36-722: Factor Analysis

Brian Junker

October 6, 2005
The Orthogonal Factor Model
Interpretation and Exemplars
Scale Invariance
Factor Indeterminacy
Likelihood Ratio Test of Fit
Factor Rotation

Two Approaches to Factor Analysis

36-722 October 6, 2005



The Orthogonal Factor Model

When we considered the “scree plot” (plot of eigenvaluespeadecomposition)
as a tool for deciding how much smoothing is appropriate, vesiclered a model

of the form
X = AZ + ¢

A (slight) generalization of this model is the orthogonaltéa model:

Theorthogonal factor modefor the p x 1 random vectoKX = (Xy, ..., Xp)' is
X=u+QF+U

where

E[X] = u; E[F] =0; E[U] =0

Var (F) = i« (F = “common factors”)

Var (U) =¥ =diag(y11.....¥pp) (U =“unique (specific) factors”)
Cov (F,U) =0.

Q = [je] pxxs (Q = “factor loadings”).
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TheobservablevariablesX; are represented in terms of tlatent variables F
andU; as

k
Xj = ZC]ngg + Uj + U;j
=1
e Clearly
z Var(X) = E[(X-p)(X-w)']
E[(QF + U)(QF +U)"] = E[QFF' Q'] + E[UUT]
QVar (F)Q" +Var(U) = QQ" +¥

o O-Xij = Z;:l quf + wJJ
* h? = ¥, ¢, is called the tommunality;
* yj; Is called the Specific variancé
Similarly, ox, x, = -1 Gj¢Che’
e The loadinggy;, control the relationship between tg's andF,’s. Indeed
* Ixp =Cov(X,F) = E[(QF+U)F'1 =Q
* Corr(X,F) = D7Y2Q
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Interpretation and Exemplars

e The Wechsler Adult Intelligence Scale (WAIS) includes fsubscales (total
scores on tests)

X, = Information X, = Similarities X3 = Arithmetic, X, = Picture Completion

— In many populations we might expect all of these subscales to
positively correlated, suggesting a one-factor FA mo&et (1) with
positive factor loadings:

[ Q11 | — | | pa |
G21 M2
Fi |+
031 [ . ] M3
| Qa1 | i 1 | M4 |

The common factoF,; might be labelled “general proficiency” or
“general intelligence”, and performance on each ¥ss a rescaled
versiong;j; F; of this general factor, plus noit¢; specific to the test or
test-taking circumstances.
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— If we observe that CorK{y, X3), Corr(Xz, X4) > 0, and CorrKy, X;) =
Corr(Xs3, X4) = 0, we might try a more-refined model:

[ g1 0 — | [ w1 |
0 O [ Fi1 N M2
0z O F» U3

| 0 Qa2 | I 1 | Ha ]

where nowF, is the common factor underlyingformationand
Arithmeticperformance, an#é, is the common factor underlying

SimilaritiesandPicture Completion

This sort of model-building for mental testing scores is Heactor
Analysis was developed by Spearman (one general inteti@éctor),
Cattell (scree plot) and Thurstone (“Vectors of the Mindithe early
20" century.

The second model above exhibits an extreme versidsimiple
structure™ Each observabl¥; is related to only a few factois,. Simple
structure generally helps “interpretation” or “labellfngf factors.
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e Factor analysis gets used in many other fields as well, whessuspected
that high-dimensionabbservabledata is being driven by a low-dimensional
latentprocess, plus noise. For example,

Marketing, to identify key salient features in consumeif@rence. ..
Chemometrics, especially mixture modeling and “noisy’ctfsd
decomposition, identifying common components of sengprads. . .

Stock market modeling, e.g. in identifying common elemefhtsultiple
markets. . .

Modeling of multivariate time series as a function of a seratiumber of
“latent” series plus white noise...

Smoothing in which the uniqguenesdé¢sare dropped and

Xsmooth= QF + .
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Scale Invariance

Suppose we rescalg lettingY = CX, whereC is a diagonal matrix (e.g. we
change the units of measurement from $'s to yen, from feetdtem, etc.). We
know this can influence PCA. What does it do to factor anabsis

If X = QF + U + u then we know VarX) = QQ'" + . ForY we have

Y

4

u
Var (F)
Var (U")
Var (Y)

CX=COQF+U+u = QF+U" + 4

Cu; Q@ =CQ U =CU

|

CVar (U)C" = C¥C'’

CVar (X)CT = C(QQ")C" +C¥C" = (Q)(Q)" + ¥

So,the factor loadings and the uniguenesses get rescaled bgethe same
factors and factor structure as before

In this sense the FA model is like PCA for the correlation mgtsut we shall see
that formal inference is easier for FA).
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Factor Indeterminacy

Let us suppose
X=QF+U+pu

Then forany orthogonal (rotation) matrix G
X = QGGYF+U+u = (QG(G'F)+U +u
= QF +U+u where
e O = QG may not look anything like)!

e F' =G'Fis still hasgE[F’] = GE[F] = 0= E[F] and
Var (F')GVar (F)G" = GIG" = | = Var (F) (sinceG' is orthogonal)!

Theparameterof the FA model are

The meang = (u1,...,up)";

The uniquenessatiag(¥) = (P11, ..., ¥pp)';
The factor loadingsjj, in Q.

And perhaps the dimensionalikyof F.

So there is d&ig nonidentifiabilityproblem in estimating the FA model!
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ldentifying the model; degrees of freedom

We wish to impose relatively simple constraints on the patans that
will force a unique solution (like linear constraints in AN®). One
computationally convenient set of constraints is to regjthat

Q'Y 'Q=A=diag(A11, - .., Axk)

another constraint sometimes used is to mak®~1Q diagonal, where
D = diag(X).

e The unconstrained mod&l = QF + U + u hasp - k+ p degrees of
freedom:p - k for Q, andp for ¥ (diagonal).

e The constraint above se%sk(k — 1) elements ofA equal to zero.
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Therefore the d.f. for a LR test éfp : X ~ Np(u, QQ'" + V), ak factor FA
model, vs.Ha : X ~ Np(u, Z), a general multivariate normal model, is

d (# params in unconstraineg — (# params in FA model fax)

1 1
5P(P+1) = (pk+ p—Sk(k—1))

1 1
S(P—K? - Z(p+ k)

Note that ifd < 0 then the asymptotig? approximation to the LR test
will fail; in fact: £ can be fitted without error either uniquely € 0) or
Infinitely many ways @ < 0).

The casal > 0 Is the more statistically interesting since it says tHat
has less parameters (a more parsimonious model)HRan
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Likelihood Ratio Test of Fit

Now we consider a data matrk with rows x; Id Np(u, ). As we have

seen before,

0K 1, X) tu, %) = logL(X;p, %)
_n T P UL SR S Vo
2|09|27T2| ZU{Z S} 2(X p) X (X—p)

Replacingu with its MLE X we have
_ n 1
(%) = - {log[27| - tr(z7'S)]
and then substituting = QQ' + ¥ we get

(% Q) =~ [log 2r(QQ" + V)| - r[(QQ" +¥)s]
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Assuming tha) and¥ are the maximum likelihood estimates we get the LR
statistic

(% Q,‘P)) _ nIog(lQQT +\i1|)

- 'Og( [(x.2) S|

which is asymptotically? underH, with d.f. = 2(p— k) — 2(p + k).

Bartlett (1954) has shown that tlé approximation is better if we replacewith
n—-1-2p+4k+5)/6.

e This can be used as a test of fit for the FA model, vs. the genartivariate
normal;

e Itis not wise to use this, without further adjustments, fomparingk vs.
k + 1 factors, e.g. (why?? — see next page)

e A better assessment of the number of factors can be base@dictorn
error, Bayes factors, an information criterion, or someeotheasure that
does not depend on the LR test being asymptotigalynderHo.

12 36-722 October 6, 2005



Naively we would think that a test ¢l : k factors, vsHy : k+ 1 factors, could
be based on the likelihood ratio test

(%, Qu, ¥) ) B Iog( QQT + ¥ )

f()_(’ Qk+l’ \P) |Qk+l(j-|l<-+1 + \,{\’l

which we would take to bg? underHo with d.f. = [$(p - K)2 - 2(p+ k)| -
[3(p— (k+ 1Y - 3(p+ (k+ 1) =2(p~ K).
However, the model foH, is at the edge of the parameter spdoe the model for

H, in this case (the asymptotj@ theory depends on a Taylor expansion in a
neigborhood oH, aroundHy; this is not posssible whel, is at the edge o ,):

—2 Iog(

Under Ho: Var (X) — Var (U) = Q«Q} =TANTT
whereA® = diag(4s, ..., 4,0,...,0), sinceQcQ; has rank.

Under Ha: Var (X) — Var (U) = Q1Qf.; = I"A® D@7
whereA®™D) = diag(dy, ..., A, A1, 0, . .., 0), sinceQ,1Qf, ; has rankk + 1.

Although Hy can be obtained frorkli, by the linear constrainty,; = 0, in this
case this constraint is at the edge of the parameter spacegi; < 0 is outside
the space of eigenvalues for the positive semi-definiteirm¥ar (X) — Var (U).
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Factor Rotation

As we observed above, given the FA model
X=QF+U+pu

then forany orthogonal (rotation) matrix G

X = QGGYF+U+u = (QG)(G'F)+ U +u
= QF +U+u where

1. Q@ = QG may not look anything like)!
2. F = G'F is still hasE[F’] = GE[F] = 0 = E[F] and
Var (F)GVar (F)G' = GIG'" = | = Var (F) (sinceG' is orthogonal)!

This is analogous to the lack of identifiability in an ANOVA ohal:

e You can't estimate the grand mean and all the cell means stiine
time without constraints.
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— To estimate the ANOVA model we impose constraints to idgntif
the model for estimation (e.g. set intercepd, and estimate the
“cell means” model).

— After estimating the model we often re-parametrize for a
particular interpretation (e.g. intercepigrand mean, cellféects
sum to zero; or intercept baseline cell, other cellfiects are
“offsets”, etc.)

e We did something similar with the FA model

— TakeQ"¥~1Q = A, a diagonal matrix, to identify the model for
(ML) estimation.

— The “rotation matrix’G above suggests how to reparametrize fo
a particular interpretation.
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Factor Rotation and Simple Structure

In an over-parametrized ANOVA model there are a few traddio
re-parametrizations that most analyses concentrate on.

In FA, there is no “natural” re-parametrization, but we oftey to find
“simple structure”. In
X=QF+U+pu

simple structure basically means:

e EachX; depends on as feW,’s as possible; or equivalently

e Each row ofQQ contains as many zero or near-zero entries as possiple.

Essentially, we wish to find an orthogonal matissuch tha) = QRhas
lots of zero or near-zero entries. The reparametrizatidirtivan be

X=OQRR'F)+U+u=QF +U +u

for thisR.
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Varimax

There are many heuristics for findify A common set of heuristics
considers a derived matrix

Q* = [lQ]gl] pxKs Q* = [Q,ng] pxKs or Q>k = [Q’?f] pxK> etc.

and tries to findR to maximize the spread within each column 6f(€is
puts lots of zero’s or near-zero’s in each columrof= QR).

The VARIMAX method findsk such that thesum of the column
variances of Q = [Q'%,] is maximized

VR(Q) = Z[% 2,9 - [% >
J

¢ j

whereQ’ = QR
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Other “rotations”

e Reparametrizations that rotate by an orthogonal m&tiaxe called
orthogonal rotations They preserve the property that V&) = .« (Where
F' =R"F).
— This used to be a cottage industry, generating names like RIUAAX,
EQUIMAX, etc.; but VARIMAX is most popular
— ICA is also a rotation method but with affirent criterion (independence
and non-normality, vs. simple structure).

If we relax the criterion Varg’) = |l then we can tak& to be
non-orthohonal. Such reparametrizations are calldajue rotations This
also used to be a cottage industry, but the most popular iMRO

— Find the VARIMAX rotationQ’ = QR letC = [Q'},].
— Find a further invertibleM to minimize }; >;; (Q”j, - Cjc)?, where
Q’ = QRM.
The final modeX = (QRM)(MR"F) + U + u = Q’F” + U + u no longer
has Var £”) = |, but may have “nice” simple structure.
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Two Approaches to Factor Analysis

The approach we have described so far is often cédigaoratory Factor Analysis
(EFA):.

e Fit the unrestricted FA model (witQ"¥~1Q = A diagonal) with diferent
dimensions (numbers of factoisuntil you get “good fit”.
e Perform one or more rotations to get a good “interpretatmfrthe factors.

An alternative approach is often call@bnfirmatory Factor Analysis (CFA)

e Instead of the constrainQ™¥~1Q = A diagonal”, directly impose linear
conditions onQ (most often, set many of th@;, = O to reflect prior theory
about which factors go with which observable variables);

e Test overall fit, test whether some (mofg) = 0, etc.

In EFA, it is hard to develop distribution theory and testsféxtor loadings
(because of the rotations). CFA is much more like choosingeaific
parametrization as in ANOVA, and distribution theory, hilpgsis tests, etc. are

more available.
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CFA as a statistical model

The CFA model has the same form as we have seen already
X=QF+U+pu

but there is no ambiguity about the status of the factorsaahthe CFA
model can be viewed as a kind of hierarchical Bayes model, e.g

Xllan’F ~ Np(ﬂ_i_QFa\P)
M ™~ Np(o’ Z,U)
vedQ) ~ Npk(uo,Zo) (wWhere some entries alg set to zero)
F~ Nk 1)

diag(?¥) ~ independentinversg?’s, etc.

In this setting, posterior inference on all the parametef interest.

In particular, posterior inference dnis known as “estimating” or
“predicting” factor scores; a variety of methods have begretbped.
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