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The Orthogonal Factor Model

When we considered the “scree plot” (plot of eigenvaluespradecomposition)
as a tool for deciding how much smoothing is appropriate, evesitlered a model
of the form

X = AZ + &
A (slight) generalization of this model is the orthogonaltéa model:

Theorthogonal factor modefor the p x 1 random vectoX = (X,..., Xp)" is
X=u+QF+U

where

e E[X] =u; E[F]=0;E[U]=0

Var (F) = lok (F = “common factors”)

Var(U) =¥ =diag({11, ..., ¥pp) (U = “unique (specific) factors”)
Cov(F,U) =0.

Q = [Aje] pxk; (Q = “factor loadings”).
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TheobservablevariablesX; are represented in terms of tlagent variables
andU; as

k
Xj = qu[Fg-i'Uj + Uj
=1

e Clearly

z Var(X) = E[(X-©)(X - )]
E[(QF + UXQF + U)"] = E[QFF'Q"] + E[UUT]

QVar (F)Q" + Var(U) = QQ" +¥

° Oxx = Z{llequg + ¥
* 2 = 3f, o, is called the tommunality;
* yj; is called the $pecific variance
Similarly, ox; x, = Sy Ui’
e The loadinggyj, control the relationship between tig's andF,’s. Indeed
* Ixr = Cov(X,F) = E[(QF+U)FT] = Q
* Corr(X,F) = DY2Q
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Interpretation and Exemplars

e The Wechsler Adult Intelligence Scale (WAIS) includes feubscales (total
scores on tests)

X1 = Information X, = Similarities Xz = Arithmetic, X, = Picture Completion

— In many populations we might expect all of these subscalbs to
positively correlated, suggesting a one-factor FA moket () with
positive factor loadings:

Xy J11 U, M1
X2 Qo1 U, Mo
= Fio |+ +
X3 031 [ ! ] Us M3
X4 Qa1 U4 M4

The common factoF; might be labelled “general proficiency” or
“general intelligence”, and performance on each ¥gst a rescaled
versionq;j, F, of this general factor, plus noid#; specific to the test or
test-taking circumstances.
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— If we observe that Cori{;, Xz), Corr(X, Xz) > 0, and CorrKy, X;) =
Corr(Xs, X4) = 0, we might try a more-refined model:

X1 Gu O U; M1
X 0 F U

2 | _ 022 [ 1 }+ 2 |, M2
X3 g1 O F2 Us M3
X4 0 Qa2 Us Ha

where nowF; is the common factor underlyingformationand
Arithmeticperformance, ané, is the common factor underlying
SimilaritiesandPicture Completion

— This sort of model-building for mental testing scores is Heaetor
Analysis was developed by Spearman (one general intetigéactor),
Cattell (scree plot) and Thurstone (“Vectors of the Mindithe early
20" century.

— The second model above exhibits an extreme versidsiwiple
structure”. Each observabli; is related to only a few factors,. Simple
structure generally helps “interpretation” or “labellingf factors.

5 36-722 October 6, 2005

e Factor analysis gets used in many other fields as well, whesslispected
that high-dimensionatbservabledata is being driven by a low-dimensional
latentprocess, plus noise. For example,

— Marketing, to identify key salient features in consumerf@rence. ..

— Chemometrics, especially mixture modeling and “noisy”ctpa
decomposition, identifying common components of sengprags. . .

— Stock market modeling, e.g. in identifying common elemerfitsultiple
markets. ..

— Modeling of multivariate time series as a function of a seratiumber of
“latent” series plus white noise. ..

— Smoothing in which the uniquenesdésare dropped and

Xsmooth= QF + u.
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Scale Invariance

Suppose we rescak lettingY = CX, whereC is a diagonal matrix (e.g. we
change the units of measurement from $'s to yen, from feetdters, etc.). We
know this can influence PCA. What does it do to factor analysis

If X = QF + U + u then we know VarX) = QQ' + . ForY we have

Y = CX=CQF+U+u = QF+U" +u
W = Cu, Q =CQ U =CU
Var(F) = |
Var(U’) = CVar(U)C'T = Cc¥C’
Var(Y) = CVar(X)CT = C(QQ")CT +C¥YCT = (Q)(Q)" + ¥

So,the factor loadings and the uniquenesses get rescaled bgettbe same
factors and factor structure as before

In this sense the FA model is like PCA for the correlation mgtyut we shall see
that formal inference is easier for FA).
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Factor Indeterminacy

Let us suppose
X=QF+U+u

Then forany orthogonal (rotation) matrix G

X QGGF+U +u = (QG)(G'F)+U +pu

QF +U+u where

e Q@ = QG may not look anything like!
e F' =G'Fisstill hasg[F’] = GE[F] = 0 = E[F] and
Var (F')GVar (F)G" = GIG™ = | = Var (F) (sinceG' is orthogonal)!

Theparameterof the FA model are

The meang = (u1,...,up)";

The uniquenesseatiag(¥) = (P11, -, Ypp)';
The factor loadings|;; in Q.

And perhaps the dimensionalikyof F.

So there is dig nonidentifiabilityproblem in estimating the FA model!
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Identifying the model; degrees of freedom

We wish to impose relatively simple constraints on the patans that
will force a unique solution (like linear constraints in ANB®). One
computationally convenient set of constraints is to regthat

Q'Y 1Q = A =diag(A11, ..., Aw)

another constraint sometimes used is to mMak®~1Q diagonal, where
D = diag(X).

e The unconstrained mod&l = QF + U + u hasp - k+ p degrees of
freedom:p - k for Q, andp for ¥ (diagonal).

e The constraint above se%k(k — 1) elements oA equal to zero.
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Therefore the d.f. for a LR test &fg : X ~ Np(u, QQ' +¥), ak factor FA
model, vs.Ha : X ~ Np(u, X), a general multivariate normal model, is

d = (#params in unconstraingy — (# params in FA model fox)
1 1
= Sp(p+1) - (pk+ p- Sk(k—1))
1 > 1
= S(P-K*-5(p+K

Note that ifd < O then the asymptotig? approximation to the LR test
will fail; in fact: X can be fitted without error either uniquely € 0) or
infinitely many waysd < 0).

The casa > 0 is the more statistically interesting since it says that
has less parameters (a more parsimonious model)Hhan
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Likelihood Ratio Test of Fit

Now we consider a data matri with rows x; iid Np(u, Z). As we have

seen before,

X, %)

(45) = logL(X; %)
_n L P RLLY Sy O
> 10g12r%| - Str{ES) - S(X—w) = (R p)

Replacingu with its MLE X we have
- n 1
(%) =3 {log[2nz| - tr(=*S)}
and then substituting = QQ" + ¥ we get

(% QW) = -3 [l0g2x(QQ + W) - r[(QQ" +¥) S]]
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Assuming tha and¥ are the maximum likelihood estimates we getthe LR
statistic . A
(X QYY) _ 1QQT + ¥
2Iog( %) )_nlog( 5
which is asymptotically® underHo with d.f. = 3(p - K)? - 3(p + K).

Bartlett (1954) has shown that tlyé approximation is better if we replacewith
n—1-(2p+ 4k +5)/6.

e This can be used as a test of fit for the FA model, vs. the genuartivariate
normal;

e Itis not wise to use this, without further adjustments, fomparingk vs.
k + 1 factors, e.g. (why?? — see next page)

e A better assessment of the number of factors can be base@dictmn
error, Bayes factors, an information criterion, or someptheasure that
does not depend on the LR test being asymptotigallynderH,.
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Naively we would think that a test ¢y : k factors, vs.H, : k + 1 factors, could
be based on the likelihood ratio test

— A AT \’I‘J
-2 |09(M) = nlog M
K(X, Qk+la lP) |Qk+1QI+1 + V¥

which we would take to bg? underH, with d.f. = [%(p -k)?-3(p+ k)] —
[3(p— (k+ 1)) = 4(p+ (k+ 1) = 2(p - K).
However, the model foH, is at the edge of the parameter spdoe the model for
Ha in this case (the asymptotj@ theory depends on a Taylor expansion in a
neigborhood oH, aroundHo; this is not posssible whelr is at the edge ofi):
Under Hg: Var (X) - Var (U) = QQf = TA®rT
whereA® = diag(4, ..., 4. 0,...,0), sinceQQ] has rankk.

Under Ha: Var (X) — Var (U) = Qq1Qp,; = A&7
whereA®+D) = diag(As, . . ., A, A1, 0, .. ., 0), SiNceQy,1Qf,; has rank + 1.

AlthoughHg can be obtained frorhl4 by the linear constraint,.; = 0, in this
case this constraint is at the edge of the parameter spacegi; < 0 is outside
the space of eigenvalues for the positive semi-definiteirdr (X) — Var (U).
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Factor Rotation

As we observed above, given the FA model
X=QF+U+u
then forany orthogonal (rotation) matrix G

QGGHF +U +u = (QG)(G'F)+U +u
QF +U+u where

X

1. Q = QG may not look anything like)!
2. F" = G'F is still hasE[F’] = GE[F] = 0 = E[F] and
Var (F")GVar (F)G" = GIG™ = | = Var (F) (sinceG' is orthogonal)!

This is analogous to the lack of identifiability in an ANOVA ohal:

e You can'’t estimate the grand mean and all the cell means stitne
time without constraints.
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— To estimate the ANOVA model we impose constraints to idgntif
the model for estimation (e.g. set intercepd, and estimate the
“cell means” model).

— After estimating the model we often re-parametrize for a
particular interpretation (e.g. intercepigrand mean, cellféects
sum to zero; or intercept baseline cell, other cellfiects are
“offsets”, etc.)

e We did something similar with the FA model

— TakeQ"¥1Q = A, a diagonal matrix, to identify the model for
(ML) estimation.

—

— The “rotation matrix”"G above suggests how to reparametrize fo
a particular interpretation.
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Factor Rotation and Simple Structure

In an over-parametrized ANOVA model there are a few traddio
re-parametrizations that most analyses concentrate on.

In FA, there is no “natural” re-parametrization, but we aftey to find
“simple structure”. In
X=QF+U+u

simple structure basically means:
e EachX; depends on as feW,’s as possible; or equivalently

e Each row ofQ contains as many zero or near-zero entries as possiple.

Essentially, we wish to find an orthogonal matRxsuch tha)) = QRhas
lots of zero or near-zero entries. The reparametrizatidirtivan be

X=QRR'F)+U+u=QF +U +u
for thisR.
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Varimax

There are many heuristics for findify A common set of heuristics
considers a derived matrix

Q* = [lQ]f” pxks Q* = [Q,sz] pxks or Q* = [Q,?[] pxK> etc.
and tries to findR to maximize the spread within each column 6f(@is
puts lots of zero’s or near-zero's in each columrdt= QR).

The VARIMAX method findsR such that thesum of the column
variances of Q = [Q’ng] IS maximized

2
VR(Q) = Z [% Z Ql?f - (% Z Q/J?c’] ]
J

¢ j

whereQ = QR
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Other “rotations”

e Reparametrizations that rotate by an orthogonal m&axe called
orthogonal rotations They preserve the property that V&) = ..« (where
F' =R"F).

— This used to be a cottage industry, generating names like RJUMAX,
EQUIMAX, etc.; but VARIMAX is most popular

— ICAis also a rotation method but with affirent criterion (independence
and non-normality, vs. simple structure).

¢ |f we relax the criterion Vari’) = I« then we can tak& to be
non-orthohonal. Such reparametrizations are caltdijue rotations This
also used to be a cottage industry, but the most popular iSV#RO

— Find the VARIMAX rotationQ = QR letC = [Q'},].
— Find a further invertibleM to minimize, 3 (Q”;, — Cj¢)?, where

Q' = QRM.
The final modeX = (QRM(M™'R"F) + U + u = Q”F” + U + u no longer
has Var £”) = I, but may have “nice” simple structure.
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Two Approaches to Factor Analysis

The approach we have described so far is often céligaloratory Factor Analysis
(EFA).

e Fit the unrestricted FA model (witQ"¥~1Q = A diagonal) with diferent
dimensions (numbers of factodslntil you get “good fit”.
e Perform one or more rotations to get a good “interpretatmfrthe factors.

An alternative approach is often call€bnfirmatory Factor Analysis (CFA)

e Instead of the constrainQ™¥-1Q = A diagonal”, directly impose linear
conditions onQ (most often, set many of th@;, = 0 to reflect prior theory
about which factors go with which observable variables);

e Test overall fit, test whether some (mofg) = O, etc.

In EFA, itis hard to develop distribution theory and testsféxtor loadings
(because of the rotations). CFA is much more like choosirngeaific
parametrization as in ANOVA, and distribution theory, hilpesis tests, etc. are
more available.
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CFA as a statistical model

The CFA model has the same form as we have seen already
X=QF+U+u

but there is no ambiguity about the status of the factorsaahthe CFA
model can be viewed as a kind of hierarchical Bayes model, e.g

X1, QF ~ Npl+QRY)
u ~ Np(0,Z)
vedQ) ~ Np(ug,2Zq) (Where some entries &l set to zero)
F~ N1
diag(¥) ~ independent inversg?'s, etc.

In this setting, posterior inference on all the paramet®f interest.

In particular, posterior inference d¢his known as “estimating” or
“predicting” factor scores; a variety of methods have beeretbped.
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