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The Orthogonal Factor Model

When we considered the “scree plot” (plot of eigenvalues in apca decomposition)

as a tool for deciding how much smoothing is appropriate, we considered a model

of the form

xi = Azi + εi

A (slight) generalization of this model is the orthogonal factor model:

Theorthogonal factor modelfor the p× 1 random vectorX = (X1, . . . ,Xp)T is

X = µ + QF + U

where

• E[X] = µ; E[F] = 0; E[U] = 0

• Var (F) = Ik×k (F = “common factors”);

• Var (U) = Ψ = diag(ψ11, . . . , ψpp) (U = “unique (specific) factors”);

• Cov (F,U) = 0.

• Q = [qjℓ]p×k; (Q= “factor loadings”).
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TheobservablevariablesXj are represented in terms of thelatent variables Fℓ
andU j as

Xj =

k
∑

ℓ=1

qjℓFℓ + U j + µ j

• Clearly

Σ = Var(X) = E[(X − µ)(X − µ)T ]

= E[(QF + U)(QF + U)T ] = E[QFFT QT ] + E[UUT ]

= QVar (F)QT
+ Var (U) = QQT

+ Ψ

• σX j X j =
∑k
ℓ=1 q2

jℓ + ψ j j

* h2
j =

∑k
ℓ=1 q2

jℓ is called the “communality”;

* ψ j j is called the “specific variance”

Similarly,σX j ,Xk =
∑k
ℓ=1 qjℓqkℓ;

• The loadingsqjℓ control the relationship between theXj ’s andFℓ ’s. Indeed

* ΣXF = Cov (X, F) = E[(QF + U)FT ] = Q

* Corr(X, F) = D−1/2Q
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Interpretation and Exemplars

• The Wechsler Adult Intelligence Scale (WAIS) includes foursubscales (total
scores on tests)

X1 = Information, X2 = Similarities, X3 = Arithmetic, X4 = Picture Completion

– In many populations we might expect all of these subscales tobe
positively correlated, suggesting a one-factor FA model (k = 1) with
positive factor loadings:
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The common factorF1 might be labelled “general proficiency” or
“general intelligence”, and performance on each testXj is a rescaled
versionqj1F1 of this general factor, plus noiseU j specific to the test or
test-taking circumstances.
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– If we observe that Corr(X1,X3), Corr(X2,X4) > 0, and Corr(X1,X2) =

Corr(X3,X4) = 0, we might try a more-refined model:
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where nowF1 is the common factor underlyingInformationand

Arithmeticperformance, andF2 is the common factor underlying

SimilaritiesandPicture Completion.

– This sort of model-building for mental testing scores is howFactor

Analysis was developed by Spearman (one general intelligence factor),

Cattell (scree plot) and Thurstone (“Vectors of the Mind”) in the early

20th century.

– The second model above exhibits an extreme version of“simple

structure”: Each observableXj is related to only a few factorsFℓ. Simple

structure generally helps “interpretation” or “labelling” of factors.
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• Factor analysis gets used in many other fields as well, where it is suspected
that high-dimensionalobservabledata is being driven by a low-dimensional
latentprocess, plus noise. For example,

– Marketing, to identify key salient features in consumer preference. . .
– Chemometrics, especially mixture modeling and “noisy” spectral

decomposition, identifying common components of sensor signals. . .
– Stock market modeling, e.g. in identifying common elementsof multiple

markets. . .
– Modeling of multivariate time series as a function of a smaller number of

“latent” series plus white noise. . .
– Smoothing in which the uniquenessesU j are dropped and

Xsmooth= QF + µ.
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Scale Invariance

Suppose we rescaleX, lettingY = CX, whereC is a diagonal matrix (e.g. we

change the units of measurement from $’s to yen, from feet to meters, etc.). We

know this can influence PCA. What does it do to factor analysis?

If X = QF + U + µ then we know Var (X) = QQT
+ Ψ. ForY we have

Y = CX = CQF+ U + µ = Q′F + U ′ + µ′

µ′ = Cµ; Q′ = CQ; U ′ = CU

Var (F) = I

Var (U ′) = CVar (U)CT
= CΨCT

Var (Y) = CVar (X)CT
= C(QQT )CT

+CΨCT
= (Q′)(Q′)T

+ Ψ
′

So,the factor loadings and the uniquenesses get rescaled but weget the same

factors and factor structure as before.

In this sense the FA model is like PCA for the correlation matrix (but we shall see

that formal inference is easier for FA).
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Factor Indeterminacy
Let us suppose

X = QF + U + µ

Then forany orthogonal (rotation) matrix G,

X = Q(GGT)F + U + µ = (QG)(GTF) + U + µ

= Q′F′ + U + µ where

• Q′ = QG may not look anything likeQ!

• F′ = GT F is still hasE[F′] = GE[F] = 0 = E[F] and

Var (F′)GVar (F)GT
= GIGT

= I = Var (F) (sinceGT is orthogonal)!

Theparametersof the FA model are

• The meansµ = (µ1, . . . , µp)T ;

• The uniquenessesdiag(Ψ) = (Ψ11, . . . ,Ψpp)T ;

• The factor loadingsqjℓ in Q.

• And perhaps the dimensionalityk of F.

So there is abig nonidentifiabilityproblem in estimating the FA model!
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Identifying the model; degrees of freedom

We wish to impose relatively simple constraints on the parameters that

will force a unique solution (like linear constraints in ANOVA). One

computationally convenient set of constraints is to require that

QT
Ψ
−1Q ≡ ∆ = diag(∆11, . . . ,∆kk)

another constraint sometimes used is to makeQT D−1Q diagonal, where

D = diag(Σ).

• The unconstrained modelX = QF + U + µ hasp · k+ p degrees of

freedom:p · k for Q, andp for Ψ (diagonal).

• The constraint above sets1
2k(k− 1) elements of∆ equal to zero.
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Therefore the d.f. for a LR test ofH0 : X ∼ Np(µ,QQT
+Ψ), ak factor FA

model, vs.HA : X ∼ Np(µ,Σ), a general multivariate normal model, is

d = (# params in unconstrainedΣ) − (# params in FA model forΣ)

=
1
2

p(p+ 1)− (pk+ p−
1
2

k(k− 1))

=
1
2

(p− k)2 −
1
2

(p+ k)

Note that ifd ≤ 0 then the asymptoticχ2 approximation to the LR test

will fail; in fact: Σ can be fitted without error either uniquely (d = 0) or

infinitely many ways (d < 0).

The cased > 0 is the more statistically interesting since it says thatH0

has less parameters (a more parsimonious model) thanHA.
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Likelihood Ratio Test of Fit

Now we consider a data matrixX with rows xi
iid
∼ Np(µ,Σ). As we have

seen before,

ℓ(X; µ,Σ) ≡ ℓ(µ,Σ) = logL(X; µ,Σ)

= −
n
2

log |2πΣ| −
n
2

tr{Σ−1S} −
n
2

(x− µ)T
Σ
−1(x− µ)

Replacingµ with its MLE x we have

ℓ(x,Σ) = −
n
2

{

log |2πΣ| − tr(Σ−1S)
}

and then substitutingΣ = QQT
+ Ψ we get

ℓ(x,Q,Ψ) = −
n
2

{

log |2π(QQT
+ Ψ)| − tr[(QQT

+ Ψ)−1S]
}
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Assuming thatQ̂ andΨ̂ are the maximum likelihood estimates we get the LR

statistic

−2 log

(

ℓ(x,Q,Ψ)
ℓ(x,Σ)

)

= n log

(

|Q̂Q̂T
+ Ψ̂|

|S|

)

which is asymptoticallyχ2 underH0 with d.f. = 1
2 (p− k)2 − 1

2(p+ k).

Bartlett (1954) has shown that theχ2 approximation is better if we replacen with

n− 1− (2p+ 4k+ 5)/6.

• This can be used as a test of fit for the FA model, vs. the generalmultivariate

normal;

• It is not wise to use this, without further adjustments, for comparingk vs.

k+ 1 factors, e.g. (why?? – see next page)

• A better assessment of the number of factors can be based on prediction

error, Bayes factors, an information criterion, or some other measure that

does not depend on the LR test being asymptoticallyχ2 underH0.
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Naively we would think that a test ofH0 : k factors, vs.HA : k+ 1 factors, could
be based on the likelihood ratio test

−2 log
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ℓ(x,Qk,Ψ)
ℓ(x,Qk+1,Ψ)

)

= n log
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which we would take to beχ2 underH0 with d.f. =
[

1
2(p− k)2 − 1

2(p+ k)
]

−
[

1
2(p− (k+ 1))2 − 1

2(p+ (k+ 1))
]

= 2(p− k).

However, the model forH0 is at the edge of the parameter spacefor the model for
HA in this case (the asymptoticχ2 theory depends on a Taylor expansion in a
neigborhood ofHA aroundH0; this is not posssible whenH0 is at the edge ofHA):

Under H0: Var (X) − Var (U) = QkQ
T
k = ΓΛ

(k)
Γ

T

whereΛ(k)
= diag(λ1, . . . , λk,0, . . . , 0), sinceQkQT

k has rankk.

Under HA: Var (X) − Var (U) = Qk+1QT
k+1 = Γ

∗
Λ

(k+1)(Γ∗)T

whereΛ(k+1)
= diag(λ1, . . . , λk, λk+1,0, . . . ,0), sinceQk+1QT

k+1 has rankk+ 1.

AlthoughH0 can be obtained fromHA by the linear constraintλk+1 = 0, in this
case this constraint is at the edge of the parameter space, sinceλk+1 < 0 is outside
the space of eigenvalues for the positive semi-definite matrix Var (X) − Var (U).
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Factor Rotation

As we observed above, given the FA model

X = QF + U + µ

then forany orthogonal (rotation) matrix G,

X = Q(GGT )F + U + µ = (QG)(GT F) + U + µ

= Q′F′ + U + µ where

1. Q′ = QG may not look anything likeQ!

2. F′ = GT F is still hasE[F′] = GE[F] = 0 = E[F] and

Var (F′)GVar (F)GT
= GIGT

= I = Var (F) (sinceGT is orthogonal)!

This is analogous to the lack of identifiability in an ANOVA model:

• You can’t estimate the grand mean and all the cell means at thesame

time without constraints.
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– To estimate the ANOVA model we impose constraints to identify

the model for estimation (e.g. set intercept= 0, and estimate the

“cell means” model).

– After estimating the model we often re-parametrize for a

particular interpretation (e.g. intercept= grand mean, cell effects

sum to zero; or intercept= baseline cell, other cell effects are

“offsets”, etc.)

• We did something similar with the FA model

– TakeQT
Ψ
−1Q = ∆, a diagonal matrix, to identify the model for

(ML) estimation.

– The “rotation matrix”G above suggests how to reparametrize for

a particular interpretation.
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Factor Rotation and Simple Structure

In an over-parametrized ANOVA model there are a few traditional

re-parametrizations that most analyses concentrate on.

In FA, there is no “natural” re-parametrization, but we often try to find

“simple structure”. In

X = QF + U + µ

simple structure basically means:

• EachXi depends on as fewFℓ’s as possible; or equivalently

• Each row ofQ contains as many zero or near-zero entries as possible.

Essentially, we wish to find an orthogonal matrixRsuch thatQ′ = QRhas

lots of zero or near-zero entries. The reparametrization will then be

X = (QR)(RT F) + U + µ = Q′F′ + U + µ

for thisR.
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Varimax

There are many heuristics for findingR. A common set of heuristics

considers a derived matrix

Q∗ = [|Q′jℓ |]p×k, Q∗ = [Q′2jℓ]p×k, or Q∗ = [Q′4jℓ]p×k, etc.

and tries to findR to maximize the spread within each column of Q∗ (this

puts lots of zero’s or near-zero’s in each column ofQ′ = QR).

The VARIMAX method findsRsuch that thesum of the column

variances of Q∗ = [Q′2jℓ] is maximized:

VR(Q′) =
∑

ℓ
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whereQ′ = QR.
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Other “rotations”

• Reparametrizations that rotate by an orthogonal matrixRare called

orthogonal rotations. They preserve the property that Var (F′) = Ik×k (where

F′ = RT F).

– This used to be a cottage industry, generating names like QUARTIMAX,

EQUIMAX, etc.; but VARIMAX is most popular

– ICA is also a rotation method but with a different criterion (independence

and non-normality, vs. simple structure).

• If we relax the criterion Var (F′) = Ik×k then we can takeR to be

non-orthohonal. Such reparametrizations are calledoblique rotations. This

also used to be a cottage industry, but the most popular is PROMAX:

– Find the VARIMAX rotationQ′ = QR; let C = [Q′4jℓ].

– Find a further invertibleM to minimize
∑∑

j,ℓ(Q
′′

jℓ −C jℓ)2, where

Q′′ = QRM.

The final modelX = (QRM)(M−1RT F) + U + µ = Q′′F′′ + U + µ no longer

has Var (F′′) = I , but may have “nice” simple structure.
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Two Approaches to Factor Analysis
The approach we have described so far is often calledExploratory Factor Analysis

(EFA):

• Fit the unrestricted FA model (withQT
Ψ
−1Q = ∆ diagonal) with different

dimensions (numbers of factors)k until you get “good fit”.

• Perform one or more rotations to get a good “interpretation”of the factors.

An alternative approach is often calledConfirmatory Factor Analysis (CFA):

• Instead of the constraint “QT
Ψ
−1Q = ∆ diagonal”, directly impose linear

conditions onQ (most often, set many of theQjℓ = 0 to reflect prior theory

about which factors go with which observable variables);

• Test overall fit, test whether some (more)Qjℓ = 0, etc.

In EFA, it is hard to develop distribution theory and tests for factor loadings

(because of the rotations). CFA is much more like choosing a specific

parametrization as in ANOVA, and distribution theory, hypothesis tests, etc. are

more available.
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CFA as a statistical model

The CFA model has the same form as we have seen already

X = QF + U + µ

but there is no ambiguity about the status of the factors; in fact the CFA

model can be viewed as a kind of hierarchical Bayes model, e.g.:

X | µ,Q, F ∼ Np(µ + QF,Ψ)

µ ∼ Np(0,Σµ)

vec(Q) ∼ Npk(µQ,ΣQ) (where some entries ofΣQ set to zero)

F ∼ Nk(0, I )

diag(Ψ) ∼ independent inverse-χ2’s, etc.

In this setting, posterior inference on all the parameters is of interest.

In particular, posterior inference onF is known as “estimating” or

“predicting” factor scores; a variety of methods have been developed.
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