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MCLUST is a software package for cluster and discriminant analysis written in Fortran and
interfaced to the S-PLUS commercial software package1 and the freely available R language 2

which has a similar look and feel. It implements parameterized Gaussian hierarchical cluster-
ing algorithms [16, 1, 7] and the EM algorithm for parameterized Gaussian mixture models
[5, 13, 3, 14] with the possible addition of a Poisson noise term. MCLUST also includes func-
tions that combine hierarchical clustering, EM and the Bayesian Information Criterion (BIC)
in a comprehensive clustering strategy [4, 8]. Methods of this type have shown promise in
a number of practical applications, including character recognition [16], tissue segmentation
[1], minefield and seismic fault detection [4], identification of textile flaws from images [2],
and classification of astronomical data [3, 15]. A web page with related links can be found
at

http://www.stat.washington.edu/fraley/mclust/home.html.

1 Models

In MCLUST, each cluster is represented by a Gaussian model

φk(x | µk,Σk) = (2π)−
p
2 |Σk|−

1
2 exp

{
−1

2
(xi − µk)

TΣ−1
k (xi − µk)

}
, (1)

where x represents the data, and k is an integer subscript specifying a particular cluster.
Clusters are ellipsoidal, centered at the means µk. The covariances Σk determine their other
geometric features.

∗Funded by the Office of Naval Research under contracts N00014-96-1-0192 and N00014-96-1-0330.
1MathSoft, Inc., Seattle, WA USA — http://www.mathsoft.com/splus
2see http://lib.stat.cmu.edu/R/CRAN
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Each covariance matrix is parameterized by eigenvalue decomposition in the form

Σk = λkDkAkD
T
k ,

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix whose elements
are proportional to the eigenvalues of Σk, and λk is a scalar. The orientation of the principal
components of Σk is determined by Dk, while Ak determines the shape of the density con-
tours; λk specifies the volume of the corresponding ellipsoid, which is proportional to λd

k |Ak|,
where d is the data dimension. Characteristics (orientation, volume and shape) of distri-
butions are usually estimated from the data, and can be allowed to vary between clusters,
or constrained to be the same for all clusters [16, 1, 3]. This parameterization includes but
is not restricted to well-known models such as uniform spherical variance (Σk = λI) which
gives the sum of squares criterion [19], constant variance [9], and unconstrained variance
[18].

Table 1 shows the various model options currently available in MCLUST for hierarchical
clustering (denoted HC) and EM. The model identifiers code geometric characteristics of the
model. For example, EFV denotes a model in which the volumes of all clusters are equal (E),
the shapes of all clusters are fixed (F) in advance by the user, and the orientation is allowed
to vary (V) among the clusters. Parameters associated with characteristics designated by E

or V are determined from the data.

Table 1: Parameterizations of the covariance matrix Σk currently available in MCLUST for hierar-
chical clustering (HC) and/or EM (‘×’ in the appropriate column indicates availability).

ID Model HC EM Distribution Volume Shape Orientation Reference
EI λI × × Spherical equal equal NA [19, 16, 1, 3]
VI λkI × × Spherical variable equal NA [1, 3]
EEE λDADT × × Ellipsoidal equal equal equal [9, 18, 1, 3]
VVV λkDkAkDT

k × × Ellipsoidal variable variable variable [18, 1, 3]

EFV2 λDkÂDT
k × Ellipsoidal equal fixed variable [16, 1]

EEV λDkADT
k × Ellipsoidal equal equal variable [3]

VFV2 λkDkÂDT
k × Ellipsoidal variable fixed variable [1]

VEV λkDkADT
k × Ellipsoidal variable equal variable [3]

2 Obtaining and Installing MCLUST

MCLUST can be obtained via the world wide web at

http://www.stat.washington.edu/fraley/mclust/soft.shtml.

The S-PLUS version and R versions are available from Statlib; see

3Hierarchical clustering methods that estimate the shape from the data are possible [3, 7], but they cannot
be computed as efficiently as their fixed-shape counterparts. The EM software for mixture models in MCLUST
does estimate shape from the data.

2



http://lib.stat.cmu.edu/S/mclust

(MCLUST for S-PLUS version 3.4 for UNIX or version 4.5 for Windows), and

http://lib.stat.cmu.edu/R/CRAN/src/contrib/PACKAGES.html

(MCLUST for R, ported by Ron Wehrens http://www-sci.sci.kun.nl/cac/rwehrens).
The S-PLUS version and the associated Fortran code are also available via anonymous

ftp from ftp.u.washington.edu in the directory public/mclust.

2.1 Using MCLUST with S-PLUS 3.4 for UNIX

The file MCLUST.tar.gz is a packed version of a directory containing all the necessary files
for incorporating MCLUST into S-PLUS on UNIX systems. The commands to unpack it (and
remove the tar file) are:

gunzip MCLUST.tar.gz

tar xvf MCLUST.tar

rm MCLUST.tar

This creates a directory called MCLUST, which should be moved to the working directory (in
which MCLUST it is to be run with S-PLUS) if it is not already there. To compile the Fortran
code for use with S-PLUS, do the following from the working directory:

cd MCLUST

Splus COMPILE mclust.o

This creates an object file mclust.o for loading into S-PLUS. Now return to the working
directory and move mclust.o there:

cd ..

mv MCLUST/mclust.o .

The next step is to load the object code into S-PLUS. The following command statically
loads mclust.o into S-PLUS (and removes the object file which is no longer needed): 4

Splus LOAD mclust.o

rm mclust.o

This creates a file called local.Sqpe which is a local version of S-PLUS incorporating the
Fortran functions from MCLUST. To use the S-PLUS functions in MCLUST, do the following:

cd MCLUST

cat mclust.S | Splus

These functions can now be found in MCLUST/.Data. Finally, use the command

> attach("MCLUST/.Data")

in S-PLUS to attach these functions (this command can be included in a .First function
so that it will be executed when S-PLUS is invoked).

4On some UNIX systems, dynamic loading may also be possible.
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2.2 Using MCLUST with S-PLUS 4.5 for Windows

The file mclust.zip contains the necessary files for running MCLUST with S-PLUS 4.5 for
Windows. To install MCLUST on Windows, first go to the directory to be used as a working
directory for S-PLUS, put mclust.zip there, open it to invoke WinZip, and then extract
a folder called mclust. To put the S-PLUS functions from MCLUST into the working Data

directory, use the following S-PLUS command:

> source("mclust/mclust.S")

It may be preferable to source these functions into a separate directory and access them from
S-PLUS through the attach command to avoid modifying them by accident. To load the
compiled Fortran code for MCLUST, use the S-PLUS command

> dyn.load("mclust/mclust.obj")

This command needs to be executed every time MCLUST is to be used with S-PLUS, and can
be included in a .First function so that it will be invoked automatically when S-PLUS is
started in the working directory.

3 Hierarchical Clustering

MCLUST provides functions mhtree for computing classification trees via model-based hier-
archical agglomeration, and mhclass for determining the resulting classifications. As an
example of the use of mhtree and mhclass, consider Fisher’s iris data [6], which is avail-
able as a data set in S-PLUS.5 We first transform the data from a three-dimensional array
to a matrix in which the species information is lost, then apply the hierarchical clustering
algorithm for non-uniform spherical variances (VI):

> iris.matrix <- matrix(aperm(iris,c(1,3,2)),150,4,dimn=dimnames(iris)[1:2])

> cltree <- mhtree(iris.matrix, modelid = "VI")

The classification produced by mhtree for various numbers of clusters can be obtained with
mhclass. For example, for the classifications corresponding to 2 and 3 clusters:

> cl <- mhclass(cltree, 2:3)

Classifications can be displayed with the data using clpairs:

> clpairs(iris.matrix, cl[,"2"])

> clpairs(iris.matrix, cl[,"3"])

Figure 1 shows the 3-cluster classification for the iris data with this model.
The function mhtree starts by default with every observation of the data in a cluster

by itself, and continues until all observations are merged into a single cluster. However
arguments partition and min.clusters can be used to initialize the process at a chosen
nontrivial partition, and to stop it before it reaches the final stage of merging.

5A description of this data set is available from the command line via help(iris) or from the help
window under ‘datasets’.
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Figure 1: Pairs plot created with clpairs showing the 3-cluster classification of Fisher’s iris data.
This classification was produced by agglomerative hierarchical clustering using the criterion for a
nonuniform spherical Gaussian model (VI).

4 EM for Mixture Models

MCLUST provides iterative EM (Expectation-Maximization) methods for maximum likelihood
clustering with parameterized Gaussian mixture models. EM iterates between an ‘E’-step,
which computes a matrix z such that zik is an estimate of the conditional probability that ob-
servation i belongs to group k given the current parameter estimates, and an ‘M-step’, which
computes maximum likelihood parameter estimates given z. In the limit, the parameters
usually converge to the maximum likelihood values for the Gaussian mixture model

n∏
i=1

G∑
k=1

τk φk(xi | µk,Σk),

and the sums of the columns of z converge to n times the mixing proportions τk, where n is
the number of observations in the data. Here G is the number of groups in the data, which
is assumed to be known for the purposes of the EM algorithm. The parameterizations of
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Σk currently available for EM in MCLUST are listed in Table 1. They are a subset of the
parameterizations discussed in [3], which gives details of the EM iteration for these models.

MCLUST provides functions me (iterated M-step followed by E-step), estep and mstep,
implementing the EM algorithm for the parameterized Gaussian mixtures. Given the data,
an initial estimate of z, and the model specification, me produces the values of z associated
with maximum likelihood parameters. Initial estimates of z may be obtained from a discrete
classification, resulting in a matrix that has only 0, 1 entries with exactly one 1 per row. For
example, me can be started with a classification produced by mhtree:

> cltree <- mhtree( iris.matrix, modelid = "VVV") # unconstrained model

> cl <- mhclass(cltree, 3) # 3-group mhtree classification

> z <- me( iris.matrix, modelid = "VVV", ctoz(cl)) # optimal z

The function ctoz converts a discrete classification into the corresponding z matrix. In
general, the models used in mhtree and me need not be the same. It may in some cases
be desirable to use one of the faster methods in mhtree (e. g. spherical or unconstrained
models), followed by specification of a more complex model for EM.

For any z, there is a corresponding discrete classification assigning each observation to
the group represented by the column in which the z value for that observation is maximized.
MCLUST provides a function ztoc for coverting z to this ‘nearest’ classification. The following
call to clpairs plots the iris data along with its classification obtained from me in the above
example:

> clpairs( iris.matrix, ztoc(z))

The uncertainty in the classification associated with z can be obtained by subtracting
the probability of the most likely group for each observation from 1:

> uncer <- 1 - apply( z, 1, "max")

The S-PLUS function quantile applied to the uncertainty gives a measure of the quality of
the classification.

> quantile(uncer)

0% 25% 50% 75% 100%

0 0 1.727162e-08 0.001429494 0.3288714

In this case the indication is that the majority of observations are well classified. Note,
however, that when groups intersect, uncertain classifications would be expected in the
overlapping regions.

Maximum likelihood parameters can be recovered from the z produced by me using mstep:

> pars <- mstep( iris.matrix, modelid = "VVV", z)

> pars

Once values of the parameters are available, projections of the data showing the means and
standard deviations of the corresponding clusters (and optionally the partition or classifica-
tion) may be plotted using mixproj:
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Figure 2: Plots created with mixproj showing the 3-cluster classification from EM for Fisher’s iris
data using an unconstrained Gaussian model (VVV).

> mixproj(iris.matrix, ms=pars, partition=ztoc(z), dimens = c(1,2))

> mixproj(iris.matrix, ms=pars, partition=ztoc(z), dimens = c(3,4))

The resulting plots are displayed in Figure 2.
MCLUST includes functions estep and mstep implementing the individual steps of the

EM iteration. The iterative process can therefore be initialized with parameter estimates by
calling estep before me, as well as with conditional probabilities as illustrated above.

5 Bayesian Information Criterion

MCLUST provides a function bic to compute the Bayesian Information Criterion (BIC) [17]
given the data and a model along with conditional probability estimates. This allows com-
parison of models with differing parameterizations and/or differing numbers of clusters. In
general the larger the value of the BIC, the stronger the evidence for the model and number
of clusters. A standard convention for calibrating BIC differences is that differences of less
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than 2 correspond to weak evidence, differences between 2 and 6 to positive evidence, dif-
ferences between 6 and 10 to strong evidence, and differences greater than 10 to very strong
evidence [11, 12]. The following shows the BIC calculation in MCLUST for the 2 and 3-cluster
classifications Fisher’s iris data with the uniform and nonuniform spherical models:

> cltree <- mhtree(iris.matrix) # uses default unconstrained model

> cl <- mhclass(cltree, 2:3)

> z <- me( iris.matrix, modelid = "EI", ctoz(cl[,"2"])) # uniform spherical

> bic(iris.matrix, modelid = "EI", z)

[1] -1123.411

> z <- me( iris.matrix, modelid = "EI", ctoz(cl[,"3"]))

> bic(iris.matrix, modelid = "EI", z)

[1] -878.7639

> z <- me( iris.matrix, modelid = "VI", ctoz(cl[,"2"])) # spherical

> bic(iris.matrix, modelid = "VI", z)

[1] -1012.235

> z <- me( iris.matrix, modelid = "VI", ctoz(cl[,"3"]))

> bic(iris.matrix, modelid = "VI", z)

[1] -853.809

In both models, the BIC favors the 3 group classification over 2 groups; overall, of the four
possibilities considered in this section (EI or VI model; 2 or 3 groups), the best choice is VI
(nonuniform spherical), with 3 groups.

6 Cluster Analysis

MCLUST provides two functions, emclust and emclust1, for cluster analysis with BIC. Both
initialize EM using hierarchical clustering for various parameterizations of the Gaussian
model. The input to emclust is the data, the desired numbers of groups, and a list of models
to apply in the EM phase (initialized with hierarchical clustering using the unconstrained
model). It returns the BIC values for all of the chosen models and number of clusters,
together with auxiliary information that is used by the corresponding summary method for
recovering parameter values. The following is an example of the use of emclustwith Fisher’s
iris data:

> bicvals <- emclust( iris.matrix, nclus = 1:6, modelid = c("VVV","EEV","VEV"))

> bicvals

BIC:

1 2 3 4 5 6

VVV -829.9782 -574.0178 -580.8389 -628.9564 -683.8114 -711.5657

EEV -829.9782 -644.5997 -610.0836 -645.9950 -621.6901 -669.7069
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VEV -829.9782 -561.7285 -562.5507 -589.3510 -635.2051 -681.2976

sample noise equal

F F F

> plot(bicvals)

The BIC values for this example are shown in Figure 3. Application of the summary function
to this result reveals further informartion:

> sumry <- summary(bicvals, iris.matrix) # summary object for emclust()

> sumry

best classification:

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[149] 2 2

uncertainty (quantiles):

0% 25% 50% 75% 100%

0 0 0 8.917506e-12 0.0002025599

best BIC values:

VEV,2 VEV,3 VVV,2

-561.7285 -562.5507 -574.0178

best model: uniform shape

sample noise equal

F F F

The best model among those fitted by emclust is the uniform shape model VEV, with 2
clusters. The same model with 3 clusters has a BIC value that is little different from the
maximum; the conclusion is that there are either 2 or 3 clusters in the data under these
models. The 2 cluster EM result separates the first species from the other two, while the 3
cluster result nearly separates the three species (there are 5 misclassifications out of 150).

The function emclust1 is similar to emclust, except that in addition to the data and the
desired numbers of groups, it takes as input a pair of models, the first to be used in the initial
hierarchical clustering phase, and the second to be used in the EM phase. It returns the BIC
values for each number of groups under the chosen model, as well as auxiliary information to
be used by the associated summarymethod for recovering parameter values. Here is another
analysis of the iris data with emclust1 that uses the uniform spherical model (EI) in the
hierarchical clustering phase, and the uniform variance model (EEE) in the EM phase:

> bicvals1 <- emclust1( iris.matrix, nclus = 1:6, modelid = c("EI","EEE"))

> bicvals1
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Figure 3: BIC values from emclust for the models 1 - VVV, 2 - EEV, and 3 -VEV with up to six
clusters applied to Fisher’s iris data.

BIC:

1 2 3 4 5 6

-829.9782 -688.0972 -632.9633 -591.4057 -604.9243 -621.8101

HC EM

"uniform spherical (EI)" "uniform variance (EEE)"

sample noise equal

F F F

> plot(bicvals1)

> sumry1 <- summary(bicvals1, iris.matrix)

> sumry1

best classification:

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3

[75] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 2 4 2 4 2 2 4 4

[112] 4 4 4 4 4 2 2 2 3 4 4 2 4 4 2 4 4 4 2 2 2 4 3 2 4 4 2 4 4 4 4 4 4 4 4 4 4

[149] 4 4

uncertainty:

0% 25% 50% 75% 100%

0 0 2.93774e-06 0.001037691 0.5021521

best BIC values:

4 5

-591.4057 -604.9243

model:

HC EM

"uniform spherical (EI)" "uniform variance (EEE)"

sample noise equal

F F F

With this model and initialization scheme, a 4-cluster solution is preferred (note, however,
that higher BIC values were obtained for other models with fewer clusters in the emclust

example above).
Because of the size of the objects involved, optimal parameter and z values are not avail-

able from emclust or emclust1. Instead, they can be obtained through summary functions,
which have arguments allowing the summarizing information to be restricted to a subset
of the number of clusters (and models, in the case of emclust). The summary functions
require the data to be supplied as an argument in addition to the output from emclust and
emclust1. In the above example, the best classification (according to the BIC) is recovered
from summary by default. We can also see that the next best classification is the 3 group clas-
sification with the constant-shape model VEV. Parameters associated with this classification
can be recovered via summary as follows:

> nextbest <- summary(bicvals, iris.matrix, nclus = 3, modelid = "VEV")

Those who want to extend the methods provided in MCLUST to suit their own special needs
can do so via unclass, which recovers the underlying list structure of an S-PLUS objects:

> unclass(bicvals)

> unclass(sumry)

For large data sets, there is the option of using only a subset of the data in the initial
hierarchical clustering phase in both emclust1 and emclust.

For a complete analysis, it may be desirable to try various models, initialization strategies
for EM, permutations or subsets of the observations, and/or to perturb the data, to see if the
classification remains stable. Scaling or otherwise transforming the data may also affect the
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results. It is advisable to examine the data beforehand, in case (for example) the dimensions
can be reduced due to highly correlated variables.

Finally, it is important to take into account numerical issues in cluster analysis. The EM
computations break down when the covariance corresponding to one or more components
becomes ill-conditioned (singular or nearly singular). In general they cannot proceed if
clusters contain only a few observations or if the observations they contain are very nearly
colinear. If EM for a model having a certain number of components is applied to a mixture
in which there are actually fewer groups, then it may fail due to ill-conditioning.

The EM functions in MCLUST compute and monitor an estimate of the reciprocal of
the condition number of the covariance matrices (the condition number is the ratio of the
largest to the smallest eigenvalue). Reciprocal condition estimates fall in the interval (0, 1),
and values very near zero indicate ill-conditioning. Computations will terminate with a
warning message and return missing values (NAs) if a reciprocal condition estimate falls
below a prescribed tolerance. Computations are less reliable for ill-conditioned problems,
and may cause anomalies before a computation reaches the point of actual failure. Reciprocal
condition estimates are available from the output for all functions in MCLUST (including bic)
that involve EM. The reciprocal condition estimates for the emclust example given above
may be obtained as follows:

> attr(bicvals, "rcond")

1 2 3 4 5 6

VVV 0.01076579 0.005078553 0.003693874 0.002470445 0.004458351 1.489486e-05

EEV 0.01076579 0.013875312 0.019530343 0.024492144 0.019325741 1.845156e-02

VEV 0.01076579 0.024401829 0.029235848 0.029920233 0.028300937 2.760809e-02

In this example, the 6-group unconstrained (VVV) model has at least one ill-conditioned
covariance matrix. The reciprocal condition estimate is always at least as large as the
true reciprocal condition number, so that if ill-conditioning is suspected but not necessarily
indicated by these estimates, it can be further checked by obtaining the covariance matrix
using mstep and computing its eigenvalues. For more information about condition estimates
and their interpretation, see [10].

7 Discriminant Analysis

The MCLUST function estep implementing the E-step of EM for Gaussian mixtures can be
used for discriminant analysis. It takes as input parameters of a Gaussian mixture, which
could come from the result of cluster analysis via MCLUST, for example. As an illustration,
consider the following two-dimensional data set which consists of two intersecting Gaussian
clusters centered at the origin:

> n <- 100

> set.seed(0) # for reproducibility

> x <- rbind(matrix(rnorm(n * 2), n, 2) %*% diag(c(1, 9)),

(matrix(rnorm(n * 2), n, 2) %*% diag(c(1, 9)))[,2:1])

We first perform a cluster analysis via emclust:
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> xbic <- emclust(x)

> plot(xbic) # plot bic

> sumry <- summary(xbic, x) # recover information for best classification

> clpairs(x, ztoc(sumry$z), symbols = c("1", "2")) # plot classes

To classify new data points (0,5) and (5,0), we first compute the parameters corresponding
to the bets classification from emclust using mstep:

> pars <- mstep( x, modelid = attr(sumry, "modelid"), z = sumry$z),

and then determine conditional probabilities for the new observaton with estep:

> znew <- estep( matrix(rbind(c(0,5),c(5,0)), nrow = 2),

modelid = attr(sumry, "modelid"),

mu = pars$mu, sig = pars$sig, pro = pars$pro)

> znew

> ztoc(znew) # classification of the new data points

> 1 - apply(znew, 1, max) # uncertainty in classification

Figure 4 shows a plot of the initial clustering from emclust along with the two additional
points classified via discriminant analysis with estep.

8 Large Data Sets

The discrimination capability of MCLUST can be used for classification of large data sets.
First, cluster analysis with the methodolgy of emclust and emclust1 can be performed on
a subset of the data, and the optimal parameters calculated via mstep. Then the remaining
data points can then be classified (in reasonable sized blocks) using estep as illustrated in
section (7).

Functions emclust and emclust1 also include a provision for using a subsample of size
k of the data in the hierarchical clustering phase before applying EM to the full data set.
This strategy is often adequate for data sets that are not extremely large.

9 High Dimensional Data

Models in which the orientation is allowed to vary between clusters (e.g. EEV, VEV, VVV), have
O(d2) parameters per cluster, where d is the dimension of the data. For this reason, MCLUST
may not work well or may otherwise be inefficient for these models when applied to high-
dimensional data. It may still be possible to analyze such data with MCLUST by restriction
to models with fewer parameters (either the spherical models EI and VI or the constant
variance model EEE in MCLUST), or else by applying a dimension-reduction technique such
as principal components.

Note that none of the methods in MCLUST can handle datasets in which the number of
observations is smaller than the data dimension.
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Figure 4: Left: best classification according to emclust of a simulated data set. Right: Classifica-
tion of two additional data points via discriminant analysis using estep.
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