg max
θ

Q
(
θ|θ(t−1), x

)
.

The result validating the algorithm is that, at each step, the observed
L(θ|x) increases.

Example 1 (continued)

For an illustration in our setup, consider again the special mixture of normal
distributions (1.7) where all parameters but θ = (µ1, µ2) are known. For a
simulated dataset of 500 observations and true values p = 0.7 and (µ1, µ2) =
(0, 2.5), the log-likelihood is still bimodal and running the EM algorithm on
this model means, at iteration t, computing the expected allocations

z
(t−1)
i = P(Zi = 1|x, θ(t−1))
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in the E-step and the corresponding posterior means

µ
(t)
1 =

n∑

i=1

(
1− z

(t−1)
i

)
xi

/ n∑

i=1

(
1− z

(t−1)
i

)

µ
(t)
2 =

n∑

i=1

z
(t−1)
i xi

/ n∑

i=1

z
(t−1)
i

in the M-step. As shown on Figure 8 for five runs of EM with starting points
chosen at random, the algorithm always converges to a mode of the likeli-
hood but only two out of five sequences are attracted by the higher and more
significant mode, while the other three go to the lower spurious mode (even
though the likelihood is considerably smaller). This is because the starting
points happened to be in the domain of attraction of the lower mode.

−1 0 1 2 3 4

−1
0

1
2

3
4

µ1

µ 2

FIGURE 8. Trajectories of five runs of the EM algorithm on the log-likelihood
surface, along with R contour representation.

1.3.3 An inverse ill-posed problem

Algorithmically speaking, mixture models belong to the group of inverse
problems, where data provide information on the parameters only indi-
rectly, and, to some extent, to the class of ill-posed problems, where small
changes in the data may induce large changes in the results. In fact, when
considering a sample of size n from a mixture distribution, there is a non-
zero probability (1 − pi)n that the ith component is empty, holding none
of the random variables. In other words, there always is a non-zero proba-
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bility that the sample brings no information6 about the parameters of one
or more components! This explains why the likelihood function may be-
come unbounded and also why improper priors are delicate to use in such
settings (see below).

1.3.4 Identifiability

A basic feature of a mixture model is that it is invariant under permutation
of the indices of the components. This implies that the component param-
eters θi are not identifiable marginally: we cannot distinguish component 1
(or θ1) from component 2 (or θ2) from the likelihood, because they are ex-
changeable. While identifiability is not a strong issue in Bayesian statistics,7

this particular identifiability feature is crucial for both Bayesian inference
and computational issues. First, in a k component mixture, the number
of modes is of order O(k!) since, if (θ1, . . . , θk) is a local maximum, so is
(θσ(1), . . . , θσ(k)) for every permutation σ ∈ Sn. This makes maximisation
and even exploration of the posterior surface obviously harder. Moreover, if
an exchangeable prior is used on θ = (θ1, . . . , θk), all the marginals on the
θi’s are identical, which means for instance that the posterior expectation
of θ1 is identical to the posterior expectation of θ2. Therefore, alternatives
to posterior expectations must be constructed as pertinent estimators.

This problem, often called “label switching”, thus requires either a spe-
cific prior modelling or a more tailored inferential approach. A näıve answer
to the problem found in the early literature is to impose an identifiability
constraint on the parameters, for instance by ordering the means (or the
variances or the weights) in a normal mixture (1.3). From a Bayesian point
of view, this amounts to truncating the original prior distribution, going
from π

(
θ, p

)
to

π
(
θ, p

)
Iµ1≤...≤µk

for instance. While this seems innocuous (because indeed the sampling
distribution is the same with or without this indicator function), the in-
troduction of an identifiability constraint has severe consequences on the
resulting inference, both from a prior and from a computational point of
view. When reducing the parameter space to its constrained part, the im-
posed trunctation has no reason to respect the topology of either the prior
or of the likelihood. Instead of singling out one mode of the posterior, the
constrained parameter space may then well include parts of several modes
and the resulting posterior mean may for instance lay in a very low proba-
bility region, while the high posterior probability zones are located at the

6This is not contradictory with the fact that the Fisher information of a mix-
ture model is well defined (Titterington et al. 1985).

7This is because it can be either imposed at the level of the prior distribution
or bypassed for prediction purposes.
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FIGURE 9. Distributions of θ(1), θ(10), and θ(19), compared with the N (0, 1)
prior.

boundaries of this space. In addition, the constraint may radically modify
the prior modelling and come close to contradicting the prior information.
For instance, Figure 9 gives the marginal distributions of the ordered ran-
dom variables θ(1), θ(10), and θ(19), for a N (0, 1) prior on θ1, . . . , θ19. The
comparison of the observed distribution with the original prior N (0, 1)
clearly shows the impact of the ordering. For large values of k, the in-
troduction of a constraint also has a consequence on posterior inference:
with many components, the ordering of components in terms of one of its
parameters is unrealistic. Some components will be close in mean while
others will be close in variance or in weight. As demonstrated in Celeux
et al. (2000), this may lead to very poor estimates of the distribution in the
end. One alternative approach to this problem include reparametrisation,
as discussed below in Section 1.3.5. Another one is to select one of the k!
modal regions of the posterior distribution and do the relabelling in terms
of proximity to this region, as in Section 1.4.1.

If the index identifiability problem is solved by imposing an identifiability
constraint on the components, most mixture models are identifiable, as
described in detail in both Titterington et al. (1985) and MacLachlan and
Peel (2000).

1.3.5 Choice of priors

The representation of a mixture model as in (1.2) precludes the use of
independent improper priors,

π (θ) =
k∏

i=1

πi(θi) ,
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since, if ∫
πi(θi)dθi = ∞

then for every n, ∫
π(θ, p|x)dθdp = ∞

because, among the kn terms in the expansion of π(θ, p|x), there are (k−1)n

with no observation allocated to the i-th component and thus a conditional
posterior π(θi|x, z) equal to the prior πi(θi).

The inability to use improper priors can be seen by some as a marginalia,
that is, a fact of little importance, since proper priors with large variances
can be used instead.8 However, since mixtures are ill-posed problems, this
difficulty with improper priors is more of an issue, given that the influence
of a particular proper prior, no matter how large its variance, cannot be
truly assessed.

There is still a possibility of using improper priors in mixture models,
as demonstrated by Mengersen and Robert (1996), simply by adding some
degree of dependence between the components. In fact, it is quite easy to
argue against independence in mixture models, because the components
are only defined in relation with one another. For the very reason that ex-
changeable priors lead to identical marginal posteriors on all components,
the relevant priors must contain the information that components are dif-
ferent to some extent and that a mixture modelling is necessary.

The proposal of Mengersen and Robert (1996) is to introduce first a
common reference, namely a scale, location, or location-scale parameter.
This reference parameter θ0 is related to the global size of the problem and
thus can be endowed with a improper prior: informally, this amounts to
first standardising the data before estimating the component parameters.
These parameters θi can then be defined in terms of departure from θ0, as for
instance in θi = θ0 +ϑi. In Mengersen and Robert (1996), the θi’s are more
strongly tied together by the representation of each θi as a perturbation of
θi−1, with the motivation that, if a k component mixture model is used, it
is because a (k − 1) component model would not fit, and thus the (k − 1)-
th component is not sufficient to absorb the remaining variability of the
data but must be split into two parts (at least). For instance, in the normal
mixture case (1.3), we can consider starting from the N (µ, τ2) distribution,
and creating the two component mixture

pN (µ, τ2) + (1− p)N (µ + τθ, τ2$2) .

8This is the stance taken in the Bayesian software winBUGS where improper
priors cannot be used.
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If we need a three component mixture, the above is modified into

pN (µ, τ2) + (1− p)qN (µ + τϑ, τ2$2
1)+

(1− p)(1− q)N (µ + τϑ + τσε, τ2$2
1$

2
2).

For a k component mixture, the i-th component parameter will thus be
written as

µi = µi−1 + τi−1ϑi = µ + · · ·+ σi−1ϑi,

σi = σi−1$i = τ · · ·$i .

If, notwithstanding the warnings in Section 1.3.4, we choose to impose
identifiability constraints on the model, a natural version is to take

1 ≥ $1 ≥ . . . ≥ $k−1 .

A possible prior distribution is then

(1.13) π(µ, τ) = τ−1, p, qj ∼ U[0,1], $j ∼ U[0,1], ϑj ∼ N (0, ζ2) ,

where ζ is the only hyperparameter of the model and represents the amount
of variation allowed between two components. Obviously, other choices are
possible and, in particular, a non-zero mean could be chosen for the prior
on the ϑj ’s. Figure 10 represents a few mixtures of distributions simulated
using this prior with ζ = 10: as k increases, higher order components are
more and more concentrated, resulting in the spikes seen in the last rows.
The most important point, however, is that, with this representation, we
can use an improper prior on (µ, τ), as proved in Robert and Titterington
(1998).

These reparametrisations have been developed for Gaussian mixtures
(Roeder and Wasserman 1997), but also for exponential (Gruet et al. 1999)
and Poisson mixtures (Robert and Titterington 1998). However, these al-
ternative representations do require the artificial identifiability restrictions
criticized above, and can be unwieldy and less directly interpretable.9

In the case of mixtures of Beta distributions used for goodness of fit
testing mentioned at the end of Section 1.2.3, a specific prior distribution
is used by Robert and Rousseau (2002) in order to oppose the uniform
component of the mixture (1.6) with the other components. For the uniform
weight,

p0 ∼ Be(0.8, 1.2),
favours small values of p0, since the distribution Be(0.8, 1.2) has an infinite
mode at 0, while pk is represented as (k = 1, . . . , K)

pk =
ωk∑K
i=1 ωi

, ωk ∼ Be(1, k),

9It is actually possible to generalise the U[0,1] prior on $j by assuming that
either $j or 1/$j are uniform U[0,1], with equal probability. This was tested in
Robert and Mengersen (1999).
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FIGURE 10. Normal mixtures simulated using the Mengersen and Robert (1996)
prior for ζ = 10, µ = 0, τ = 1 and k = 2 (first row), k = 5 (second row), k = 15
(third row) and k = 50 (last row).

for parsimony reasons (so that higher order components are less likely) and
the prior

(αk, εk) ∼ {
1− exp

[−θ
{
(αk − 2)2 + (εk − .5)2

}]}

× exp
[−ζ/{α2

kεk(1− εk)} − κα2
k/2

]
(1.14)

is chosen for the (αk, εk)’s, where (θ, ζ, κ) are hyperparameters. This form10

is designed to avoid the (α, ε) = (2, 1/2) region for the parameters of the
other components.

1.3.6 Loss functions

As noted above, if no identifying constraint is imposed in the prior or on the
parameter space, it is impossible to use the standard Bayes estimators on
the parameters, since they are identical for all components. As also pointed
out, using an identifying constraint has some drawbacks for exploring the
parameter space and the posterior distribution, as the constraint may well
be at odds with the topology of this distribution. In particular, stochastic
exploration algorithms may well be hampered by such constraints if the
region of interest happens to be concentrated on boundaries of the con-
strained region.

Obviously, once a sample has been produced from the unconstrained pos-
terior distribution, for instance by an MCMC sampler (Section 1.4), the
ordering constraint can be imposed ex post, that is, after the simulations

10The reader must realise that there is a lot of arbitrariness involved in this
particular choice, which simply reflects the limited amount of prior information
available for this problem.
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order p1 p2 p3 θ1 θ2 θ3 σ1 σ2 σ3

p 0.231 0.311 0.458 0.321 -0.55 2.28 0.41 0.471 0.303
θ 0.297 0.246 0.457 -1.1 0.83 2.33 0.357 0.543 0.284
σ 0.375 0.331 0.294 1.59 0.083 0.379 0.266 0.34 0.579
true 0.22 0.43 0.35 1.1 2.4 -0.95 0.3 0.2 0.5

TABLE 1.1. Estimates of the parameters of a three component normal mixture,
obtained for a simulated sample of 500 points by re-ordering according to one of
three constraints, p : p1 < p2 < p3, µ : µ1 < µ2 < µ3, or σ : σ1 < σ2 < σ3.
(Source: Celeux et al. 2000)

have been completed, for estimation purposes (Stephens 1997). Therefore,
the simulation hindrance created by the constraint can be completely by-
passed. However, the effects of different possible ordering constraints on the
same sample are not innocuous, since they lead to very different estima-
tions. This is not absolutely surprising given the preceding remark on the
potential clash between the topology of the posterior surface and the shape
of the ordering constraints: computing an average under the constraint may
thus produce a value that is unrelated to the modes of the posterior. In
addition, imposing a constraint on one and only one of the different types
of parameters (weights, locations, scales) may fail to discriminate between
some components of the mixture.

This problem is well-illustrated by Table 1.1 of Celeux et al. (2000).
Depending on which order is chosen, the estimators vary widely and, more
importantly, so do the corresponding plug-in densities, that is, the densities
in which the parameters have been replaced by the estimate of Table 1.1,
as shown by Figure 11. While one of the estimations is close to the true
density (because it happens to differ widely enough in the means), the two
others are missing one of the three modes altogether!

Empirical approaches based on clustering algorithms for the parameter
sample are proposed in Stephens (1997) and Celeux et al. (2000), and they
achieve some measure of success on the examples for which they have been
tested. We rather focus on another approach, also developed in Celeux et al.
(2000), which is to call for new Bayes estimators, based on appropriate loss
functions.

Indeed, if L((θ, p), (θ̂, p̂)) is a loss function for which the labeling is im-
material, the corresponding Bayes estimator (θ̂, p̂)∗

(1.15) (θ̂, p̂)∗ = arg min
(θ̂,p̂)

E(θ,p)|x
[
L((θ, p), (θ̂, p̂))

]

will not face the same difficulties as the posterior average.
A first loss function for the estimation of the parameters is based on an

image representation of the parameter space for one component, like the
(p, µ, σ) space for normal mixtures. It is loosely based on the Baddeley ∆
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FIGURE 11. Comparison of the plug-in densities for the estimations of Table 1.1
and of the true density (full line).

metric (Baddeley 1992). The idea is to have a collection of reference points
in the parameter space, and, for each of these to calculate the distance to
the closest parameter point for both sets of parameters. If t1, . . . , tn denote
the collection of reference points, which lie in the same space as the θi’s,
and if d(ti, θ) is the distance between ti and the closest of the θi’s, the (L2)
loss function reads as follows:

(1.16) L((θ, p), (θ̂, p̂)) =
n∑

i=1

(d(ti, (θ, p))− d(ti, (θ̂, p̂)))2.

That is, for each of the fixed points ti, there is a contribution to the loss if
the distance from ti to the nearest θj is not the same as the distance from
ti to the nearest θ̂j .

Clearly the choice of the ti’s plays an important role since we want
L((θ, p), (θ̂, p̂)) = 0 only if (θ, p) = (θ̂, p̂), and for the loss function to re-
spond appropriately to changes in the two point configurations. In order to
avoid the possibility of zero loss between two configurations which actually
differ, it must be possible to determine (θ, p) from the {ti} and the corre-
sponding

{
d(ti, (θ, p))

}
. For the second desired property, the ti’s are best

positioned in high posterior density regions of the (θj , pj)’s space. Given
the complexity of the loss function, numerical maximisation techniques like
simulated annealing must be used (see Celeux et al. 2000).

When the object of inference is the predictive distribution, more global
loss functions can be devised to measure distributional discrepancies. One
such possibility is the integrated squared difference

(1.17) L((θ, p), (θ̂, p̂)) =
∫

R
(f(θ,p)(y)− f(θ̂,p̂)(y))2dy ,
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where f(θ,p) denotes the density of the mixture (1.2). Another possibility
is a symmetrised Kullback-Leibler distance

L((θ, p), (θ̂, p̂)) =
∫

R

{
f(θ,p)(y) log

f(θ,p)(y)

f(θ̂,p̂)(y)

+ f(θ̂,p̂)(y) log
f(θ̂,p̂)(y)

f(θ,p)(y)

}
dy ,(1.18)

as in Mengersen and Robert (1996). We refer again to Celeux et al. (2000)
for details on the resolution of the minimisation problem and on the per-
formance of both approaches.

1.4 Inference for mixtures models with known
number of components

Mixture models have been at the source of many methodological develop-
ments in computational Statistics. Besides the seminal work of Dempster
et al. (1977), see Section 1.3.2, we can point out the Data Augmentation
method proposed by Tanner and Wong (1987) which appears as a forerun-
ner of the Gibbs sampler of Gelfand and Smith (1990). This section covers
three Monte Carlo or MCMC (Markov chain Monte Carlo) algorithms that
are customarily used for the approximation of posterior distributions in
mixture settings, but it first discusses in Section 1.4.1 the solution chosen
to overcome the label-switching problem.

1.4.1 Reordering

For the k-component mixture (1.2), with n iid observations x = (x1, . . . , xn),
we assume that the densities f (·|θi) are known up to a parameter θi. In this
section, the number of components k is known. (The alternative situation
in which k is unknown will be addressed in the next section.)

As detailed in Section 1.3.1, the fact that the expansion of the likelihood
(1.2) is of complexity O(kn) prevents an analytical derivation of Bayes
estimators: equation (1.11) shows that a posterior expectation is a sum of
kn terms which correspond to the different allocations of the observations
xi and, therefore, is never available in closed form.

Section 1.3.4 discussed the drawbacks of imposing identifiability ordering
constraints on the parameter space. We thus consider an unconstrained pa-
rameter space, which implies that the posterior distribution has a multiple
of k! different modes. To derive proper estimates of the parameters of (1.2),
we can thus opt for one of two strategies: either use a loss function as in
Section 1.3.6, for which the labeling is immaterial or impose a reordering
constraint ex-post, that is, after the simulations have been completed, and
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then use a loss function depending on the labeling.
While the first solution is studied in Celeux et al. (2000), we present the

alternative here, mostly because the implementation is more straightfor-
ward: once the simulation output has been reordered, the posterior mean
is approximated by the empirical average. Reordering schemes that do not
face the difficulties linked to a forced ordering of the means (or other quan-
tities) can be found in Stephens (1997) and Celeux et al. (2000), but we
use here a new proposal that is both straightforward and very efficient.

For a permutation τ ∈ Sk, set of all permutations of {1, . . . , k}, we
denote by

τ(θ, p) =
{
(θτ(1), . . . , θτ(k)), (pτ(1), . . . , pτ(k))

}
.

the corresponding permutation of the parameter (θ, p) and we implement
the following reordering scheme, based on a simulated sample of size M ,

(i) compute the pivot (θ, p)(i
∗) such that

i∗ = arg max
i=1,...,M

π((θ, p)(i)|x)

that is, a Monte Carlo approximation of the Maximum a Posteriori
(MAP) estimator11 of (θ, p).

(ii) For i ∈ {1, . . . , M}:
1. Compute

τi = arg min
τ∈Sk

〈
τ((θ, p)(i)), (θ, p)(i

∗)
〉

2k

where < ·, · >l denotes the canonical scalar product of Rl

2. Set (θ, p)(i) = τi((θ, p)(i)).

The step (ii) chooses the reordering that is the closest to the approx-
imate MAP estimator and thus solves the identifiability problem with-
out requiring a preliminary and most likely unnatural ordering on one of
the parameters of the model. Then, after the reordering step, the Monte
Carlo estimation of the posterior expectation of θi, Eπ

x(θi), is given by∑M
j=1(θi)(j)

/
M .

1.4.2 Data augmentation and Gibbs sampling approximations

The Gibbs sampler is the most commonly used approach in Bayesian mix-
ture estimation (Diebolt and Robert 1990a, 1994, Lavine and West 1992,
Verdinelli and Wasserman 1992, Chib 1995, Escobar and West 1995). In

11Note that the pivot is itself a good estimator.
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fact, a solution to the computational problem is to take advantage of the
missing data introduced in Section 1.2.2, that is, to associate with each
observation xj a missing multinomial variable zj ∼ Mk(1; p1, . . . , pk) such
that xj |zj = i ∼ f(x|θi). Note that in heterogeneous populations made of
several homogeneous subgroups, it makes sense to interpret zj as the index
of the population of origin of xj , which has been lost in the observational
process. In the alternative non-parametric perspective, the components of
the mixture and even the number k of components in the mixture are of-
ten meaningless for the problem to be analysed. However, this distinction
between natural and artificial completion is lost to the MCMC sampler,
whose goal is simply to provide a Markov chain that converges to the pos-
terior distribution. Completion is thus, from a simulation point of view, a
means to generate such a chain.

Recall that z = (z1, . . . , zn) and denote by π(p|z, x) the density of the
distribution of p given z and x. This distribution is in fact independent of x,
π(p|z, x) = π(p|z). In addition, denote π(θ|z, x) the density of the distribu-
tion of θ given (z, x). The most standard Gibbs sampler for mixture models
(1.2) (Diebolt and Robert 1994) is based on the successive simulation of z,
p and θ conditional on one another and on the data:

General Gibbs sampling for mixture models

0. Initialization: choose p(0) and θ(0) arbitrarily

1. Step t. For t = 1, . . .

1.1 Generate z
(t)
i (i = 1, . . . , n) from (j = 1, . . . , k)

P
(
z
(t)
i = j|p(t−1)

j , θ
(t−1)
j , xi

)
∝ p

(t−1)
j f

(
xi|θ(t−1)

j

)

1.2 Generate p(t) from π(p|z(t)),

1.3 Generate θ(t) from π(θ|z(t), x).

Given that the density f most often belongs to an exponential family,

(1.19) f(x|θ) = h(x) exp(< r(θ), t(x) >k −φ(θ))

where h is a function from R to R+, r and t are functions from Θ and R to
Rk, the simulation of both p and θ is usually straightforward. In this case,
a conjugate prior on θ (Robert 2001) is given by

(1.20) π(θ) ∝ exp(< r(θ), α >k −βφ(θ)) ,

where α ∈ Rk and β > 0 are given hyperparameters. For a mixture of
distributions (1.19), it is therefore possible to associate with each θj a
conjugate prior πj (θj) with hyperparameters αj , βj . We also select for p
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the standard Dirichlet conjugate prior, p ∼ D (γ1, . . . , γk). In this case,
p|z ∼ D (n1 + γ1, . . . , nk + γk) and

π(θ|z, x) ∝
k∏

j=1

exp

(
< r(θj), α +

n∑

i=1

Izi=jt(xi) >k −φ(θj)(nj + β)

)

where nj =
n∑

l=1

Izl=j . The two steps of the Gibbs sampler are then:

Gibbs sampling for exponential family mixtures

0. Initialization. Choose p(0) and θ(0),

1. Step t. For t = 1, . . .

1.1 Generate z
(t)
i (i = 1, . . . , n, j = 1, . . . , k) from

P
(
z
(t)
i = j|p(t−1)

j , θ
(t−1)
j , xi

)
∝ p

(t−1)
j f

(
xi|θ(t−1)

j

)

1.2 Compute n
(t)
j =

∑n
i=1 Iz(t)

i =j
, s

(t)
j =

∑n
i=1 Iz(t)

i =j
t(xi)

1.3 Generate p(t) from D (γ1 + n1, . . . , γk + nk),

1.4 Generate θ
(t)
j (j = 1, . . . , k) from

π(θj |z(t), x) ∝ exp
(
< r(θj), α + s

(t)
j >k −φ(θj)(nj + β)

)
.

As with all Monte Carlo methods, the performance of the above MCMC
algorithms must be evaluated. Here, performance comprises a number of
aspects, including the autocorrelation of the simulated chains (since high
positive autocorrelation would require longer simulation in order to obtain
an equivalent number of independent samples and ‘sticky’ chains will take
much longer to explore the target space) and Monte Carlo variance (since
high variance reduces the precision of estimates). The integrated autocorre-
lation time provides a measure of these aspects. Obviously, the convergence
properties of the MCMC algorithm will depend on the choice of distribu-
tions, priors and on the quantities of interest. We refer to Mengersen et al.
(1999) and Robert and Casella (2004, Chapter 12), for a description of the
various convergence diagnostics that can be used in practice.

It is also possible to exploit the latent variable representation (1.5) when
evaluating convergence and performance of the MCMC chains for mixtures.
As detailed by Robert (1998a), the ‘duality’ of the two chains (z(t)) and
(θ(t)) can be considered in the strong sense of data augmentation (Tanner
and Wong 1987, Liu et al. 1994) or in the weaker sense that θ(t) can be
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derived from z(t). Thus probabilistic properties of (z(t)) transfer to θ(t). For
instance, since z(t) is a finite state space Markov chain, it is uniformly geo-
metrically ergodic and the Central Limit Theorem also applies for the chain
θ(t). Diebolt and Robert (1993, 1994) termed this the ‘Duality Principle’.

In this respect, Diebolt and Robert (1990b) have shown that the näıve
MCMC algorithm that employs Gibbs sampling through completion, while
appealingly straightforward, does not necessarily enjoy good convergence
properties. In fact, the very nature of Gibbs sampling may lead to “trap-
ping states”, that is, concentrated local modes that require an enormous
number of iterations to escape from. For example, components with a small
number of allocated observations and very small variance become so tightly
concentrated that there is very little probability of moving observations in
or out of them. So, even though the Gibbs chain (z(t), θ(t)) is formally
irreducible and uniformly geometric, as shown by the above duality prin-
ciple, there may be no escape from this configuration. At another level,
as discussed in Section 1.3.1, Celeux et al. (2000) show that most MCMC
samplers, including Gibbs, fail to reproduce the permutation invariance of
the posterior distribution, that is, do not visit the k! replications of a given
mode.

Example 1 (continued)

For the mixture (1.7), the parameter space is two-dimensional, which means
that the posterior surface can be easily plotted. Under a normal prior N (δ, 1/λ)
(δ ∈ R and λ > 0 are known hyper-parameters) on both µ1 and µ2, with
sx

j =
∑n

i=1 Izi=jxi, it is easy to see that µ1 and µ2 are independent, given
(z, x), with conditional distributions

N

(
λδ + sx

1

λ + n1
,

1
λ + n1

)
and N

(
λδ + sx

2

λ + n2
,

1
λ + n2

)

respectively. Similarly, the conditional posterior distribution of z given (µ1, µ2)
is easily seen to be a product of Bernoulli rv’s on {1, 2}, with (i = 1, . . . , n)

P (zi = 1|µ1, xi) ∝ p exp
(
−0.5 (xi − µ1)

2
)

.
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Gibbs sampling for the mixture (1.7)

0. Initialization. Choose µ
(0)
1 and µ

(0)
2 ,

1. Step t. For t = 1, . . .

1.1 Generate z
(t)
i (i = 1, . . . , n) from

P
(
z
(t)
i = 1

)
= 1−P

(
z
(t)
i = 2

)
∝ p exp

(
−1

2

(
xi − µ

(t−1)
1

)2
)

1.2 Compute n
(t)
j =

n∑

i=1

I
z
(t)
i =j

and (sx
j )(t) =

n∑

i=1

I
z
(t)
i =j

xi

1.3 Generate µ
(t)
j (j = 1, 2) from N

(
λδ + (sx

j )(t)

λ + n
(t)
j

,
1

λ + n
(t)
j

)
.
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FIGURE 12. Log-posterior surface
and the corresponding Gibbs sample
for the model (1.7), based on 10, 000
iterations.
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FIGURE 13. Same graph, when ini-
tialised close to the second and lower
mode, based on 10, 000 iterations.

Figure 12 illustrates the behaviour of this algorithm for a simulated dataset
of 500 points from .7N (0, 1) + .3N (2.5, 1). The representation of the Gibbs
sample over 10, 000 iterations is quite in agreement with the posterior surface,
represented here by grey levels and contours.

This experiment gives a false sense of security about the performances of
the Gibbs sampler, however, because it does not indicate the structural de-
pendence of the sampler on the initial conditions. Because it uses conditional
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distributions, Gibbs sampling is often restricted in the width of its moves. Here,
conditioning on z implies that the proposals for (µ1, µ2) are quite concentrated
and do not allow for drastic changes in the allocations at the next step. To
obtain a significant modification of z does require a considerable number of
iterations once a stable position has been reached. Figure 13 illustrates this
phenomenon for the same sample as in Figure 12: a Gibbs sampler initialised
close to the spurious second mode (described in Figure 4) is unable to leave it,
even after a large number of iterations, for the reason given above. It is quite
interesting to see that this Gibbs sampler suffers from the same pathology as
the EM algorithm, although this is not surprising given that it is based on the
same completion.

This example illustrates quite convincingly that, while the completion
is natural from a model point of view (since it is somehow a part of the
definition of the model), the utility does not necessarily transfer to the
simulation algorithm.

Example 3

Consider a mixture of 3 univariate Poisson distributions, with an iid sample
x from

∑3
j=1 pjP(λj), where, thus, θ = (λ1, λ2, λ3) and p = (p1, p2, p3).

Under the prior distribution λj ∼ G a (αj , βj) and p ∼ D (γ1, γ2, γ3) , where
(αj , βj , γj) are known hyperparameters, λj |x, z ∼ G a

(
αj + sx

j , βj + nj

)
and

we derive the corresponding Gibbs sampler as follows:
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FIGURE 14. Evolution of the Gibbs chains over 20, 000 iterations for the Poisson
mixture model.
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Gibbs sampling for a Poisson mixture

0. Initialization. Choose p(0) and θ(0),

1. Step t. For t = 1, . . .

1.1 Generate z
(t)
i (i = 1, . . . , n) from (j = 1, 2, 3)

P
(
z
(t)
i = j

)
∝ p

(t−1)
j

(
λ

(t−1)
j

)xi

exp
(
−λ

(t−1)
j

)

Compute n
(t)
j =

n∑

i=1

I
z
(t)
i =j

and (sx
j )(t) =

n∑

i=1

I
z
(t)
i =j

xi

1.2 Generate p(t) from D
(
γ1 + n

(t)
1 , γ2 + n

(t)
2 , γ3 + n

(t)
3

)
,

1.3 Generate λ
(t)
j from G a

(
αj + (sx

j )(t), βj + n
(t)
j

)
.

The previous sample scheme has been tested on a simulated dataset with
n = 1000, λ = (2, 6, 10), p1 = 0.25 and p2 = 0.25. Figure 14 presents
the results. We observe that the algorithm reaches very quickly one mode of
the posterior distribution but then remains in its vicinity, falling victim of the
label-switching effect.

Example 4

This example deals with a benchmark of mixture estimation, the galaxy
dataset of Roeder (1992), also analyzed in Richardson and Green (1997) and
Roeder and Wasserman (1997), among others. It consists of 82 observations
of galaxy velocities. All authors consider that the galaxies velocities are reali-
sations of iid random variables distributed according to a mixture of k normal
distributions. The evaluation of the number k of components for this dataset is
quite delicate,12 since the estimates range from 3 for Roeder and Wasserman
(1997) to 5 or 6 for Richardson and Green (1997) and to 7 for Escobar and
West (1995), Phillips and Smith (1996). For illustration purposes, we follow
Roeder and Wasserman (1997) and consider 3 components, thus modelling the
data by

3∑

j=1

pjN
(
µj , σ

2
j

)
.

12In a talk at the 2000 ICMS Workshop on mixtures, Edinburgh, Radford Neal
presented convincing evidence that, from a purely astrophysical point of view,
the number of components was at least 7. He also argued against the use of a
mixture representation for this dataset!
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In this case, θ = (µ1, µ2, µ3, σ
2
1 , σ3

2 , σ2
3). As in Casella et al. (2000), we use

conjugate priors

σ2
j ∼ I G (αj , βi) , µj |σ2

j ∼ N
(
λj , σ

2
j /τj

)
, (p1, p2, p3) ∼ D (γ1, γ2, γ3) ,

where I G denotes the inverse gamma distribution and ηj , τj , αj , βj , γj are
known hyperparameters. If we denote

sv
j =

n∑

i=1

Izi=j(xi − µj)2 ,

then

µj |σ2
j , x, z ∼ N

(
λjτj + sx

j

τj + nj
,

σ2
j

τj + nj

)
,

σ2
j |µj , x, z ∼ I G

(
αj + 0.5(nj + 1), βj + 0.5τj(µj − λj)2 + 0.5sv

j

)
.

Gibbs sampling for a Gaussian mixture

0. Initialization. Choose p(0), θ(0),

1. Step t. For t = 1, . . .

1.1 Generate z
(t)
i (i = 1, . . . , n) from (j = 1, 2, 3)

P
(
z
(t)
i = j

)
∝ p

(t−1)
j

σ
(t−1)
j

exp
(
−

(
xi − µ

(t−1)
j

)2

/2
(
σ2

j

)(t−1)
)

Compute n
(t)
j =

n∑

l=1

I
z
(t)
l =j

, (sx
j )(t) =

n∑

l=1

I
z
(t)
l =j

xl

1.2 Generate p(t) from D (γ1 + n1, γ2 + n2, γ3 + n3)

1.3 Generate µ
(t)
j from

N

(
λjτj + (sx

j )(t)

τj + n
(t)
j

,

(
σ2

j

)(t−1)

τj + n
(t)
j

)

Compute
(
sv

j

)(t) =
n∑

l=1

I
z
(t)
l =j

(
xl − µ

(t)
j

)2

1.4 Generate
(
σ2

j

)(t)
(j = 1, 2, 3) from

I G

(
αj +

nj + 1
2

, βj + 0.5τj

(
µ

(t)
j − λj

)2

+ 0.5
(
sv

j

)(t)
)

.
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After 20, 000 iterations, the Gibbs sample is quite stable (although more
detailed convergence assessment is necessary and the algorithm fails to visit
the permutation modes) and, using the 5, 000 last reordered iterations, we find
that the posterior mean estimations of µ1, µ2, µ3 are equal to 9.5, 21.4, 26.8,
those of σ2

1 , σ2
2 , σ2

3 are equal to 1.9, 6.1, 34.1 and those of p1, p2, p3 are equal
to 0.09, 0.85, 0.06. Figure 15 shows the histogram of the data along with the
estimated (plug-in) density.
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FIGURE 15. Histogram of the velocity
of 82 galaxies against the plug-in esti-
mated 3 component mixture, using a
Gibbs sampler.
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FIGURE 16. Same graph, when using
a Metropolis–Hastings algorithm with
ζ2 = .01.

1.4.3 Metropolis–Hastings approximations

As shown by Figure 13, the Gibbs sampler may fail to escape the attrac-
tion of the local mode, even in a well-behaved case as Example 1 where
the likelihood and the posterior distributions are bounded and where the
parameters are identifiable. Part of the difficulty is due to the completion
scheme that increases the dimension of the simulation space and reduces
considerably the mobility of the parameter chain. A standard alternative
that does not require completion and an increase in the dimension is the
Metropolis–Hastings algorithm. In fact, the likelihood of mixture models is
available in closed form, being computable in O(kn) time, and the posterior
distribution is thus available up to a multiplicative constant.
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General Metropolis–Hastings algorithm for mixture models

0. Initialization. Choose p(0) and θ(0)

1. Step t. For t = 1, . . .

1.1 Generate (θ̃, p̃) from q
(
θ, p|θ(t−1), p(t−1)

)
,

1.2 Compute

r =
f(x|θ̃, p̃)π(θ̃, p̃)q(θ(t−1), p(t−1)|θ̃, p̃)

f(x|θ(t−1), p(t−1))π(θ(t−1), p(t−1))q(θ̃, p̃|θ(t−1), p(t−1))
,

1.3 Generate u ∼ U[0,1]

If r < u then (θ(t), p(t)) = (θ̃, p̃)
else (θ(t), p(t)) = (θ(t−1), p(t−1)).

The major difference with the Gibbs sampler is that we need to choose
the proposal distribution q, which can be a priori anything, and this is a
mixed blessing! The most generic proposal is the random walk Metropolis–
Hastings algorithm where each unconstrained parameter is the mean of the
proposal distribution for the new value, that is,

θ̃j = θ
(t−1)
j + uj

where uj ∼ N (0, ζ2). However, for constrained parameters like the weights
and the variances in a normal mixture model, this proposal is not efficient.

This is the case for the parameter p, due to the constraint that
∑k

i=1 pk = 1.
To solve the difficulty with the weights (since p belongs to the simplex of
Rk), Cappé et al. (2002) propose to overparameterise the model (1.2) as

pj = wj

/ k∑

l=1

wl , wj > 0 ,

thus removing the simulation constraint on the pj ’s. Obviously, the wj ’s
are not identifiable, but this is not a difficulty from a simulation point
of view and the pj ’s remain identifiable (up to a permutation of indices).
Perhaps paradoxically, using overparameterised representations often helps
with the mixing of the corresponding MCMC algorithms since they are
less constrained by the dataset or the likelihood. The proposed move on
the wj ’s is log(w̃j) = log(w(t−1)

j ) + uj where uj ∼ N (0, ζ2).

Example 1 (continued)
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For the posterior associated with (1.7), the Gaussian random walk proposal
is

µ̃1 ∼ N
(
µ

(t−1)
1 , ζ2

)
, and µ̃2 ∼ N

(
µ

(t−1)
2 , ζ2

)

associated with the following algorithm:

Metropolis–Hastings algorithm for model (1.7)

0. Initialization. Choose µ
(0)
1 and µ

(0)
2

1. Step t. For t = 1, . . .

1.1 Generate µ̃j (j = 1, 2) from N
(
µ

(t−1)
j , ζ2

)
,

1.2 Compute

r =
f (x|µ̃1, µ̃2, )π (µ̃1, µ̃2)

f
(
x|µ(t−1)

1 , µ
(t−1)
2

)
π

(
µ

(t−1)
1 , µ

(t−1)
2

) ,

1.3 Generate u ∼ U[0,1]

If r < u then
(
µ

(t)
1 , µ

(t)
2

)
= (µ̃1, µ̃2)

else
(
µ

(t)
1 , µ

(t)
2

)
=

(
µ

(t−1)
1 , µ

(t−1)
2

)
.

On the same simulated dataset as in Figure 12, Figure 17 shows how quickly
this algorithm escapes the attraction of the spurious mode: after a few iter-
ations of the algorithm, the chain drifts over the poor mode and converges
almost deterministically to the proper region of the posterior surface. The
Gaussian random walk is scaled as τ2 = 1, although other scales would work
as well but would require more iterations to reach the proper model regions.
For instance, a scale of 0.01 needs close to 5, 000 iterations to attain the
main mode. In this special case, the Metropolis–Hastings algorithm seems to
overcome the drawbacks of the Gibbs sampler.

Example 3 (continued)

We have tested the behaviour of the Metropolis–Hastings algorithm (same
dataset as the Gibbs), with the following proposals:

λ̃j ∼ L N
(
log(λ(t−1)

j ), ζ2
)

w̃j ∼ L N
(
log(w(t−1)

j ), ζ2
)

where L N (µ, σ2) refers to the log-normal distribution with parameters µ and
σ2.
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FIGURE 17. Track of a 10, 000 iterations random walk Metropolis–Hastings sam-
ple on the posterior surface, the starting point is equal to (2,-1). The scale of the
random walk ζ2 is equal to 1.

Metropolis–Hastings algorithm for a Poisson mixture

0. Initialization. Choose w(0) and θ(0)

1. Step t. For t = 1, . . .

1.1 Generate λ̃j from L N
(
log

(
λ

(t−1)
j

)
, ζ2

)
,

1.2 Generate w̃j from L N
(
log

(
w

(t−1)
j

)
, ζ2

)
,

1.3 Compute

r =

f
(
x|θ̃, w̃

)
π(θ̃, w̃)

3∏

j=1

λ̃jw̃j

f
(
x|θ(t−1), w(t−1)

)
π

(
θ(t−1), w(t−1)

) 3∏

j=1

λ
(t−1)
j w

(t−1)
j

,

1.4 Generate u ∼ U[0,1]

If u ≤ r then
(
θ(t), w(t)

)
= (θ̃, w̃)

else
(
θ(t), w(t)

)
=

(
θ(t−1), w(t−1)

)
.

Figure 18 shows the evolution of the Metropolis–Hastings sample for ζ2 =
0.1. Contrary to the Gibbs sampler, the Metropolis–Hastings samples visit more
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than one mode of the posterior distribution. There are three moves between
two labels in 20, 000 iterations, but the bad side of this mobility is the lack
of local exploration of the sampler: as a result, the average acceptance prob-
ability is very small and the proportions pj are very badly estimated. Figure
18 shows the effect of a smaller scale, ζ2 = 0.05, over the evolution of the
Metropolis–Hastings sample. There is no move between the different modes
but all the parameters are well estimated. If ζ2 = 0.05, the algorithm has the
same behaviour as for ζ2 = 0.01. This example illustrates both the sensitivity
of the random walk sampler to the choice of the scale parameter and the rele-
vance of using several scales to allow both for local and global explorations,13

a fact exploited in the alternative developed in Section 1.4.4.
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FIGURE 18. Evolution of the
Metropolis–Hastings sample over
20, 000 iterations (The scale ζ2 of the
random walk is equal to 0.1.)
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FIGURE 19. Same graph with a scale
ζ2 equal to 0.01.

Example 4 (continued)

We have tested the behaviour of the Metropolis–Hastings algorithm with
the following proposals:

µ̃j ∼ N
(
µ

(t−1)
j , ζ2

)
,

σ̃2
j ∼ L N

(
log

((
σ2

j

)(t−1)
)

, ζ2
)

,

13It also highlights the paradox of label-switching: when it occurs, inference
gets much more difficult, while, if it does not occur, estimation is easier but
based on a sampler that has not converged!
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w̃j ∼ L N
(
log

(
w

(t−1)
j

)
, ζ2

)
.

After 20, 000 iterations, the Metropolis–Hastings algorithm seems to con-
verge (in that the path is stable) and, by using the 5, 000 last reordered itera-
tions, we find that the posterior means of µ1, µ2, µ3 are equal to 9.6, 21.3, 28.1,
those of σ2

1 , σ2
2 , σ2

3 are equal to 1.9, 5.0, 38.6 and those of p1, p2, p3 are equal
to 0.09, 0.81, 0.1. Figure 16 shows the histogram along with the estimated
(plug-in) density.

1.4.4 Population Monte Carlo approximations

As an alternative to MCMC, Cappé et al. (2003) have shown that the im-
portance sampling technique (Robert and Casella 2004, Chapter 3) can
be generalised to encompass much more adaptive and local schemes than
thought previously, without relaxing its essential justification of provid-
ing a correct discrete approximation to the distribution of interest. This
leads to the Population Monte Carlo (PMC) algorithm, following Iba’s
(2000) denomination. The essence of the PMC scheme is to learn from ex-
perience, that is, to build an importance sampling function based on the
performances of earlier importance sampling proposals. By introducing a
temporal dimension to the selection of the importance function, an adap-
tive perspective can be achieved at little cost, for a potentially large gain
in efficiency. Celeux et al. (2003) have shown that the PMC scheme is a vi-
able alternative to MCMC schemes in missing data settings, among others
for the stochastic volatility model (Shephard 1996). Even with the stan-
dard choice of the full conditional distributions, this method provides an
accurate representation of the distribution of interest in a few iterations.
In the same way, Guillin et al. (2003) have illustrated the good properties
of this scheme on a switching ARMA model (Hamilton 1988) for which the
MCMC approximations are less satisfactory.

To construct acceptable adaptive algorithms, while avoiding an extended
study of their theoretical properties, a better alternative is to leave the set-
ting of Markov chain algorithms and to consider sequential or population
Monte Carlo methods that have much more in common with importance
sampling than with MCMC. They are inspired from particle systems that
were introduced to handle rapidly changing target distributions like those
found in signal processing and imaging (Gordon et al. 1993, Shephard and
Pitt 1997, Doucet et al. 2001) but they primarily handle fixed but complex
target distributions by building a sequence of increasingly better proposal
distributions. Each iteration of the population Monte Carlo (PMC) algo-
rithm thus produces a sample approximately simulated from the target
distribution but the iterative structure allows for adaptivity toward the
target distribution. Since the validation is based on importance sampling
principles, dependence on the past samples can be arbitrary and the ap-
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proximation to the target is valid (unbiased) at each iteration and does not
require convergence times or stopping rules.

If t indexes the iteration and i the sample point, consider proposal distri-
butions qit that simulate the θ

(i)
(t), p

(i)
(t)’s and associate to each an importance

weight

ρ
(i)
(t) =

f
(
x|θ(i)

(t), p
(i)
(t)

)
π

(
θ
(i)
(t), p

(i)
(t)

)

qit

(
θ
(i)
(t), p

(i)
(t)

) , i = 1, . . . , M

Approximations of the form

1
M

M∑

i=1

ρ
(i)
(t)∑M

l=1 ρ
(l)
(t)

h
(
θ
(i)
(t), p

(i)
(t)

)

are then approximate unbiased estimators of Eπ
x [h(θ, p)], even when the

importance distribution qit depends on the entire past of the experiment.
Since the above establishes that an simulation scheme based on sample
dependent proposals is fundamentally a specific kind of importance sam-
pling, the following algorithm is validated by the same principles as regular
importance sampling:

General Population Monte Carlo scheme

0. Initialization. Choose θ
(1)
(0), . . . , θ

(M)
(0) and p

(1)
(0), . . . , p

(M)
(0)

1. Step t. For t = 1, . . . , T

1.1 For i = 1, . . . ,M

1.1.1 Generate
(
θ
(i)
(t), p

(i)
(t)

)
from qit (θ, p),

1.1.2 Compute

ρ(i) =
f

(
x|θ(i)

(t), p
(i)
(t)

)
π

(
θ
(i)
(t), p

(i)
(t)

)

qit

(
θ
(i)
(t), p

(i)
(t)

) ,

1.2 Compute ω(i) = ρ(i)

/ M∑

l=1

ρ(l),

1.3 Resample M values with replacement from the
(
θ
(i)
(t), p

(i)
(t)

)
’s

using the weights ω(i)

Adaptivity can be extended to the individual level and the qit’s can be
chosen based on the performances of the previous qi(t−1)’s or even on all



Bayesian Modelling and Inference on Mixtures of Distributions 39

the previously simulated samples, if storage allows. For instance, the qit’s
can include large tail proposals as in the defensive sampling strategy of
Hesterberg (1998), to ensure finite variance. Similarly, Warnes’ (2001) non-
parametric Gaussian kernel approximation can be used as a proposal.

The generality in the choice of the proposal distributions qit is obviously
due to the abandonment of the MCMC framework. This is not solely a the-
oretical advantage: proposals based on the whole past of the chain do not
often work. Even algorithms validated by MCMC steps may have difficul-
ties: in one example of Cappé et al. (2003), a Metropolis–Hastings scheme
fails to converge, while a PMC algorithm based on the same proposal pro-
duces correct answers.

Example 1 (continued)

In the case of the normal mixture (1.7), a PMC sampler can be efficiently
implemented without the (Gibbs) augmentation step, using normal random
walk proposals based on the previous sample of (µ1, µ2)’s. Moreover, the diffi-
culty inherent to random walks, namely the selection of a “proper” scale, can
be bypassed by the adaptivity of the PMC algorithm. Indeed, several proposals
can be associated with a range of variances vk, k = 1, . . . , K. At each step
of the algorithm, new variances can be selected proportionally to the perfor-
mances of the scales vk on the previous iterations. For instance, a scale can
be chosen proportionally to its non-degeneracy rate in the previous iteration,
that is, the percentage of points generated with the scale vk that survived
after resampling. When the survival rate is null, in order to avoid the complete
removal of a given scale vk, the corresponding number rk of proposals with
that scale is set to a positive value, like 1% of the sample size.
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FIGURE 20. Representation of the log-posterior distribution with the PMC
weighted sample after 10 iterations (the weights are proportional to the circles
at each point).

Compared with MCMC algorithms, this algorithm can thus deal with multi-
scale proposals in an unsupervised manner. We use four different scales, v1 = 1,
v2 = 0.5, v3 = 0.1 and v4 = 0.01. We have iterated the PMC scheme 10 times
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with M = 1000 and, after 3 iterations, the two largest variances v1 and v2

most often have a zero survival rate, with, later, episodic bursts of survival
(due to the generation of values near a posterior mode and corresponding
large weights).
Population Monte Carlo for a Gaussian mixture

0. Initialization. Choose (µ1)
(1)
(0), . . . , (µ1)

(M)
(0) and (µ2)

(1)
(0), . . . , (µ2)

(M)
(0)

1. Step t. For t = 1, . . . , T

1.1 For i = 1, . . . ,M

1.1.1 Generate k from M (1; r1, . . . , rK),

1.1.2 Generate (µj)
(i)
(t) (j = 1, 2) from N

(
(µj)

(i)
(t−1) , vk

)

1.1.4 Compute

ρ(i) =
f

(
x|(µ1)

(i)
(t), (µ2)

(i)
(t)

)
π

(
(µ1)

(i)
(t), (µ2)

(i)
(t)

)

K∑

l=1

2∏

j=1

ϕ
(
(µj)

(i)
(t); (µ1)

(i)
(t−1), vl

) ,

1.2 Compute ω(i) = ρ(i)

/ M∑

l=1

ρ(l),

1.3 Resample the (µ1)
(i)
(t), (µ2)

(i)
(t)’s using the weights ω(i)

1.4 Update the rl’s: rl is proportional to the number of

(µ1)
(i)
(t), (µ2)

(i)
(t)’s with variance vl resampled.

Figure 20 shows that the sample produced by the PMC algorithm is quite
in agreement with the (significant) modal zone of the posterior distribution,
while the spurious mode is not preserved after the first iteration.

Example 3 (continued)

Based on the same multi-scale approach as earlier, the PMC scheme for the
reparameterised mixture of 3 Poisson distributions can use the same proposals
as in the Metropolis–Hastings setup. With K = 3, v1 = 1, v2 = 0.5, v3 = 0.1,
T = 10 and M = 2000, we obtain excellent results.
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1.4.5 Perfect sampling

Perfect sampling (see, e.g., Robert and Casella 2004, Chapter 13) removes
the requirement for a burn-in, since samples are guaranteed to come ex-
actly from the target distribution. Perfect sampling for mixtures of distri-
butions has been considered by Hobert et al. (1999), who show that per-
fect sampling in the mixture context is ‘delicate’. However, Casella et al.
(2002) achieve a modicum of success by focusing on exponential families
and conjugate priors, and using a perfect slice sampler in the spirit of
Mira et al. (2001). The methods rely on a marginalisation similar to Rao-
Blackwellisation and illustrate the duality principle.

1.5 Inference for mixture models with unknown
number of components

Estimation of k, the number of components in (1.2), is a special kind of
model choice problem, for which there is a number of possible solutions:

(i) Bayes factors (Kass and Raftery 1995, Richardson and Green 1997);

(ii) entropy distance or K-L divergence (Mengersen and Robert 1996,
Sahu and Cheng 2003);

(iii) reversible jump MCMC (Richardson and Green 1997, Gruet et al.
1999);

(iv) birth-and-death processes (Stephens 2000a, Cappé et al. 2002);

depending on whether the perspective is on testing or estimation. We will
focus on the latter, because it exemplifies more naturally the Bayesian
paradigm and offers a much wider scope for inference, including model
averaging in the non-parametric approach to mixture estimation.14

The two first solutions above pertain more strongly to the testing per-
spective, the entropy distance approach being based on the Kullback–
Leibler divergence between a k component mixture and its projection on
the set of k − 1 mixtures, in the same spirit as Dupuis and Robert (2003).

1.5.1 Reversible jump algorithms

When the number of components k is unknown, we have to simultaneously
consider several models Mk, with corresponding parameter sets Θk. We
thus face a collection of models with a possibly infinite parameter space

14In addition, the unusual topology of the parameter space invalidates standard
asymptotic approximations of testing procedures (Lindsay 1995).
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(and a corresponding prior distribution on this space), for which the com-
putational challenge is higher than in the previous section.

The MCMC solution proposed by Green (1995) is called reversible jump
MCMC (RJMCMC), because it is based on a reversibility constraint on the
dimension-changing moves that bridge the sets Θk. In fact, the only real
difficulty compared with previous developments is to validate moves (or
jumps) between the Θk’s, since proposals restricted to a given Θk follow
from the usual (fixed-dimensional) theory. Furthermore, reversibility can
be processed at a local level: since the model indicator µ is a integer-valued
random variable, we can impose reversibility for each pair (k1, k2) of pos-
sible values of µ. The idea at the core of reversible jump MCMC is then to
supplement each of the spaces Θk1 and Θk2 with adequate artificial spaces
in order to create a bijection between them, most often by augmenting the
space of the smaller model. For instance, if dim(Θk1) > dim(Θk2) and if
the move from Θk1 to Θk2 is chosen to be a deterministic transformation
of θ(k1)

θ(k2) = Tk1→k2(θ
(k1)) ,

Green (1995) imposes a reversibility condition which is that the opposite
move from Θk2 to Θk1 is concentrated on the curve

{
θ(k1) : θ(k2) = Tk1→k2(θ

(k1))
}

.

In the general case, if θ(k1) is completed by a simulation u1 ∼ g1(u1) into
(θ(k1), u1) and θ(k2) by u2 ∼ g2(u2) into (θ(k2), u2) so that the mapping
between (θ(k1), u1) and (θ(k2), u2) is a bijection,

(1.21) (θ(k2), u2) = Tk1→k2(θ
(k1), u1),

the probability of acceptance for the move from model Mk1 to model Mk2

is then

min
(

π(k2, θ
(k2))

π(k1, θ(k1))
π21

π12

g2(u2)
g1(u1)

∣∣∣∣
∂Tk1→k2(θ

(k1), u1)
∂(θ(k1), u1)

∣∣∣∣ , 1
)

,

involving the Jacobian of the transform Tk1→k2 ,, the probability πij of
choosing a jump to Mkj while in Mki , and gi, the density of ui. The
acceptance probability for the reverse move is based on the inverse ratio
if the move from Mk2 to Mk1 also satisfies (1.21) with u2 ∼ g2(u2). The
pseudo-code representation of Green’s algorithm is thus as follows:
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Green reversible jump algorithm

0. At iteration t, if x(t) = (m, θ(m)),

1. Select model Mn with probability πmn,

2. Generate umn ∼ ϕmn(u),

3. Set (θ(n), vnm) = Tm→n(θ(m), umn),

4. Take x(t+1) = (n, θ(n)) with probability

min
(

π(n, θ(n))
π(m, θ(m))

πnmϕnm(vnm)
πmnϕmn(umn)

∣∣∣∣
∂Tm→n(θ(m), umn)

∂(θ(m), umn)

∣∣∣∣ , 1
)

,

and take x(t+1) = x(t) otherwise.

Example 4 continuation

If model Mk is the k component normal mixture distribution,

k∑

j=1

pjkN (µjk, σ2
jk) ,

as in Richardson and Green (1997), we can restrict the moves from Mk to only
neighbouring models Mk+1 and Mk−1. The simplest solution is to use birth
and death moves: The birth step consists in adding a new normal component
in the mixture generated from the prior and the death step is the opposite,
namely removing one of the k components at random. In this case, the birth
acceptance probability is

min
(

π(k+1)k

πk(k+1)

(k + 1)!
k!

πk+1(θk+1)
πk(θk) (k + 1)ϕk(k+1)(uk(k+1))

, 1
)

= min
(

π(k+1)k

πk(k+1)

%(k + 1)
%(k)

`k+1(θk+1) (1− pk+1)k−1

`k(θk)
, 1

)
,

where `k denotes the likelihood of the k component mixture model Mk and
%(k) is the prior probability of model Mk. (And the death acceptance proba-
bility simply is the opposite.)

While this proposal can work well in some settings, as in Richardson and
Green (1997) when the prior is calibrated against the data, it can also be inef-
ficient, that is, leading to a high rejection rate, if the prior is vague, since the
birth proposals are not tuned properly. A second proposal, central to the so-
lution of Richardson and Green (1997), is to devise more local jumps between
models, called split and combine moves, since a new component is created
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by splitting an existing component into two, under some moment preservation
conditions, and the reverse move consists in combining two existing compo-
nents into one, with symmetric constraints that ensure reversibility.

Figures 21–23 illustrate the implementation of this algorithm for the Galaxy
dataset. On Figure 21, the MCMC output on the number of components k is
represented as a histogram on k, and the corresponding sequence of k’s. The
prior used on k is a uniform distribution on {1, . . . , 20}: as shown by the lower
plot, most values of k are explored by the reversible jump algorithm, but the
upper bound does not appear to be restrictive since the k(t)’s hardly ever reach
this upper limit. Figure 22 illustrates the fact that conditioning the output on
the most likely value of k (3 here) is possible. The nine graphs in this Figure
show the joint variation of the parameters of the mixture, as well as the stability
of the Markov chain over the 1, 000, 000 iterations: the cumulated averages
are quite stable, almost from the start. The density plotted on top of the
histogram in Figure 23 is another good illustration of the inferential possibilities
offered by reversible jump algorithms in that it provides an average of all the
mixture densities corresponding to the iterations of this MCMC sampler, with
higher efficiency properties than a plug-in estimator that would necessitate to
condition on k.
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FIGURE 21. Histogram and raw plot of 100, 000 k’s produced by a reversible jump
MCMC algorithm for the Galaxy dataset (Source: Robert and Casella 2004)

1.5.2 Birth-and-death processes

The Birth-and-death MCMC (BDMCMC) approach of Stephens (2000a) is
already found in Ripley (1987), Grenander and Miller (1994), Phillips and
Smith (1996). The algorithm can be described as follows: new components



Bayesian Modelling and Inference on Mixtures of Distributions 45
w

e
ig

h
t

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8

−
2

0
2

4

weight

m
e

a
n

0 5000 10000 15000 20000 25000 30000

0
.0

0
.2

0
.4

0
.6

0
.8

w
e

ig
h

t

m
e

a
n

−2 0 2 4

0
.0

0
.5

1
.0

1
.5

2
.0

−2 0 2 4

0
.0

0
.5

1
.0

1
.5

2
.0

standev

w
e

ig
h

t

0 5000 10000 15000 20000 25000 30000

−
2

0
2

4

m
e

a
n

st
a

n
d

e
v

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

standev

w
e

ig
h

t

0 5000 10000 15000 20000 25000 30000

0
.0

0
.5

1
.0

1
.5

2
.0

st
a

n
d

e
v

Number of components 3 (frequency 0.2917 )

FIGURE 22. Reversible jump MCMC output on the parameters of the model
M3 for the Galaxy dataset, obtained by conditioning on k = 3. The left column
gives the histogram of the weights, means, and variances; the middle column the
scatterplot of the pairs weights-means, means-variances, and variances-weights;
the right column plots the cumulated averages (over iterations) for the weights,
means, and variances (Source: Robert and Casella 2004).
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FIGURE 23. Fit of the dataset by the averaged density (Source: Robert and
Casella 2004).



46 Jean-Michel Marin, Kerrie Mengersen and Christian P. Robert

are created (born) in continuous time at a rate β(α), where α refers to the
current state of the sampler. Whenever a new component is born, its weight
ω and parameters θ are drawn from a joint density f(α;ω, θ), and old com-
ponent weights are scaled down proportionally to make all of the weights,
including the new one, sum to unity. The new component pair (ω, θ) is
then added to α. Components die at a death rate such that the stationary
distribution of the process is the posterior distribution as in Section 1.5.1.
The continuous time jump process is thus associated with the birth and
death rates: whenever a jump occurs, the corresponding move is always
accepted. The acceptance probability of usual MCMC methods is replaced
by differential holding times. In particular, implausible configurations die
quickly. An extension by Cappé et al. (2002) to BDMCMC introduces split
and combine moves, replacing the marked point process framework used
by Stephens with a Markov jump process framework.

Cappé et al. (2002) compare the RJMCMC and BDMCMC algorithms
and their properties. The authors notice that the reversible jump algorithm,
when restricted to birth and death moves with birth proposals based on
the prior distribution, enjoys similar properties to BDMCMC. They also
show that that for any BDMCMC process satisfying some weak regularity
conditions, there exists a sequence of RJMCMC processes that converges to
the BDMCMC process. More pragmatic comparisons are also to be found
in Cappé et al. (2002) for the Gaussian mixture model: The numerical
comparison of RJMCMC and BDMCMC revealed that when only birth
and death moves are used in addition to moves that do not modify the
number of components, there is no significant difference between the sam-
plers. However, when split and combine moves are included there is a small
advantage for the BDMCMC sampler. Ranking all techniques on compu-
tation time, Cappé et al. (2002) report that “the optimal choice was the
RJMCMC with birth and death only, very closely followed by the equiva-
lent BDMCMC sampler, then at some distance, RJMCMC with both types
of dimension changing moves enabled and finally BDMCMC in the same
conditions”.

1.6 Extensions to the mixture framework

The mixture model (1.2) can be readily extended to accommodate various
complexities. For example, Robert (1998b) gives an example of a hidden
Markov model (HMM) that assumes a Markov dependence between the
latent variables of (1.5). For instance, in the Gaussian case,

P (zt = u|zj , j < t) = pzt−1u ; xt|z, xj , j 6= t ∼ (µzt , σ
2
zt

) .

Such HMMs are commonly used in signal processing and econometrics;
see, for example, Hamilton (1989) and Archer and Titterington (1995).
Robert and Titterington (1998) also showed that reparameterisation and



Bayesian Modelling and Inference on Mixtures of Distributions 47

noninformative prior distributions are also valid in this setting. Conver-
gence for MCMC on HMMs, including nonparametric tests, are described
by Robert et al. (1999). See Cappé and Rydén (2004) for a complete entry
to HMMs. This additional dependency in the observed variables either as
another Markov chain or through the model structure is further described
by Robert and Casella (2004) through the study of a switching ARMA
model. Celeux et al. (2003) also exemplifies the extension of both MCMC
and population Monte Carlo techniques to more complex (continuous) la-
tent variables in the study of stochastic volatility.

Extensions to mixtures of regression are examined by Hurn et al. (2003).
Here, the switching regression, which is well known in econometrics and
chemometrics, may be written as y = x′βi + σiε, ε ∼ g(ε), where the
(βi, σi)’s (i = 1, .., k) vary among a set of k possible values with proba-
bilities p1, .., pk. Thus, if the ε are Gaussian, y|x ∼ p1N(x′β1, σ

2
1) + ... +

p1N(x′β1, σ
2
1). Extensions cover both modifications of the model to accom-

modate the time-dependency encountered in HMMs and nonlinear switch-
ing regressions, and modification of the MCMC algorithm to obtain Monte
Carlo confidence bands. Mixtures of logistic regressions and of Poisson re-
gressions, and corresponding Gibbs and Metropolis-Hastings algorithms are
also detailed. The authors point out that despite the identifiability problem,
the MCMC output contains sufficient information on the regression lines
and the parameters of the model to enable inference. They formalise this
by considering loss-based inference, in which loss functions are specified for
the various inferential questions.

Some authors (see, for example, Fernandez and Green (2002)) describe
the analysis of spatially correlated Poisson data by a Poisson mixture model
in which the weights of the mixture model vary across locations and the
number of components is unknown. A missing data structure is detailed for
the more complex models of qualitative regression and censored or grouped
data.

Further interest in mixture models, their methodology, the associated
computational tools, and their application in diverse fields, is evidenced by
the wealth of references to Bayesian mixtures in the Current Index to Statis-
tics. Since 2000 alone, they have been adopted in mixture hazard models
(Louzada-Neto et al. 2002), spatio-temporal models (Stroud et al. 2001),
structural equation models (Zhu and Lee 2001), disease mapping (Green
and Richardson 2002), analysis of proportions (Brooks 2001), correlated
data and clustered models (Chib and Hamilton 2000, Dunson 2000, Chen
and Dey 2000), classification and discrimination (Wruck et al. 2001), exper-
imental design and analysis (Nobile and Green 2000, Sebastiani and Wynn
2000), random effects generalised linear models (Lenk and DeSarbo 2000)
and binary data (Basu and Mukhopadhyay 2000). Mixtures of Weibulls
(Tsionas 2002) and Gammas (Wiper et al. 2001) have been considered,
along with computational issues associated with MCMC methods (Liang
and Wong 2001), issues of convergence (Liang and Wong 2001), the display
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of output (Fan and Berger 2000), model selection (Ishwaran et al. 2001,
Stephens 2000a) and inference (Lauritzen and Jensen 2001, Gerlach et al.
2000, Aitkin 2001, Humphreys and Titterington 2000, Stephens 2000b).
Nonparametric approaches were popular, exhibited through Dirichlet pro-
cess mixtures (Gelfand and Kottas 2002, Green and Richardson 2001),
multiple comparisons (Cho et al. 2001), density estimation (Ghosal 2001)
and regression (Perron and Mengersen 2001). Mixtures in regression were
also identified in changepoint analysis (Skates et al. 2001, Pievatolo and
Rotondi 2000), switching models (Frühwirth-Schnatter 2001, Hurn et al.
2003) and wavelets (Brown et al. 2001). Bayesian mixtures were also ap-
plied to a rich diversity of problems, including earthquake analysis (Wal-
shaw 2000), biostatistics (Dunson and Weinberg 2000, Dunson and Dinse
2000, Qu and Qu 2000, Dunson and Zhou 2000), finance (Watanabe 2000),
ecology (Leite et al. 2000) and industrial quality control (Kvam and Miller
2002, Nair et al. 2001).

This literature, along with the challenges and solutions described in
the earlier sections of this chapter, demonstrate the exciting potential for
Bayesian mixture modeling in the 21st century.
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