
HW2 Solutions
36-724: Applied Bayesian and Computational Statistics

February 13, 2006

Problem 1
We are given that y is the number of heads in n spins of a coin, where the probability of heads is θ.

Thus, y ∼ Binomial(n, θ).

a Prior Predictive Distribution

Let p(θ) = 1 for 0 ≤ θ ≤ 1.

P (Y = k) =

∫

P (Y = k|θ)P (θ)dθ

=

∫ 1

0
P (Y = k|θ)dθ)

=

∫ 1

0

(

n

k

)

θk(1 − θ)n−kdθ

Note that this is the kernal for a beta distribution, with parameters α = k + 1, β = n − k + 1.

P (Y = k) =

∫ 1

0

(

n

k

)

θk(1 − θ)n−kdθ

=

(

n

k

)

Γ(k + 1)Γ(n − k + 1)

Γ(n + 2)

Because k and n are both integers, this reduces to 1
n+1 .

b Posterior Means

We know that the beta and the binomial are conjugate priors, so we can get the mean using that fact.
We can also show it using the above fact, the likelihood and the prior. The posterior of θ given y is
beta(α+y, n − y + β). Thus the mean of the posterior is α+y

α+β+n

I will show that this is between y
n and α

α+β when α
α+β ≤ y

n . The other case can be shown similarly.

α + y

α + β + n
− α

α + β
> 0 ⇔

yα + yβ − αn > ⇔
y

n
>

α

α + β
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Since the last equation is true, and it is equivalent to the first equation, we know that α+y
α+β+n > α

α+β

Similarly

y

n
− α + y

α + β + n
> 0 ⇔

yα + yβ − nα > 0 ⇔
y

n
>

α

α + β

Again, because the last equation is true, and it is equivalent to the first equation, we know that y
n >

α+y
α+β+n

c Posterior Variance

Here, the posterior distribution is proportional to
(n
y

)

θy(1 − θ)n−y. Thus, the posterior is a beta

distribution with parameters α = y + 1 and β = n − y + 1. So, the variance is (y+1)(n−y+1)
(n+2)2(n+3) . We

want to show that this is less than 1
12 , the variance of a uniform(0, 1).

Well, (y+1)(n−y+1)
(n+2)2(n+3) = 1

n+3( y+1
n+2)(1 − y+1

n+2). We know that 1
n+3 < 1

3 . We also know that for all

0 ≤ a ≤ 1, the quantity a(1 − a) is minimized at 1
4 when a = 0.5. Thus (y+1)(n−y+1)

(n+2)2(n+3) ≤ 1
4

1
3 ≤ 1

12

d Example ¿From part b), we know that the posterior distribution is a beta with parameters α1 = α + y
and β1 = n− y +β (where α and β are the parameters on the prior). We know that the prior variance
is αβ

(α+β)2(α+β+1) and the posterior variance is α1β1

(α1+β1)2(α1+β1+1) . Let α = 1, β = 10, y = 1, n = 1,
then α1 = 2, β1 = 10. The prior variance is 10∗1

112∗12
= 0.006 and the posterior variance is 2∗10

122∗13
=

0.01

The reason this is happening, is because the prior variance is small, so prior to the data, it is believed
that θ will be near the mean – in this case 1

11 . Thus, the probability that y = 1 is 0.091. However,
with one data point, y = 1, so that conflicts with the prior causing posterior confusion!

Problem 2

a Normalized Posterior

We know that the posterior is the likelihood times the prior. I will assume that the data points are
independent.

p(θ|y) ∝
5
∏

i=1

1

1 + (yi − θ)2

A graph of the normalized posterior is in Figure 1. The R-Code used to produce the graph of the
normalized posterior is below.

> y=c(-2, -1, 0, 1.5, 2.5)
> grid.size=1000
> theta=seq(0, 1, length=grid.size)
> post=dcauchy(y[1], theta, 1)
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> for (i in 2:5){
+ post=post*dcauchy(y[i], theta, 1)}
> post=post/sum(post)*grid.size
> plot(theta, post, type=’l’)
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Figure 1: Posterior of theta for problem 2a

b Sample from the posterior density

To sample from the posterior density, generate a sample from the grid points, and then associate them
back to the θ values. That will generate a sample from θ. See Figure 2.
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Figure 2: Histogram and Density for Problem 2b

> par(mfrow=c(1,2))
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> hist(post.sample, xlim=c(0, 1))
> plot(density(post.sample), type="l", xlim=c(0, 1))

c Posterior predictive

To sample from the posterior predictive, first sample 1000 θ ′s from the posterior distribution, then use
those θ′s to generate y values. See Figure 3.

> index2=sample(1:grid.size, grid.size, replace=T, prob=post)
> post.sample2=theta[index]
> predsamp=rcauchy(1000, post.sample2, 1)
> par(mfrow=c(1, 2))
> hist(predsamp)
> plot(density(predsamp), type=’l’)
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Figure 3: Histogram and Density for Problem 2c

d Rejection Sampling Method

I will use the simplification described on page 7 of the notes from January 17th. The code is below,
and the graphs are in Figure 4. The results are very similar to part b. This is good since they are both
ways to sample from the posterior.

> negloglike=function(theta){
+ return(-sum(log(dcauchy(y, theta, 1))))}
> mle=nlm(negloglike, 0.5)$estimate
> post.sample=rep(NA, 1000)
> for(i in 1:1000){
+
+ repeat{
+ theta=runif(1, 0, 1)
+ U=runif(1, 0, 1)
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+ if (U <= prod(dcauchy(y, theta, 1))/prod(dcauchy(y, mle, 1))){
+ break
+ }
+ }
+ post.sample[i]=theta
+ }
> hist(post.sample)
> plot(density(post.sample), xlim=c(0,1))
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Figure 4: Histogram and Density for Problem 2d

e Different Data Set Lengths

The code in part a) was redone for the different lengths of data. The graph is in Figure 5.
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Figure 5: Posterior Samples for Problem 2e
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As the sample size grows, the posterior density becomes more and more concentrated around zero.
The problem with the length 1280 is due to rounding errors when calculating the likelihood ie. the
likelihood is smaller than the smallest number representable by a floating point number in the com-
puter. This problem can be avoiding by taking logs, which we do not do here.

Problem 3

a Prior Density

We are given that p(σ) ∝ 1
σ . To get p(σ2) use a transformation. Let X = σ and Y = σ2 = g(X).

Then we know that fY (y) = fX(g−1(y))| ∂
∂y g−1(y)|. Here g(x) = x2 and g−1(y) =

√
y. Thus,

fY (y) = fX(
√

y)|12y−
1
2 ∝ 1

σ2

b HPD’s

I will assume that the variable ν represents the data. I want to find both p(σ|ν) and p(σ2|ν). We are
given that nν

σ2 |σ2 ∼ χ2
n.

p(
nν

σ2
|σ2) =

2−n/2

Γ(n/2)
(
nν

σ2
)n/2−1e

nν

2σ2 .

Let ν represent the data. I first find the posterior of the data using a transformation of variables.
Realize that θ = nν

σ2 and ν = θσ2

n . Thus, g(θ) = θσ2/n and g−1(θ) = nν
σ2 .

fν(ν) = fθ(g
−1(θ))| ∂

∂θ
g−1(θ)|

∝ (
nν

σ2
)(

n

2
−1)e

nν

2σ2 | n

σ2
|

Note that this is a kernal of a Gamma(α = n
2 , β = n

2σ2 ). Putting this together with the prior, we get
the posterior of σ2 given ν.

p(σ2|ν) ∝ (σ2)(
−n

2
−1)e

−nν

2(σ2)

Using another transformation of variables, we can computer p(σ|ν).

p(σ|ν) ∝ σ−n−1e
nν

2σ2

We know that a characteristic of the HPD’s is that the density of the function at the endpoints of the
interval match each other. Let (a2, b2) be an HPD interval for the posterior of σ2. Put a1 =

√
a2, b1 =√

b2 and assume it is an HPD. We will show that a1 = b1, and thus, for this case, no HPD interval for
σ2 is obtained by squaring a HPD interval for σ. In particular, the 95% HPD interval for σ2 is not the
square of the 95% HPD interval for σ when using the given priors.

a
−n

2
−1

2 e
nν

2a2 = b
−n

2
−1

2 e
nν

2b2 and
√

a2
−n−1e

nν

2a2 =
√

b2
−n−1

e
nν

2b2

Note here that there are two equations and two unknowns. Take the log of the equations and solve to
get that 1

2 log(a2) = 1
2 log(b2). Thus, under the assumption that t a1 =

√
a2, b1 =

√
b2, we see that

a1 = b1, or, the interval is null.
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Note that here we also could have used a simulation. I used the grid method to sample 10,000 elements
from the two distributions, with n = 10 and ν = 0.001. I then found the confidence intervals.

> sigma=seq(0.01, 10, length=1000)
> post.sig2
function(sig, nu, n){
return(sigˆ(-n/2-1)*exp(n*nu/(2*sig)))}
> post.sig
function(sig, nu, n){
return(sigˆ(-n-1)*exp(-n*nu/(2*sigˆ2)))}
> sample2=sample(sigma, 10000, replace=T, prob=post.sig2(sigma, nu, n))
> sample=sample(sigma, 10000, replace=T, prob=post.sig(sigma, nu, n))
> n
[1] 10
> nu
[1] 0.001
> sort(sample)[c(25, 975)]
[1] 0.02 0.03
> sort(sample2)[c(25, 975)]
[1] 0.01 0.01

Here we see that the CI from sample (i.e. the posterior of σ) is not the square root of the CI of sample2 (i.e.
the posterior of σ2).

Problem 4

a Prior for θ

We are given that λ = log( θ
1−θ ) and that p(λ) ∝ 1. We need to do a transformation of variable to get

the distribution of θ.

pθ(θ) ∝ pλ(log(
θ

1 − θ
)) ∗ ∂

∂θ
log(

θ

1 − θ
)

= 1 ∗ (
1 − θ

θ
) ∗ (1 − θ) ∗ 1 − θ ∗ (−1)

(1 − θ)2

= θ−1(1 − θ)−1

Note that this is a kernel of a beta distribution as both parameters reach zero in the limit. Note that
this is not a proper distribution. Technically α and β need to be larger than zero for this distribution
to be proper.

b Improper Posterior

First compute the posterior.

p(θ|y) ∝ θy(1 − θ)n−yθ−1(1 − θ)−1

= θy−1(1 − θ)n−y−1

This is a beta distribution with parameters α = y − 1 and β = n − y − 1. For the distribution to be
proper, both α and β need to be positive. This does not happen if y = 0 or if y = n since the function
xa is not integrable on the interval (0, c) if a < −1.
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Problem 5

a Jeffreys’ Prior

Recall Jeffreys’ prior is
√

I(θ) and I(θ) = −E( ∂2

∂2θ log(p(y|θ))).

I(θ) = −E(
∂2

∂2θ
log(

e−θθx

x!
))

= −E(
∂2

∂2θ
− θ + xlog(θ) − log(x!))

= −E(− x

θ2
)

= θ−1

Thus, Jeffrey’s prior is θ−
1
2 , which is the limit of an Gamma with α = 0.5 as β → 0.

b Posterior

The posterior is proportional to the prior times the likelihood.

p(θ|y) ∝ θ−
1
2 e−nθθΣx

= e−nθθΣx− 1
2

Note that this is a Gamma with parameters α = Σx + 0.5 and β = n.

c Jeffreys as limiting conjugate prior.

The conjugate of a Poisson is a Gamma. The kernel of a Gamma is θα−1eβθ . We can see that if
α = 0.5 and β → 0, then it is the Jeffrey’s prior. Another way to see this is that the variance of the
gamma is α

β . As β approaches zero, the variance increases, providing less and less information.

Problem 6

a Fatal Accidents – Poisson(θ)

I will set a prior for θ to be Gamma, as it is the conjugate prior. I will allow the paramters to be
α = 0.5, β = 0.01 as it is near the non-informative Jeffrey’s prior shown in the last problem. Thus,
the posterior distribution can be calculated.

p(θ|y) ∝ p(y|θ)p(θ)

= e−nθθ
∑

yiθ−
1
2 e−0.01θ

= e−θ(n+0.01)θ
∑

yi−
1
2

Note that this is a Gamma(α =
∑

yi + 1
2 , β = n + 0.01).

I get the 95% predictive interval using simulation. I found the interval to be [14, 35].
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> theta=rgamma(1000, sum(y)+0.5, length(y)+0.01)
> ypred=rpois(1000, theta)
> sort(ypred)[c(25, 975)]
[1] 14 35

Problem 7

a Rejection Sample from Model II

It is not possible to use rejection sampling from the posterior sampling from Model II using the prior
as the proposal distribution. This is because the prior distribution is improper.

b Rejection Sampling for Model II

To pick a proper prior, there are a number of options. I will pick uniform distributions as they are
non-informative on µ and log(σ2). Note that since µ is a measurement, it cannot be less than zero.
I will pick an upper limit of 50, which is about 4 times larger than the largest data point (arbitrary).
I choose the lower limit of log(σ2) to be close to zero (i.e. log(0.01)), and I let the upper limit be
log(100) (arbitrary). I will use the following priors.

µ ∼ Uniform(0, 50)

log(σ2) ∼ Uniform(log(0.01), log(100)

Using these priors, the analytic expression of the posterior is as follows, where Φ(y|µ, σ2) is the cdf
of the normal distribution with mean µ and variance σ2 evaluated at the point y.

p(µ, σ2|y) ∝ p(µ, σ2)
5
∏

i=1

(Φ(yi + 0.5|µ, σ2) − Φ(yi − 0.5|µ, σ2))

A graph of the posterior densities of µ and σ2 are in Figure 6. I used the following code to obtain the
samples.

> y=c(10, 10, 12, 11, 9)
> neglike=function(musigma2){
+ return(-prod(pnorm(y+0.5, musigma2[1], sqrt(musigma2[2]))

-pnorm(y-0.5, musigma2[1], sqrt(musigma2[2]))))}
> mle=nlm(neglike, c(mean(y), var(y)))$estimate
> mle
[1] 10.4004165 0.9536996
> mu.postsamp=rep(NA, 1000)
> sigma2.postsamp=rep(NA, 1000)
> for (i in 1:1000){
+ repeat{
+ mu = runif(1, 0, 50)
+ sig=runif(1, log(0.01), log(100))
+ sig2=exp(sig)
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+ U=runif(1)
+ if (U <= -neglike(c(mu, sig2))/-neglike(mle)) break
+ }
+ mu.postsamp[i]=mu
+ sigma2.postsamp[i]=sig2
+ }
> mean(mu.postsamp)
[1] 10.39239
> mean(sigma2.postsamp)
[1] 2.325363
> var(mu.postsamp)
[1] 0.5306943
> var(sigma2.postsamp)
[1] 10.82086
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Figure 6: Posterior of mu and sigma2 for 1b

Comparing this to what was done in class, (recall that the mean and stdev for µ was (10.372, 0.716)
and the mean and stdev for σ2 was (2.76 and 4.18). These are very close to my values for µ of (10.39,
0.728) and for σ2 of (2.32, 3.28). the values of µ are closer than the values of σ2, however overall
they are still pretty close (the confidence intervals have significant overlap).

c Data Augmentation

(a) Iterated Expected Values
We know using iterated expected values that E(µ,σ2)(E(IZ≤t)|y, µ, σ2) = Eµ,σ2(Pr(Z ≤
t|y, µ, σ2)) = Pr(Z ≤ t|y). Another way of writing this is below.

p(Z ≤ t|y) =

∫ ∫

p(Z ≤ t|y, µ, σ2)p(µ, σ2|y)dµdσ2
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¿From this we can get p(Z|y).

p(Z|y) =
∂

∂z
FZ(z)

=

∫ ∫

p(z|y, µ, σ2)p(µ, σ2|y)dµdσ2

(b) Summarize Posterior of (z1 − z2)
2

I used the following code to generate 1000 draws of z1, ..., z5.

> zvals=matrix(NA, nrow=5, ncol=1000)
> for (i in 1:5){
+ zvals[i,]=rnorm(1000, mu.postsamp, sqrt(sigma2.postsamp))}
> z1minusz2=(zvals[1,]-zvals[2,])ˆ2
> mean(z1minusz2)
[1] 4.626152
> sqrt(var(z1minusz2))
[1] 15.38466

Figure 7 contains a histogram of the values of (z1 − z2)
2. As we can see, the standard deviation

is quite large, and the distribution has a large right tail.
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Figure 7: Posterior of (z1 − z1)2 for 1cii

d Posterior Distributions of Model I and Model II

I will plot the posterior density from model I using contour. I used a small grid due to time consider-
ations. The posteriors are in Figures 8.

> z1=matrix(NA, 100, 100)
> like2=function(mu, sigma){
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+ return(prod(dnorm(y, mu, sigma)))}
> dens1=function(mu, sigma){
+ return(1/sigmaˆ2*like2(mu, sigma))}
> for (i in 1:100){
+ for(j in 1:100){
+ z[i,j]=dens1(mu.grid[i], sigma.grid[j])
+ }
+ }

I will plot the posterior density from model II using contour. I used a small grid due to time consider-
ations. The posteriors are in Figures 8.

> z=matrix(NA, 100, 100)
> mu.grid=seq(0, 50, length=100)
> sigma.grid=seq(0.01, 100, length=100)
> dens=function(mu, sigma){
+ return(1/50*1/99.99*-1*neglike(c(mu, sigmaˆ2)))}
> for (i in 1:100){
+ for(j in 1:100){
+ z[i,j]=dens(mu.grid[i], sigma.grid[j])
+ }}
> contour(mu.grid, sigma.grid, z, nlevels=10, xlim=c(5, 15), ylim=c(0, 4), main="Model II posterior", xlab="mu", ylab="sigma")
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Figure 8: Posterior for Model II for 1d

We can see that the density for model 2 has a larger range for σ and looks similar for µ.

Problem 8: Gelman pg. 99 #10

We want to show that (s2
1/s

2
2)/(σ

2
1/σ2

2) ∼ F (n1 − 1, n2 − 1) under the conditions listed in the book.
Equivalently, we may show that the posterior for (ni − 1)s2

i /σ
2
i ∼ χ2

ni−1 for each i and that the posterior
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for σ2
1 and σ2

2 are independent. This follows from the definition of the F distribution as the distribution of
the (X/ny)/(Y/nx) where X and Y are independent χ2 random variables with degrees of freedom nx, ny

respectively.
Let ~yi = (yi,1, ..., yi,ni

) ie. the vector of observations belonging to the ith group. In case there is any
confusion, we explicitly assume ~y1|(µ1, σ

2
1 , µ2, σ

2
2) is independent of ~y1|(µ1, σ

2
1 , µ2, σ

2
2).

p(µ1, σ
2
1 , µ2, σ

2
2 |~y1, ~y2) ∝

p(~y1, ~y2|µ1, σ
2
1 , µ2, σ

2
2)p(µ1, σ

2
1)p(µ2, σ

2
2) ∝ (By Bayes rules and independence of priors)

p(~y1|µ1, σ
2
1)p(µ1, σ

2
1)p(~y2|µ2, σ

2
2)p(µ2, σ

2
2) ∝





By our independence assumption and
since ~yi’s distribution only depends on
µi, σi





Since the posterior density factorizes into a function of σ2
1 times a function of σ2

2 , the random variables
σ2

1 and σ2
2 are independent in the posterior distribution. From the notes, we know the posterior distribution

of σ2
i is Inv −χ2 (ni − 1, s2

i ) for each i, or equivalently, (ni − 1)s2
i /σ

2
i ∼ χ2

ni−1, which is what we needed
to show.

It is worth noting that the independence result in this problem generalizes easily. Given ~y1 and ~y2

whose distributions depend only on parameters ~θ1 and ~θ2 respectively and given independent priors for the
parameters, if ~y1 and ~y2 are conditionally independent given the parameters, then ~θ1 and ~θ2 are independent
in the posterior distribution (or conditionally independent given the data). Note that it is not true that
the elements within ~y1 are (unconditionally) independent. They are dependent through the parameter ~θ1.
They are, however, conditionally independent given ~θ1. The notion of observations being conditionally
independent given the parameters is an important notion in the subjectivist Bayesian “philosophy.” It moves
away from the frequentist notion of pure iid random variables and is tied with an alternative concept called
exchangeability which we won’t go into further here.
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