
BIOINFORMATICS Vol. 19 no. 15 2003, pages 1882–1888
DOI: 10.1093/bioinformatics/btg346

A fast layout algorithm for protein interaction
networks

Kyungsook Han∗ and Byong-Hyon Ju

School of Computer Science & Engineering, Inha University, Inchon 402-751, Korea

Received on May 1, 2003; revised and accepted on July 15, 2003

ABSTRACT
Motivation: Graph drawing algorithms are often used for
visualizing relational information, but a naive implementa-
tion of a graph drawing algorithm encounters real difficulties
when drawing large-scale graphs such as protein interaction
networks.
Results: We have developed a new, extremely fast layout
algorithm for visualizing large-scale protein interaction net-
works in the three-dimensional space. The algorithm (1) first
finds a layout of connected components of an entire net-
work, (2) finds a global layout of nodes with respect to pivot
nodes within a connected component and (3) refines the
local layout of each connected component by first relocating
midnodes with respect to their cutvertices and direct neigh-
bors of the cutvertices and then by relocating all nodes with
respect to their neighbors within distance 2. Advantages of
this algorithm over classical graph drawing methods include:
(1) it is an order of magnitude faster, (2) it can directly visual-
ize data from protein interaction databases and (3) it provides
several abstraction and comparison operations for effectively
analyzing large-scale protein interaction networks.
Availability: http://wilab.inha.ac.kr/interviewer/
Contact: khan@inha.ac.kr

INTRODUCTION
While traditional biochemical experiments had generated a
small set of data for individual protein–protein interactions,
the last three years have seen a rapid expansion of protein inter-
action data due to the recent development of high-throughput
interaction detection methods such as yeast two-hybrid (Ito
et al., 2000) and mass spectrometry techniques. The inter-
action data is available either in text files or in databases.
However, due to the volume of data, a graphical representa-
tion of protein interactions has proven to be much easier to
understand than a long list of interacting proteins. Further-
more, a network of protein interactions provides us with a
clear notion of protein function by showing a context within
which function can be interpreted.

Protein–protein interactions are typically visualized as an
undirected graphG = (V ,E), wherex,y ∈ V represent

∗To whom correspondence should be addressed

proteins and(x,y) ∈ E represents an interaction between
proteinsx andy. Visualization of a graph is straightforward
when dealing with a small number of nodes and edges. In
practice, protein–protein interaction networks often consist
of thousands of nodes or more, which severely limit the
usefulness of many graph drawing tools either because they
produce cluttered drawings with many edge crossings or static
drawings that are not easy to modify, they are too slow
for interactive analysis with large data sets, or because they
require input data to be in specific format rather than taking the
data directly from protein–protein interaction databases. The
ultimate usefulness of a protein interaction network depends
on the readability of the network, and therefore, a protein
interaction network should focus on conveying the interaction
information quickly and clearly.

Force-directed layout algorithms have been the most
popular methods for visualizing an undirected graph, which
produce an optimal layout based on a force model. A simple
implementation of a force-directed algorithm encounters real
difficulties when drawing graphs of more than a few hundred
nodes. These difficulties originate from two sources. First,
layout adjustment involves computation of force between
every pair of nodes at each step of the optimization process.
Second, for large graphs the optimization process needs too
many iterations for transforming the initial random layout into
an optimal layout.

Previously we developed a force-directed layout program
called InterViewer (Juet al., 2003). In this paper, we present
a new program called InterViewer3 that efficiently produces a
protein interaction network of good quality without comput-
ing force between every pair of nodes. InterViewer3 improves
on InterViewer in many ways: (1) while InterViewer produces
a drawing by computing force between every pair of nodes
in each iteration of the optimization process, InterViewer3
produces a more pleasant drawing without computing force
between every pair of nodes, (2) InterViewer3 is faster than
InterViewer, (3) InterViewer3 provides several abstraction
operations to reduce complex networks into simpler ones and
(4) multiple protein interaction networks can be compared
for common proteins and their interactions shared by all or
part of the networks. The rest of this paper describes a set of
algorithms of InterViewer3 and its results.

1882 Bioinformatics 19(15) © Oxford University Press 2003; all rights reserved.

 by guest on January 19, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://wilab.inha.ac.kr/interviewer/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

Algorithm for protein interaction networks

v5 v8

v6 v9

v7 v11 v10

c2

v3

v4

v1

c1

V2

midnode group 1

midnode group 2

cutvertexcutvertex

Fig. 1. Midnodes (v5–v11) on three paths between a pair of enclos-
ing cutvertices (c1 andc2). Since the multiple paths have different
lengths, midnodes on the paths are grouped into two groups: midnode
group 1 ={v5,v6,v8,v9}, midnode group 2 ={v7,v10,v11}.

DEFINITIONS
Thedegree of a nodev is the number of its edges and is denoted
by deg(v). Acutvertex (also called anarticulation point) in
a graphG is a node whose removal disconnectsG. A path
in a graphG is a sequence(v1,v2, . . . ,vn) of distinct nodes
of G, such that(vi ,vi+1) ∈ E for 1 ≤ i ≤ n − 1. A graph
G′ = (V ′,E′), such thatV ′ ⊆ V andE′ ⊆ E ∩ (V ′ × V ′), is
a subgraph of graphG = (V ,E).

When multiple paths exist between a pair of cutvertices, we
call the nodes on the pathsmidnodes. In Figure 1, there are
midnodes (shown in yellow) on three paths between a pair
of enclosing cutvertices (shown in blue). If the multiple paths
between a pair of cutvertices have different lengths, midnodes
on the paths of same length are grouped together.

What we callpivot nodes are the key nodes in the layout of a
graph. In order to produce a layout of high quality efficiently,
we select pivot nodes that are almost uniformly distributed
in each connected component (see Fig. 2 for examples). The
number of pivot nodes and distance between them are determ-
ined based on the number of nodes and edges, and the diameter
of a connected component (a diameter of a connected com-
ponent is the maximum distance between two nodes in the
component). In general, more pivot nodes are selected for a
connected component with a large diameter compared to the
number of nodes than for a connected component with a small
diameter compared to the number of nodes. For a small con-
nected component with 100 nodes or fewer, we select more
pivot nodes so that the distance between them may be 3 or
less. However, each connected component can have at most
100 pivot nodes in any case for the efficiency of the algorithm.
A detailed method for selecting pivot nodes and for comput-
ing the distance between them is described in Algorithms 2
and 3 later.

THE ALGORITHM
A common problem with many force-directed layout
algorithms is that they become very slow when dealing with
large graphs because layout adjustment at each step typically

involves computation of force between every pair of nodes.
Since a protein interaction network tends to be a disconnected
graph with several connected components, we first compute
a layout of connected components and then compute a layout
of nodes within a connected component. Our experience is
that this approach produces much better drawings in a shorter
time than computing a layout of all nodes from the beginning.

Our algorithm uses a multilevel technique to draw a graph.
It is composed of two steps at the top level: grouping and lay-
out. In the grouping step, the algorithm first groups nodes of
a disconnected graph into connected components, and finds
midnodes and pivot nodes in each connected component. In
the layout step, the coarsest graph is an initial layout of con-
nected components based on their pivot nodes only. The layout
of each connected component is then refined locally within the
connected component based on its midnodes and neighbors
of each node. Each step of the algorithm can be summarized
as follows.

1. Grouping
(a) Identify all connected components of an entire

network.

(b) For each connected component, determine its mid-
nodes and pivot nodes.

(c) Compute the distance of every node from the pivot
nodes of the connected component to which the node
belongs.

2. Layout
(a) Find a layout of connected components of an entire

network (layout between connected components).

(b) For each connected component find a layout of
nodes with respect to the pivot nodes of the con-
nected component (global layout within a connected
component).

(c) Refine the layout of each connected component by
relocating the midnodes adjacent to cutvertices with
respect to the cutvertices and the cutvertices’ dir-
ect neighbors (local layout of midnodes within a
connected component).

(d) Refine the layout of each connected component by
relocating all nodes with respect to their neighbors
within distance 2 (local layout of all nodes within a
connected component).

Step 1(a) is straightforward, and Algorithm 1 describes
step 1(b). In Algorithm 1, agroup represents a connected
component. Since step 1(a) and Algorithm 1 are performed on
nodes with at least one edge, nodes with no edge are positioned
after the connected components of size≥2 are positioned in
step 2(a). For a graph with|V | = n nodes, the time complexity
of step 1(a) is O(n), and the time complexity of Algorithm 1
is O(n · |PvN |), where|PvN | is the number of pivot nodes.

1883

 by guest on January 19, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

K.Han and B.-H.Ju

(a) (b)

Fig. 2. (a) Pivot nodes (shown in green) selected from a mesh. (b) Pivot nodes (shown in green) selected from a protein interaction network.

Algorithm 1 Distance(v,w)
1: DLst.Add(v, 0)

{Add v and its distance (=0) fromv to DLst}
2: DLst.First {Get the first node of DLst}
3: repeat
4: DLst.GetCurrent(v′, currentDist)

{Get the current nodev′ and its distance fromv}
5: for all neighboru of v′ do
6: if u �∈ DLst then
7: if w = u then
8: return currentDist+1

{distance betweenv andu}
9: end if

10: DLst.Add(u, currentDist+1)
{Add u and its distance fromv to DLst}

11: end if
12: end for
13: DLst.Next {Get the next node of DLst}
14: until DLst.Eof {until no more nodes exist in DLst}

Selecting pivot nodes from each connected component in
step 1(c) is done by Algorithms 2 and 3. When selecting
pivot nodes, distances of the pivot nodes from all other nodes
are also computed. Algorithms 2 and 3 take O(n)time for a
single pivot node, and therefore, the total time complexity for
selecting all pivot nodes is O(|PvN| · n). Algorithm 3 exam-
ines whether the current nodev is already a pivot node; if
not, it determines the possibility of including the node to the
pivot node setPvN depending on the distance from existing
pivot nodes, the structure of the connected component (i.e.
diameter, number of nodes and edges of the connected com-
ponent). The current nodev can be selected as a pivot node if

Algorithm 2 SelectPivotNodes
1: MaxDist← 1
2: PvN.Add(V[0], DistTable.Create(V[0], 0))

{first node in a group}
3: PvN.First {Get the first node of PvN}
4: repeat
5: DLst.Clear {Initialize DLst as an empty list}
6: DLst.Add(PvN.CurrentPivotNode, 0)

{Add the current pivot node and its distance}
7: DLst.First {Get the first node of DLst}
8: repeat {distance from pivot nodes}
9: ChkDistance(DLst, PvN.CurrentDistTable,

MaxDist)
10: DLst.Next {Get the next node of DLst}
11: until DLst.Eof {until no more nodes exist in DLst}
12: PvN.Next {Get the next node of PvN}
13: until PvN.Eof {until no more nodes exist in PvN}

it satisfies the following rules (function ChkPvN(v)in step 16
of Algorithm 3).

1. In a connected component with<40 nodes, the distance
of v from all existing pivot nodes should be at least 2.

2. In a connected component with≥40 and<100 nodes,
the distance ofv from all existing pivot nodes should be
at least 3.

3. In a connected component with≥100 nodes,
(a) if the diameter (d) of the connected component is<7,

degree(v) should be≥3.

(b) if 7 ≤ d < 15, degree(v) should be≥4.

(c) if 15 ≤ d < 20, degree(v) should be≥5.

1884

 by guest on January 19, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

Algorithm for protein interaction networks

Algorithm 3 ChkDistance(DLst, DistTable, MaxDist)
1: DLst.GetCurrent(v, dist)

{Get a nodev and its distance from a pivot node}
2: if (dist> MaxDist) then
3: MaxDist← dist {Update the maximum distance}
4: end if
5: bAddPvN← true {potential pivot node}
6: for all neighborw of v do
7: if w ∈ DLst then {distance ofw from a pivot node has

not been determined.}
8: bAddPvN← false {w cannot be a pivot node}
9: DLst.Add(w, dist+1)

{Add w and its distance fromv to DLst}
10: DistTable(w) ← dist+1

{Store the distance ofw from v in DistTable}
11: end if
12: end for
13: if MaxDist/3 = distthen {The node is at a distance of

one third of the maximum distance}
14: bAddPvN← true {potential pivot node}
15: end if
16: if bAddPvN and ChkPvN(v) then
17: PvN.Add(v, DistTable’.Create(v, 0))
18: end if

(d) else, letR be the ratio of the diameter of the connected
component to the number of nodes of the connected
component.
(i) if R < 0.01, the distance ofv from all existing

pivot nodes should be at least 40.

(ii) if 0.01 ≤ R < 0.02, the distance ofv from all
existing pivot nodes should be at least 17. If the
total number of nodes>1000, adjust the distance
to 30.

(iii) if 0.02 ≤ R < 0.035, the distance ofv from all
existing pivot nodes should be at least 13. If the
total number of nodes>1000, adjust the distance
to 20.

(iv) if 0.035 ≤ R < 0.07, the distance ofv from all
existing pivot nodes should be at least 10.

(v) if R ≥ 0.07, the distance ofv from all existing
pivot nodes should be at least 5.

Algorithm 4 provides a concise description of all layouts
of step 2, including both global layout and local layout. The
position ofv is always determined with respect to a reference
set V ′, which is a subset ofV . In step 2(a), the reference
setV ′ is a set of pivot nodes ofother connected components,
to which v does not belong. The maximum diameter of all
connected components is used as the value of Distance(u,v)
in step 4 of Algorithm 4, and therefore is constant for all
nodes. In step 2(b), the reference setV ′ is a set of pivot

Algorithm 4 Layout(v,V ′)
1: D ← 0 {Initialize the position displacementD to 0}
2: for all u ∈ V ′ do {V ′: subset ofV }
3: � ← pos[u] − pos[v]

{pos[u]: position of nodeu}
4: D ← D + �(1 − Distance(u,v)/‖�‖)

{‖�‖: norm of a vector�}
5: end for
6: D ← D/|V ′| {|V ′|: number of nodes inV ′}
7: pos[v] ← pos[v] + D

{Update the position ofv by addingD.}

nodes of the connected component to whichv belongs. The
value of Distance(u,v) is available in the distance table, which
was already computed by Algorithm 3 for each pivot node.
Steps 2(b) and 2(c) are repeated until the maximum edge
length of the connected component≤ a threshold value.

In step 2(c), the reference setV ′ of v is a set of its enclosing
cutvertices and the cutvertices’ direct neighbors, andv is a
midnode that is directly adjacent to a cutvertex. The distance
between a midnode and any node of its reference set is com-
puted by simple arithmetic. Suppose that nodev5 of Figure 1
is to be relocated in step 2(c) and that the path length between
its enclosing cutvertices bep. The reference setV ′ of node
v5 becomes{c1,c2,v1− v10}. Then, the distance fromv5 to
its near cutvertexc1 is 1, and that toc1′s neighborsv1, v2,
v6, v7) is 2. The distance fromv5 to its far cutvertexc2 is
p −1, that fromv5 to any of v3,v4 orv10 isp, and that from
v5 to any of v8 or v9 is p− 2. Therefore, the distance from
a midnode to any node in its reference set is either 1, 2, path
length (=p) of its enclosing cutvertices,p − 1, orp − 2.

In step 2(d), the reference setV ′ of a nodev is the neighbors
of v within distance of 2, andv is any node in the network.
A single execution of Algorithm 4 takes O(|V′|) time, so the
total time complexity of steps 2(a)–2(c) is O(n·|PvN |), where
|PvN | is the number of pivot nodes. The worst time complex-
ity of step 2(d) is O(n2) since the number of a node’s neighbors
within a distance of 2 can be as large as O(n).

ABSTRACTION OF PROTEIN INTERACTION
NETWORKS
A large number of edges and nodes of a complex protein inter-
action network often reduces the readability of the network
due to cluttered edges and nodes. In general there are two
ways to analyze such a complex network. One is to extract
smaller subnetworks from the entire network and to analyze
each of the subnetworks one by one. Another is to abstract the
entire network into a simpler one. InterViewer3 can extract
a subnetwork in several ways. For example, it can extract a
subnetwork of proteins within specified interacting distance
from one or more target proteins or a subnetwork of proteins

1885

 by guest on January 19, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

K.Han and B.-H.Ju

shared by several protein interaction networks. For abstraction
of a network, InterViewer3 provides the following operations.
An abstract network can be expanded to a detailed network
on demand.

1. Collapse a clique into a star-shaped subgraph. A clique
in an undirected graphG = (V ,E) is a subset ofV , each
pair of which is connected by an edge inE. Each clique is
replaced by a star-shaped subgraph centered at a dummy
node, which is shown as a circle in the abstract graph.

2. Collapse a group of nodes with the same interactions into
a composite node. A group of nodes with the identical
interacting partners are collapsed into a single composite
node, which is shown as a diamond in the abstract graph.

A clique with n nodes containsn(n − 1)/2 edges, and a
star-shaped graph for the clique contains exactlyn edges.
Therefore, replacing the cliques with star-shaped graphs sub-
stantially reduces the number of edges. Finding a clique with
a maximum size in a graph is a NP-hard problem (Battiti
and Protasi, 2001). We have developed an efficient, heuristic
algorithm that identifies alledge-disjoint cliques (i.e. cliques
that do not share an edge) (Ju and Han, 2003). While col-
lapsing the cliques into a star-shaped graph only reduces the
number of edges, collapsing the nodes with the same interac-
tions into a composite node reduces the number of nodes as
well as the number of edges.

RESULTS
The layout algorithms and abstraction operations were imple-
mented in Borland Delphi 6.0, and databases of protein–
protein interactions were constructed using Microsoft Data
Access Components 2.7. InterViewer3 is executable on any
PC with Windows 2000/XP/Me/98/NT 4.0 as its operating
system, and available at http://wilab.inha.ac.kr/interviewer/.

InterViewer3 takes the input interaction data in sev-
eral formats: (1) data from a Microsoft Access database,
(2) graph modeling language (GML) format (Himsolt, 1997)
http://www.uni-passau.de/Graphlet/GML, (3) a pair of inter-
acting protein names, separated by a space or tab, in each
line and (4) a pair of interacting protein indices, separated
by a tab, in each line. As output, InterViewer3 produces two
types of drawings (bitmap and GML file). The protein inter-
action data can also be saved in an ASCII file in any of the
input formats described above. Figure 3 shows a network with
44387 interactions between 4242 human proteins. It appears
to have edge crossings, but it actually contains no edge cross-
ing when it is visualized as a three-dimensional drawing on a
video monitor. The program allows the user to explore three-
dimensional drawings by rotating or by zooming in or out
of them.

For a graph with many cliques, the first collapsing opera-
tion alone is very effective in reducing the complexity of a
graph. For a graph with few cliques, applying both collapsing

operations is more effective in reducing the complexity.
Collapsing a group of nodes with same interacting part-
ners into a composite node is also effective to simplify
dense subgraphs at the terminal (see supplementary figures
in http://wilab.inha.ac.kr/intrviewer).

InterViewer3 provides two ways of comparing multiple pro-
tein interaction networks. One is to find a subnetwork shared
by all networks being compared and the other is to find a sub-
network shared bypart of networks by coloring the networks.
Figure 4 shows an example of comparing three networks, each
originally represented in cyan, yellow and magenta, by the
second comparison method. Proteins shared by part of the
networks are represented in mixed color of the corresponding
networks.

Comparison of speed
For the purpose of comparing actual running times of our
algorithm with others, we ran two other graph-drawing pro-
grams, Pajek (Batagelj and Mrvar, 2001) and Tulip (David,
2001). Table 1 shows the running times of five layout
algorithms on a same set of test cases: the new algorithm
of InterViewer3, Kamada and Kawai’s layout (Kamada
and Kawai, 1989) of Pajek, Frunchterman-Reingold’s lay-
out (Fruchterman and Reingold, 1991) of Pajek, GEM layout
of Pajek, and Spring-Electric force layout of Tulip. Pajek with
Kamada and Kawai’s layout algorithm could not even visu-
alize the human map 2 data due to ‘out of memory’ error.
The new algorithm of InterViewer3 visualizes a network with
thousands of nodes and edges in tens of seconds. It follows
from this comparison that InterViewer3 is an order of mag-
nitude faster than recent implementations of force-directed
layout algorithms.

CONCLUSIONS
From the perspective of graph drawing, protein interaction
data is a major bioinformatics challenge, because (1) it
yields a large and complicated graph with excessive num-
ber of edge crossings, (2) it produces a disconnected graph
with many connected components, (3) the graph contains
nodes of wide range of degrees. Many force-directed graph
drawing algorithms are too slow to be used in visualizing
large-scale protein interactions and they often yield unclear
drawings with many edge crossings. This paper presented
a new algorithm and a program called InterViewer3 for
drawing large-scale protein interaction networks in three-
dimensional space. Unique features of InterViewer3 include:
(1) its drawing algorithm is much faster than other forced-
directed drawing algorithms (a network with thousands of
nodes and edges is drawn in tens of seconds), (2) it can be used
not only for visualizing protein interactions but also for finding
and exploring individual connected components or subgraphs
interactively, which we found very useful in studying protein–
protein interactions on a large scale and (3) it provides an

1886

 by guest on January 19, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://wilab.inha.ac.kr/interviewer/
http://www.uni-passau.de/Graphlet/GML
http://wilab.inha.ac.kr/intrviewer
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

Algorithm for protein interaction networks

Fig. 3. Human protein interaction network with 44387 interactions between 4242 proteins. The network enclosed in a red box is a blowup of
the marked subnetwork.

Table 1. Running times of the graph drawing programs on the five data sets on a Pentium IV 2.0 GHz processor with 1GB memory. K-K: Kamada–Kawai’s
layout, F-R: Frunchterman-Reingold’s layout, S-E: Spring–Electric force layout, human map 1 & 2: human protein interaction data

Program
(layout
algorithm)

Y2H data
(3751 nodes,
12917 edges)

BIND data
(4048 nodes,
8286 edges)

DIP data
(4690 nodes,
14460 edges)

Human map 1
(8654 nodes,
184407 edges)

Human map 2
(12056 nodes,
6989558 edges)

InterViewer3 7 s 6 s 7 s 19 s 8 min 20 s
Pajek (K-K) 2 min 31 s 1 min 37 s 3 min 04 s 56 min 38 s Out of memory
Pajek (F-R) 28 min 23 s 20 min 02 s 42 min 45 s 2 h 28 min 40 s 5 h 43 min 32 s
Tulip (GEM) 2 min 10 s 4 min 40 s 18 min 40 s 9 h 19 min 10 s �10 h
Tulip (S-E) 24 min 35 s 35 min 47 s 56 min 45 s �10 h �10 h

1887

 by guest on January 19, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

K.Han and B.-H.Ju

Fig. 4. Comparing three networks, each originally represented in
cyan, yellow and magenta. Proteins shared by part of the networks
are represented in mixed color of the corresponding networks. See
the example section at http://wilab.inha.ac.kr/interviewer/ for a color
figure.

integrated framework for querying protein–protein interaction
databases and directly visualizing the query results, making
the visualization and analysis of large amounts of updated
data easy.

InterViewer3 is one of the most advanced and compre-
hensive visualization tools for studying protein interactions.
Comparisons with other existing algorithms showed that Inter-
Viewer3 generates clear and aesthetically pleasing drawings
of large-scale protein–protein interaction networks and that
it is an order of magnitude faster than other force-directed

algorithms. It is being extended to work as a web-based
application program supporting both wired and wireless
communication.

ACKNOWLEDGEMENTS
This work was supported by the Ministry of Informa-
tion and Communication of Korea under grant number
IMT2000-C3-4.

SUPPLEMENTARY DATA
For Supplementary data, please refer toBioinformatics online.

REFERENCES
Batagelj,V. and Mrvar,A. (2001) Pajek – analysis and visualization

of large networks.Lecture Notes Comput. Sci., 2265, 477–478.
Battiti,R. and Protasi,M. (2001) Reactive local search for the

maximum clique problem.Algorithmica, 29, 610–637.
David,A. (2001) Tulip.Lecture Notes Comput. Sci., 2265, 435–437.
Fruchterman,J.T.M. and Reingold,M.E. (1991) Graph drawing by

force-directed placement.Software-Practice and Experience, 21,
1129–1164.

Himsolt,M. (1997) GML: GraphModeling Language.
Ito,T., Tashiro,K., Muta,S., Ozawa,R., Chiba,T., Nishizawa,M.,

Yamamoto,K., Kuhara,S. and Sakaki,Y. (2000) Toward a protein–
protein interaction map of the budding yeast: a comprehensive
system to examine two-hybrid interactions in all possible com-
binations between the yeast proteins.Proc. Natl Acad. Sci. USA,
97, 1143–1147.

Ju,-H.B. and Han,K. (2003) Complexity management in visualizing
protein interaction networks.Bioinformatics, 19, i177–i179.

Ju,-H.B., Park,B., Park,H.J. and Han,K. (2003) Visualiza-
tion and analysis of protein interactions.Bioinformatics, 19,
317–318.

Kamada,T. and Kawai,S. (1991) An algorithm for drawing general
undirected graphs.Inform. Process. Lett., 31, 7–15.

1888

 by guest on January 19, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://wilab.inha.ac.kr/interviewer/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

