
Algorithms for Visualizing Large Networks

Yifan Hu

AT&T Labs – Research

180 Park Ave.

Florham Park, NJ 07932, USA

yifanhu@research.att.com

September 16, 2011

1 Introduction

Graphs are often used to encapsulate relationship between objects. Graph draw-
ing enables visualization of such relationships. The usefulness of this visual rep-
resentation is dependent on whether the drawing is aesthetic. While there are
no strict criteria for aesthetics of a drawing, it is generally agreed, for example,
that such a drawing has minimal edge crossing, with vertices evenly distributed
in the space, connected vertices close to each other, and symmetry that may
exist in the graph preserved.

One of the earliest example of graph drawing is probably the Mill (also
known as Morris) game boards, found in the 13th century The Book of Games,
produced under the direction of Alfonso X (1221-1284), King of Castile (Spain).
Other examples of early graph drawing are drawings of family trees, and trees
of virtues and vices.

In 1735, Euler presented and later published his famous paper [13] on the
Seven Bridges of Königsberg. The problem was to find a walk through the city
of Königsberg, which include two islands connected to the mainland by seven
bridges (Figure 1). The walk must cross each bridge once and only once. Euler
proved that such a walk is not possible. Euler’s paper laid the foundation of
graph theory. Interestingly, however, Euler did not provide a drawing of the
graph representation of the problem itself in the paper.

In the 18th century, the Irish physicist, astronomer, and mathematician,
William Hamilton, invented the Iconsian game. To play the game, one has to
visit every node of a dodecahedral graph once, and back to the starting node.
Every edge can be passed at most once. In 1857 he sold the game to a London
game dealer for 25 Pounds (about 3000 US dollars in today’s money after taking
inflation into account). The dealer made two versions; unfortunately, neither
sold well, probably because the game was so simple that even a child could
succeed. Around the same time, British mathematician Arthur Cayley wrote
a paper on the enumeration of tree diagrams. In the paper he pioneered the

1

Island 1
Island 2

Land

Land
Bridge

2
Bridge

1
Bridge 3

Bridge
5

Bridge
4

Bridge 6

Bridge 7

Land 1

Island 1 Island 2

Land 2

Figure 1: An illustration of the seven bridges of Königsberg (left) and the graph
representation (right).

concept of a tree, which is now fundamental to computer sciences. The paper
also contains drawings of trees.

Between the 18th and 19th centuries, graph drawing also appeared in areas
outside of mathematics. For example, in crystallography and chemistry, graph
drawings were used to illustrate molecular structures. In 1878, the English
mathematician Sylvester introduced the concept of a graph for the first time.

From the mid-20th century, with the demands from the military, transporta-
tion and communication, and science and technology, a great number of graph
theory problems emerged. Often it is helpful to be able to visualize a graph.
However drawing a complex graph by hand is time consuming, if not impossible,
for large graphs. Therefore automatic generation of graph drawings became of
interest, and were facilitated by the ever increasing computing power.

In 1963, Tutte [55] proposed an algorithm to draw planar graphs by fixing
nodes on a face and placing the rest of the nodes at the barycenters of their
neighbors. In 1981, Sugiyama et al. [52] proposed a method for the hierarchical
drawing of directed graphs. Eades [12] proposed a force-directed algorithm in
1984, and Kamada and Kawai [37] the spring embedding algorithm in 1989.
These algorithms were further improved [20, 15], and some of them applied to
large graphs [5, 24, 34, 49, 54, 57] later.

Depending on the applications and properties of the graph to be visualized,
there are many styles of graph drawing. For example, for planar graphs, a
planar embedding is more appropriate. For general graphs, there are also two
broad styles of drawing: straight line drawing, where each edge is represented
by a straight line, and orthogonal drawing, where each edge is represented by
lines segments that are either horizontal or vertical. Finally, for directed graphs
where it is important to show the direction of the edges, a hierarchical drawing
style can be used. Figure 2 shows a graph drawn using the hierarchical style
(left) and the undirected straight-edged style (right).

In this paper we look at algorithms for visualizing large networks. The
term large is relative to the computing power and memory available. In this
paper, by large, we mean graphs of more than a few thousand vertices. Such
large graphs occur in areas such as Internet mapping, social networks, biological
pathways and genealogy. Large networks bring unique issues. For example,

2

Figure 2: A graph drawn in hierarchical (left) and undirected (right) styles.

the complexity of the algorithm becomes very important. The ability of the
algorithm in escaping from local minimum and achieving a globally optimal
drawing is also vital. We present some of the algorithms suitable for large
graphs. We shall limit our attention to straight edge drawing of undirected
graphs, mostly because scalable algorithms for these have been more intensely
investigated. Our emphasis is on algorithms, with a tilt toward issues relating
to combinatorial computing. We do not attempt to give a comprehensive review
of the literature and history, nor of software and visualization systems; for these
the reader is referred to [3, 39].

We note that not all graph can be aesthetically embedded into two or three-
dimensional space. For example, many Internet graphs are of “small-world”
nature [60]. Such graphs are difficult to layout in Euclidean space, and of-
ten require an interactive system to comprehend and explore. A number of
techniques can be brought to bear on such graphs, including visual abstrac-
tion [50, 18], fisheye-like distortion and hyperbolic layout [18, 31, 42, 46, 45].
These topics are not within the scope of this chapter, but are nevertheless very
important parts of large graph visualization.

2 Algorithms for Drawing Large Graphs

We use G = {V,E} to denote an undirected graph, with V the set of vertices
and E the set of edges. Denote by |V | and |E| the number of vertices and edges,
respectively. If vertices i and j form an edge, we denote that i ↔ j, and call i
and j neighboring vertices. We denote by xi the current coordinates of vertex
i in d-dimensional Euclidean space. Typically d = 2 or 3.

The aim of graph drawing is to find xi for all i ∈ V so that the resulting

3

drawing gives a good visual representation of the connectivity information be-
tween vertices. One way to solve this problem is to turn the graph drawing
problem into that of finding a minimal energy configuration of a physical sys-
tem. Within this framework, two popular methods, the spring-electrical model
[12, 15], and the stress model [37], are the most well-known.

We first discuss the spring-electrical model, and the multilevel approach and
force approximation techniques that make this model suitable for large graphs.
We note that the multilevel approach is not limited to the spring-electrical
model, but for convenience we introduce it in the context of this model. We then
discuss the stress model and classical MDS (strain model), and look at attempts
to apply these models to large graphs. Finally we present high-dimensional
embeddings and Hall’s algorithm for large graph layout.

Within the graph drawing literature, the name “force-directed algorithm”
has often been used with the both spring-electrical and stress models. Strictly
speaking, the name “force-directed algorithm” is appropriate when we talk
about a procedure that involves calculating forces exerted on vertices, mov-
ing them along the direction of the forces, and repeating until the system comes
to an equilibrium state. Therefore we shall only use the term “force-directed
algorithm” when referring to this iterative procedure.

2.1 Spring-electrical Model

The spring-electrical model [12] represents the graph drawing problem by a
system of electrically charged vertices attracted to each other by springs; vertices
also repel each other via electrical forces. Here, following [15], the attractive
spring force exerted on vertex i from its neighbor j is proportional to the squared
distance between these two vertices,

Fa(i, j) = −
‖xi − xj‖

2

K

xi − xj

‖xi − xj‖
, i ↔ j,

where K is a parameter related to the nominal edge length of the final layout.
The repulsive electrical force exerted on vertex i from any vertex j is inversely
proportional to the distance between these two vertices,

Fr(i, j) =
K2

‖xi − xj‖

xi − xj

‖xi − xj‖
, i 6= j.

The energy of this physical system [47] is

E(x) =
∑

i↔j

‖xi − xj‖
3/(3K)−

∑

i6=j

K2 ln (‖xi − xj‖) ,

with its derivatives a combination of the attractive and repulsive forces. We
note that there are other variations of this force model. See, e.g., [4, 12].

The spring-electrical model can be solved with the aforementioned force-
directed algorithm by starting from a random layout, calculating the combined
attractive and repulsive forces on each vertex, and moving the vertices along

4

the direction of the force for a certain step length. This process is repeated,
with the step length decreasing every iteration, until the layout stabilizes. The
following algorithm starts with a random, or user supplied, initial layout x.

Algorithm 1: Force-directed algorithm

• ForceDirectedAlgorithm(G, x, tol) {

– converged = FALSE;

– step = initial step length;

– while (converged equals FALSE) {

∗ x0 = x;

∗ for i ∈ V {

· f = 0;

· for (j ↔ i) f := f + Fa(i, j);

· for (j 6= i, j ∈ V) f := f + Fr(i, j);

· xi := xi + step ∗ (f/||f ||);

∗ }

∗ step := update steplength(step, x, x0);

∗ if (||x − x0|| < tol ∗K) converged = TRUE;

– }

– return x;

• }

This procedure can be enhanced by an adaptive step length updating scheme
[7, 34], and usually works well for small graphs.

For large graphs, this simple iterative procedure is not sufficient to over-
come the many local minima that often exist in the space of all possible layouts.
Instead, a multilevel approach has to be used (Section 2.1.2). Furthermore, a
nested space partitioning data structure is needed to approximate the all-to-all
electrical force so as to reduce the quadratic complexity to O(|V | log |V |+ |E|)
(Section 2.1.1). Combining these two powerful techniques results in efficient im-
plementations of the spring-electrical model [24, 34] that are capable of handling
graphs of millions of vertices and edges [33].

2.1.1 Fast force approximation

Each iteration of the force-directed algorithm (Algorithm 1) involves two loops.
The outer loop iterates over each vertex. Of the two inner loops, the latter
involves calculation of all-to-all repulsive forces, and O(|V |) force calculations
are needed for every vertex. Thus the overall complexity is O(|V |2).

The repulsive force calculation resembles the n-body problem in physics,
which is well-studied. One of the widely used techniques to approximate the
repulsive forces in O(n log n) time with good accuracy, but without ignoring

5

long range forces, is to treat groups of far away vertices as supernodes, using
a suitable data structure [2]. This idea was adopted by Tunkelang [54] and
Quigley [49]. They both used an quadtree (2D) or octree (3D) data structure.

For simplicity, hereafter we use the term quadtree exclusively, which should
be understood as octree for 3D. A quadtree data structure is constructed by
first forming a square that encloses all vertices. This is the level 0 square. This
square is subdivided into 4 squares if it contains more than 1 vertex, and forms
the level 1 squares. This process is repeated until each square contains no more
than 1 vertex. Figure 3 (left) shows a quadtree on the jagmesh1 graph.

The quadtree forms a recursive grouping of vertices, and can be used to
efficiently approximate the repulsive force in the spring-electrical model. The
idea is that in calculating the repulsive force on a vertex i, if a group of vertices,
S, lies in a square that is sufficiently “far” from i, the whole group can be
treated as a supernode. Otherwise we traverse down the hierarchy and examine
the four sibling squares. The supernode is assumed to be situated at the center
of gravity of the group, xS = (

∑

j∈S xj)/|S|. The repulsive force on vertex i
from this supernode is

fr(i, S) =
K2|S|

‖xi − xS‖

xi − xS

‖xi − xS‖
.

It remains to define what “far” means. Following [49, 54], the supernode
S is far away from vertex i, if the width dS of the square that contains the
supernode is small, compared with the distance between the supernode and the
vertex i,

dS
||xi − xS ||

≤ θ. (1)

This inequality is called the Barnes-Hut opening criterion, and was originally
formulated by Barnes and Hut [2]. Here θ ≥ 0 is a parameter. The smaller the
value of θ, the more accurate the approximation to the repulsive force, and
the larger the number of force calculations. A typical value that works well in
practice is θ = 1.2.

The quadtree data structure allows efficient identification of all the supern-
odes that satisfy (1). The process starts from the level 0 square. Each square
is checked, and recursively opened, until the inequality (1) is satisfied. Fig-
ure 3 (right) shows all the supernodes (the squares) and the vertices these su-
pernodes consist of, with reference to vertex i located at the top-middle part of
the graph. In this case there are 936 vertices, and 32 supernodes.

Under a reasonable assumption [2, 48] of the distribution of vertices, it can
be proved that building the quadtree takes a time complexity of O(|V | log |V |).
Finding all the supernodes with reference to a vertex i can be done in a time com-
plexity O(log|V |). Overall, using a quadtree structure to approximate the re-
pulsive force, the complexity for each iteration of the force-directed Algorithm 1
is reduced from O(|V |2) to O(|V | log |V |). This force approximation scheme can

6

Figure 3: An illustration of the quadtree data structure. Left: the overall
quadtree. Right: supernodes with reference to a vertex at the top middle part
of the graph, with θ = 1.

be further improved by considering force approximation at supernode-supernode
level instead of vertex-supernode level [8].

A force approximation algorithm with the same O(|V | log |V |) complexity
but that is independent of the distribution of vertices is the multipole method
[22], Hachul and Jünger applied this force approximation to graph drawing [24].

2.1.2 Multilevel approach

While fast approximation of long range forces resolves the quadratic complexity
of the force-directed algorithm for the spring-electrical model, it does not change
the fact that the algorithm repositions one vertex at a time, without a “global
view” of the layout. Due to the fact that this physical system of springs and
electrical charges has many local minimum configurations, applying the force
directed algorithm directly to a random initial layout is unlikely to give an
optimal final layout. A multilevel approach can overcome this limitation. In
this approach, a sequence of successively smaller graphs are generated, each
captures the essential connectivity information of its parent. Global optimal
layout can be found much more easily on a small graph, which are then used as
a starting layout for its parent. From this initial layout, further refinement is
carried out to achieve the optimal layout for the parent.

A multilevel approach has been used in many large-scale combinatorial op-
timization problems, such as graph partitioning [23, 30, 59], matrix ordering
[36, 51], the traveling salesman problem [56], and was proved to be a very useful
meta-heuristic tool [58]. A multilevel approach was later used in graph drawing
[16, 25, 27, 57]. Note that a multilevel approach is not limited to the spring-
electrical model, but for convenience we are introducing it in the context of this
model.

A multilevel approach has three distinctive phases: coarsening, coarsest
graph layout, and prolongation and refinement. In the coarsening phase, a
series of coarser and coarser graphs, G0 = G,G1, . . . , Gl, are generated, each

7

→

(a)

→

(b)

Figure 4: An illustration of graph coarsening: (a) Left: original graph with
229 vertices. Edges in a maximal independent edge set are thickened. Right:
a coarser graph with 115 vertices resulted from coalescing thickened edges; (b)
Left: original graph with 229 vertices. Vertices in a maximal independent vertex
set are darkened. Right: a coarser graph with 55 vertices resulted from the
maximal independent vertex set.

coarser graph Gk+1 encapsulates the information needed to layout its “parent”
Gk, while containing fewer vertices and edges. The coarsening continues until a
graph with only a small number of vertices is reached. The optimal layout for
the coarsest graph can be found cheaply. The layout on the coarser graphs are
recursively prolonged to the finer graphs, with further refinement at each level.
Graph coarsening and initial layout is the first phase in the multilevel
approach. There are a number of ways to coarsen an undirected graph. One
often used method is based on edge collapsing (EC) [23, 30, 59]. In this scheme,
a maximal independent edge set (MIES) is selected. This is a maximal set of
edges, with no edges incident to the same vertex. The vertices correspond to
this edge set form a maximal matching. Each edge, and its corresponding pair
of vertices, are coalesced into a new vertex. Figure 4 (a) illustrates MIES and
the result of coarsening using edge collapsing.

Alternatively, coarsening can be performed based on a maximal independent
vertex set (MIVS) [1]. This is a maximal set of vertices such that no two vertices
in the set are connected by an edge in the graph. Edges of the coarser graph are
formed through linking two vertices in the maximal independent vertex set by
an edge if their distance apart is no greater than three. Figure 4 (b) illustrates
MIVS and the result of coarsening using maximal independent vertex set.

8

Coarsest graph layout is carried out at the end of the recursive coarsening
process. Coarsening is performed repeatedly until the graph is very small; at
that point we can layout the graph using a suitable algorithm, for example,
the force-directed Algorithm 1. Because the graph on the coarsest level is very
small, it is likely that it can be laid out optimally.
The prolongation and refinement step is the third phase in a multilevel
procedure. The layout on the coarser graphs are recursively interpolated to the
finer graphs, with further refinement at each level.

Row “spring electrical” of Figure 5 shows drawings of two graphs using this
multilevel force-directed algorithm [34]. The drawings are of good quality for
both jagmesh1, a mesh-like graph, and 1138 bus, a sparser graph. The spring-
electrical model does suffer slightly from “warping effect” [35]. For example,
for the jagmesh1, vertices are closer together near the boundary, compared to
the interior of the mesh. This effect can be mitigated using post-processing
techniques [35].

2.1.3 An open problem: more robust coarsening schemes

The multilevel approach can work efficiently, provided that the coarsening scheme
is able to generate a coarsened graph with many fewer vertices than its parent
graph. The aforementioned multilevel algorithm was found to work well for a
lot of graphs from the graph drawing literature [34]. However, when applied to
the University of Florida Sparse Matrix Collection [10], we found that, for some
matrices, the coarsening scheme could not coarsen sufficiently, and the multi-
level scheme has to be terminated prematurely, which results in poor drawings.
An example is shown in Figure 6. On the left of the figure is the sparsity pat-
tern of the matrix gupta1. From this plot we can conclude that this matrix
describes a graph of three groups of vertices: those represented by the top 1/3
of the rows in the matrix plot, the middle 1/3 of the rows, and the rest. Vertices
in each group are all connected to a selected few in that group; these links are
seen as dense horizontal and vertical bars in the matrix plot. At the same time,
vertices in the top group are connected to those in middle group, which in turn
are connected to those in the bottom group, as represented by the off-diagonal
lines parallel to the diagonal. However, the graph drawing in the middle of
Figure 6 shows none of these structures.

This graph exemplifies many of the problematic graphs: they contain star-
graph like substructures, with a lot of vertices all connected to a few vertices.
Such structures pose a challenge to the usual graph coarsening schemes. These
schemes are not able to coarsen graphs like that adequately. For example,
Figure 7 (left) shows such a graph, with k = 10 vertices on the outskirts all
connected to two vertices at the center. Because of this structure, any MIES
can only contain two edges (the two thick edges in Figure 7). When the end
vertices of the MIES are merged at the center of each edge, the resulting graph
has only two fewer vertices. Therefore if k is large enough, the coarsening can
be arbitrarily slow (k/(k + 2) → 1 as k → ∞).

One solution proposed [10] is to find vertices that share the same neigh-

9

Algorithms jagmesh1 1138 bus

spring electrical

stress

classical MDS

HDE

Hall’s

Figure 5: An overview of all algorithms described in the chapter, applied to two
graphs, jagmesh1 and 1138 bus.

10

Figure 6: Matrix plot of gupta1 matrix (left) and the initial graph drawing
(middle). After applying the new coarsening scheme, the graph drawing reflects
the structure of the matrix much better (right).

Figure 7: A maximal independent edge set based coarsening scheme fails to
coarsen sufficiently a star-graph like structure: a maximal independent edge set
(thick edges) (left); when merging the end vertices of the edge set at the middle
of these edges, the resulting coarsened graph only has 2 fewer vertices (right).

bors. These vertices are matched in pairs. The usual MIES scheme is then used
to match the remaining unmatched vertices. Finally the matched vertices are
merged to get the coarsened graph. The scheme is able to overcome the slow
coarsening problem associated with graphs having star-graph likes substruc-
tures. Applying this scheme to the graph in Figure 8 (left) resulted in a graph
with 1/2 the number of vertices (Figure 8 right). With this new coarsening
scheme, we are able to layout many more graphs aesthetically. For example,
when applied to the gupta1 matrix, the drawing at Figure 6 (right) reveals the
correct visual structures as we expected, with three groups of vertices, each con-
nected to a few within the group, and a linear connectivity relation among the
groups. This new coarsening scheme is able to handle many of the graphs MIES
or MIVS based coarsening schemes fail to. But a more general and robust coars-
ening scheme that works for all graphs is still an open problem. A promising
route for investigation may be the coarsening schemes associated with algebraic
multigrid (AMG) [51].

11

Figure 8: Matching and merging vertices with the same neighborhood structure
(left, with dashed line enclosing matching vertex pairs) resulted in a new graph
(right) with 1/2 the number of vertices.

2.2 Stress and Strain Models

While the spring-electrical model is scalable and can layout graphs of millions
of nodes in minutes, it does have the limitation of not coping well when edges
have predefined lengths. It is possible to assign weaker attractive force and
stronger repulsive force for longer edges, but such treatment is not as principled
and direct as the following stress model.

2.2.1 Stress model

The stress model assumes that there are springs connecting all pairs of vertices
of the graph, with the ideal spring length equal to the predefined edge length.
The energy of this spring system is

∑

i6=j

wij (‖xi − xj‖ − dij)
2, (2)

where dij is the ideal distance between vertices i and j, and wij is a weight
factor, typically 1/dij

2. The layout that minimizes the above stress energy is an
optimal layout of the graph according to this model.

The stress model has its root in Multidimensional Scaling (MDS) [40, 41].
Note that typically we only know the ideal distance between vertices that share
an edge, which is usually taken to be one for graphs without predefined edge
length. Alternatively, it has been proposed to set the edge length equal the
total number of non-common neighbors of the two end vertices [19]. For other
vertex pairs, one way to define dij is to take it as the shortest distance between
vertex i and j. The practice of taking the shortest graph distance as the ideal
edge length date back at least to 1980 in social network layout [6], and in graph
drawing using classical MDS[41], but is often attributed to Kamada and Kawai
[37].

There are several ways to minimize (2). A force-directed algorithm (Algo-
rithm 1) can be used. The repulsive/attractive force exerted on vertex i from

12

the spring between vertices i and j is

F (i, j) = −wij(‖xi − xj‖ − dij)
xi − xj

‖xi − xj‖
, i 6= j. (3)

Stress-majorization: a stress-majorization technique [19] can be employed
to solve the stress model. Consider the cost function (2),

∑

i6=j

wij (‖xi − xj‖ − dij)
2 =

∑

i6=j

(

wij‖xi − xj‖
2 − 2dijwij‖xi − xj‖+ wijdij

2
)

On the right hand side, the first and third terms are either constant or
quadratic with regard to x, except the second one. Using the Cauchy-Schwartz
inequality, (xi − xj)

T (yi − yj) ≤ ‖xi − xj‖ ‖yi − yj‖, we can bound the cost
function by

g(x, y) =
∑

i6=j

(

wij‖xi − xj‖
2 − 2dijwij

(xi − xj)
T (yi − yj)

‖yi − yj‖
+ wijdij

2

)

,

with the bound tight when y = x. The idea of stress majorization is to minimize
a sequence of quadratic function g

(

x, yk
)

, with y0 = x0 the initial layout, and

subsequent yk the result of minimizing g
(

x, yk−1
)

, k = 1, 2,
The minimum of the quadratic function g(x, y) is derived by setting ∂xi

g(x, y) =
0, giving

Lwx = Lw,d y (4)

where the weighted Laplacian matrix Lw has elements

(Lw)ij =

{ ∑

i6=l wil, i = j

−wij, i 6= j

and matrix Lw,d has elements

(Lw,d)ij =

{ ∑

i6=l wil dil/ ‖yi − yl‖ , i = j

−wij dij/ ‖yi − yj‖ , i 6= j

In summary, the process of finding a minima of (2) becomes that of solving a
series of linear systems (4), with the solution x served as y in the next iteration.
This iterative process is found to be quite robust, although for large graphs, it
still benefits from a good initial layout. Row “stress” of Figure 5 gives drawings
of the stress model. It performed very well on both graphs.

13

2.2.2 Strain model (classical MDS)

The strain model, also known as classical MDS [53], predates the stress model.
Classical MDS tries to fit the inner product of positions, instead of the distance
between points. Specifically, assume that the final embedding is centered around
the origin:

|V |
∑

i=1

xi = 0.

Furthermore, assume that in the ideal case, the embedding fits the distance
exactly:

‖xi − xj‖ = dij . (5)

It is then easy to prove [61] that the product of the positions, bij = xT
i xj , can

be expressed as the squared and double centered distance,

bij = xT
i xj = −1/2

d2ij −
1

|V |

|V |
∑

k=1

d2kj −
1

|V |

|V |
∑

k=1

d2ik +
1

|V |2

|V |
∑

k=1

|V |
∑

l=1

d2kl

 . (6)

In real data, it is unlikely that we can find an embedding that fits the
distances perfectly, hence assumption (5) does not stand. But we would still
expect that bij is a good approximation of xT

i xj . Therefore we try to find an
embedding that minimizes the difference between the two,

min
X

||XTX −B||F , (7)

where X is the |V | × d dimensional matrix of xi’s, B is the |V | × |V | symmetric
matrix of bij ’s, and ||.||F is the Frobenius norm. If the eigen-decomposition of B

is B = QTΛQ, then the solution to (7) is X = Λ
1/2
d Q, where Λd is the diagonal

matrix of Λ, with all but the d largest eigenvalues on the diagonal set to zero.
Because the strain model does not fit the distance directly, graph drawings given
by solving this model are not as satisfactory as those using the stress model [6],
but it can be used as a good starting point for the stress model. Row “classical
MDS” of Figure 5 gives drawings using classical MDS. It performed well on the
mesh like jagmesh1 graph, but not so well on the sparser 1138 bus graph, where
vertices cling close to each other, making some details of the graph unclear.

2.2.3 MDS for large graphs

In a typical usage of the stress or strain models, the ideal distance between
all pairs of vertices has to be calculated, which requires an all-pair shortest
path calculation. Using Johnson’s algorithm, this needs O(|V |2 log |V |+ |V ||E|)
computation, and a storage of O(|V |2). Therefore for very large graphs, this
formulation is computationally expensive and memory prohibitive. A number

14

of strategies [5, 11, 19] have been proposed to approximately minimize (2) or
(7).

A multiscale algorithm [16, 28] applies the multilevel approach in solving
the stress model. In the GRIP algorithm [16], graph coarsening is carried out
through vertex filtration, an idea similar to the maximal independent vertex
set. A sequence of vertex sets, V 0 = V ⊂ V 1 ⊂ V 2, . . . ,⊂ VL, is generated.
However, coarser graphs are not constructed explicitly. Instead, a vertex set V k

at level k of the vertex set hierarchy is constructed so that distance between
vertices is at least 2k−1+1. On each level k, the stress model is solved by a force-
directed procedure. The spring force (3) on each vertex i ∈ V k is calculated by
considering a neighborhood Nk(i) of this vertex, with Nk(i) the set of vertices
in level k, chosen so that the total number of vertices in this set is O(|E|/|V k|).
Thus the force calculation on each level can be done in time O(|E|). It was
proved that with this multilevel procedure and the localized force calculation
algorithm, for a graph of bounded degree, the algorithm has close to linear
computational and memory complexity.

LandmarkMDS [11] approximates the result of classical MDS by choosing
k << |V | vertices as landmarks, and calculating a layout of these vertices using
the classical MDS, based on distances among these vertices. The k landmarks
are chosen to be well dispersed in the graph. One possibility is to use a MaxMin
strategy where the first landmark is randomly chosen, then each subsequent
landmark is chosen to be furthest away from the previous landmarks, which is
a well-known 2-approximation to the k-center problem. The positions of the
rest of vertices are then calculated by placing these vertices at the weighted
barycenter, with weights based on distances to the landmarks. So essentially
classical MDS is applied to a k × k submatrix of the |V | × |V | matrix B. The
complexity of this algorithm is O(k|V | + k2), and only O(k|V |) distances need
to be stored.

PivotMDS [5], on the other hand, takes a |V | × k submatrix C of B.
The two eigenvectors corresponding to the largest eigenvalues of the |V | × |V |
matrix CCT are then calculated using power iterations and used as the x− and
y− coordinates. By an algebraic argument, if v is an eigenvector of the k × k
matrix CTC, then

CCT (Cv) = C(CTCv) = λ(Cv),

hence Cv is an eigenvector of CCT . Therefore PivotMDS proceeds by finding
the largest eigenvectors of the smaller k × k matrix CTC, then projects back
to |V |-dimensional space by multiplying them with C. Using this technique,
the overall complexity is similar to LandmarkMDS, but unlike LandmarkMDS,
PivotMDS utilizes distances between landmark vertices and other vertices in
the matrix product. In practice PivotMDS was found to give drawings that are
closer to the classical MDS than LandmarkMDS, and both are very efficient
when used with a small number (e.g., k ≈ 50) of pivots/landmarks.

It is worth pointing out that, for sparse graphs, there is a limitation in
both algorithms. For example, if the graph is a tree, and pivots/landmarks are

15

chosen to be non-leaves, then two leaf nodes that have the same parent will
have exact the same distances to any of the pivots/landmarks, consequently
their final positions based on these algorithms will also be the same. This
problem may be alleviated by utilizing the layout given by these algorithms as
an initial placement for a stress model based algorithm, but taking only a sparse
set of terms in the stress function [6, 19].

2.3 High-Dimensional Embedding

The high-dimensional embedding (HDE) algorithm [29] finds coordinates of ver-
tices in a k-dimensional space, then projects back to two or three dimensional
space.

First, a k-dimensional coordinate system is created based on k-centers, where
k-centers are chosen as in LandmarkMDS/PivotMDS (Section 2.2.3). The graph
distances from each vertex to the k-centers form a k-dimensional coordinate
system. The |V | coordinate vectors form an |V | × k matrix Y , where the i-th
row of Y is the k-dimensional coordinates for vertex i.

Since it is only possible to visualize in two or three dimensions, and since
the coordinates may be correlated, the coordinates are projected back to two
or three dimensions by suitable linear combinations that minimize correlations.
To make this projection shift-invariant, Y is first normalized so that the center
of gravity of the vertices is at the origin, i.e.,

Y := Y −
1

|V |
eeTY,

where e is the |V |-dimensional vector of all 1’s.
Assume we want to project the k dimensional coordinate system into 2-

dimensions. Let v1 and v2 be two k-dimensional linear combination vectors, so
that Y v1 and Y v2 form the x− and y− coordinates. The two linear combinations
should be uncorrelated, so we take them to be orthogonal to each other:

vT1 Y
TY v2 = 0.

Furthermore, each should be as far away from 0 as possible, so we want to
maximize

vTl Y
TY vl

||vl||
, l = 0, 1.

These can be achieved by taking v1 and v2 to be the two eigenvectors that
correspond to the two largest eigenvalues of the k × k symmetric matrix Y TY .
This process of choosing highly uncorrelated vectors out of high dimensional
data is known as principal component analysis. The final x− and y− coordinates
are given by Y v1 and Y v2.

HDE clearly has many commonalities to PivotMDS. Each utilizes k-centers,
and each finds the largest eigenvectors of a k×k dimensional matrix derived by
multiplying the transpose of a |V | × k matrix with itself. The main difference

16

is that in high-dimensional embedding this |V | × k matrix consists of distances
to the k-centers, while in PivotMDS this matrix consists of distances squared
and double centered (see (6)). High-dimensional embedding suffers from the
same limitation as PivotMDS and LandmarkMDS, in that it is not able to
layout sparse graphs as well as mesh-like graphs. Row “HDE” of Figure 5 gives
drawings using HDE. It performs particularly badly on 1138 bus graph, with
vertices close to each other, obscuring many details.

2.4 Hall’s Algorithm

In 1970, Hall [26] remarked that many sequencing and placement problems could
be characterized as finding locations of points which minimize the weighted sum
of square distances. In our notation, what he proposed was to minimize

∑

i↔j

wij ‖xi − xj‖
2
, subject to

|V |
∑

k=1

x2
k = 1

where xi is the 1-dimensional coordinate value for vertex i. The objective func-
tion can be written as

∑

i↔j

wij ‖xi − xj‖
2
= xTLwx,

with x = {x1, x2, ..., x|V |}. Here Lw is the weighted Laplacian matrix with ele-
ments

(Lw)ij =

{ ∑

(i,l)∈E wil, i = j

−wij, i 6= j

For a connected graph, the Laplacian is positive semi-definite with one eigen-
value of 0 corresponding to the trivial eigenvector of all 1’s. The solution x of
the minimization problem is the eigenvector corresponding to the smallest pos-
itive eigenvalue of the weighted Laplacian Lw. We can achieve a 2-dimensional
layout by taking the two eigenvectors corresponding to the two smallest pos-
itive eigenvalues. Row “Hall’s” of Figure 5 gives drawings employing Hall’s
algorithm. It performed reasonably well on the mesh like jagmesh1 graph, but
is almost useless on the sparser 1138 bus graph.

Koren et al. [38] proposed an extremely fast algorithm for calculating the two
extreme eigenvectors using a multilevel algorithm. The algorithm is called ACE
(Algebraic multigrid Computation of Eigenvectors). Using this algorithm, they
were able to layout graphs of millions of nodes in less than a minute. However,
the fundamental weakness of Hall’s algorithm on sparse graphs remains.

3 Examples of Large Graph Drawings

In this section we give example drawings of some large graphs. These graphs are
drawn using a multilevel spring-electrical model based code, sfdp [34], available

17

from graphviz [21].
One rich source of large graphs is the University of Florida Sparse Matrix

Collection [10]. This is a collection of 2272 (as of January, 2010) sparse matri-
ces. The largest matrix has 27 million rows and columns. Graph visualization
provides a way to visualize these matrices and get a glimpse of the application
underneath these matrices. Figure 9 gives the drawing of four graphs in this
collection. For instance, by its name, the boneS10 graph could be from a model
of the bone. The porous structure can be seen clearly from the drawing. More
drawings for all the matrices in the collection can be found at [33].

boneS10. |V | = 914898, |E| = 27276762 cvxbqp1. |V | = 40000, |E| = 120000.

connectus. |V | = 392366, |E| = 1124842 aircraft. |V | = 11271, |E| = 20267.

Figure 9: Drawing of some graphs from the University of Florida Sparse Matrix
Collection [10]. More drawings can be found at [33].

Figure 10 gives a drawing of the tree of life. The data came from the Tree
of Life Project [43]. This project documents phylogeny of organisms, i.e., the
history of organismal lineages as they change through time. It implies that dif-
ferent species arise from previous forms via descent, and that all organisms are
connected by the passage of genes along the branches of the phylogenetic tree.
The data, as collected in February, 2009, contains 76425 species, representing
a tiny fraction of the estimated 5 to 100 million species on Earth today. Fig-
ure 10 clearly shows the tree structure. The root vertex “Life on Earth” (see

18

closeup) sits near the northwest of the tree; to its west are “Green plants” and
its descendants; to the east are animals. Fungi are just north of it. While it is
difficult to tell due to the size of the figure, there are many more animals than
plants, probably a reflection of the data itself rather than reality.

Life on Earth

Eubacteria

Eukaryotes

Archaea

Chloroflexi

Deinococcus-Thermus

Cyanobacteria

Archaeplastida (Plantae)

Rikenella

Actinomycetales

Clostridia

Opisthokonts

Micrococcineae

Calothrix
Actinopolymorpha

Peptostreptococcaceae

Alicyclobacillus

Anaerobacter

Green plants

Lobosea

MyzozoaStreptophyta

Pinus yunnanensis
Pinus cembra

Indo-Pacific II clade

Fungi

Animals

Deuterostomia

Lophotrochozoa

Anadoras
Claria

Lepadella

Canalipalpata

Capuloidea

Atlanta lesueuri

Loligo forbesii

Asperoteuthis

Euprymna berryi

Wardia

Dikarya

Ascomycota

Agaricales

Typhulaceae

Helicobasidium purpureum I

’Leotiomyceta’Dinoflagellates

Euglenozoa

Heterolobosea

Crithidia

Trypanosoma brucei

Ploeotia

Dinema

Astasia bodo

Euglena tuba

Phacus elegans

Hexamitinae

Figure 10: The tree of life drawing. Left: overview with 76425 species. Right:
a closeup view.

4 Conclusions

In this chapter we looked at algorithms for drawing large graphs. Since the
1980’s, when the field of graph drawing became very active, much progress
has been made in visualizing very large graphs. The key enabling ingredients
include a multilevel approach, force approximations by space decomposition,
and algebraic techniques for the robust solution of the stress model and in the
sparsification of it. Many of the graph drawing algorithms presented have strong
links with topics in algebraic graph theory, and a number of open problems
remain. One of these is the need for a robust coarsening scheme (Section 2.1.3).
There are many topics we could not possibly cover in the limited space available.
For example, laying out and visualizing a dynamically changing graph remains
a challenge [14]. Another challenge is how to draw and explore very complex
real world graphs of a “small-world” nature [60]. This often requires not just a
good layout algorithm, but also visualization techniques such as edge-bundling
[32], interactive exploration systems [18, 44], and additional visual aids such as
maps and bubble-sets [9, 17] – all fertile grounds for problems of a combinatorial
nature.

19

Acknowledgments

The author would like to thank Emden Gansner and Stephen North, as well as
anonymous referees, for valuable comments.

20

References

[1] S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Experience, 6:101–117, 1994.

[2] J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation algorithm.
Nature, 324:446–449, 1986.

[3] V. Batagelj. Visualization of large networks. In R. A. Meyers, editor, En-
cyclopedia of Complexity and Systems Science. Springer, New York, 2009.

[4] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for the
visualization of Graphs. Prentice-Hall, 1999.

[5] U. Brandes and C. Pich. Eigensolver methods for progressive multidimen-
sional scaling of large data. In Proc. 14th Intl. Symp. Graph Drawing (GD
’06), volume 4372 of LNCS, pages 42–53, 2007.

[6] U. Brandes and C. Pich. An experimental study on distance based graph
drawing. In Proc. 16th Intl. Symp. Graph Drawing (GD ’08), volume 5417
of LNCS, pages 218–229. Springer-Verlag, 2009.

[7] I. Bruss and A. Frick. Fast interactive 3-D graph visualization. LNCS,
1027:99–11, 1995.

[8] A. Burton, A. J. Field, and H. W. To. A cell-cell Barnes Hut algorithm
for fast particle simulation. Australian Computer Science Communications,
20:267–278, 1998.

[9] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set rela-
tions with isocontours over existing visualizations. IEEE Transactions on
Visualization and Computer Graphics, 15(6):1009–1016, 2009.

[10] T. A. Davis and Y. F. Hu. University of florida sparse matrix collection.
ACM Transaction on Mathematical Software, 2011 (to appear).

[11] V. de Solva and J. B. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. In Advances in Neural Information Processing
Systems 15, pages 721–728. MIT Press, 2003.

[12] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

[13] L. Euler. Commentarii academiae scientiarum petropolitanae. Solutio prob-
lematis ad geometriam situs pertinentis, 8:128–140, 1741.

[14] Y. Frishman and A. Tal. Online dynamic graph drawing. In proceeding of
Eurographics/IEEE VGTC Symposium on Visualization (EuroVis), pages
75–82, 2007.

21

[15] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force directed
placement. Software - Practice and Experience, 21:1129–1164, 1991.

[16] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast multi-dimensional
algorithm for drawing large graphs. LNCS, 1984:211 – 221, 2000.

[17] E. R. Gansner, Y. F. Hu, and S. G. Kobourov. Gmap: Visualizing graphs
and clusters as map. In Proceedings of IEEE Pacific Visualization Sympo-
sium, pages 201 – 208, 2010.

[18] E. R. Gansner, Y. Koren, and S. North. Topological fisheye views for vi-
sualizing large graphs. IEEE Transactions on Visualization and Computer
Graphics, 11:457–468, 2005.

[19] E. R. Gansner, Y. Koren, and S. C. North. Graph drawing by stress ma-
jorization. In Proc. 12th Intl. Symp. Graph Drawing (GD ’04), volume 3383
of LNCS, pages 239–250. Springer, 2004.

[20] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for
drawing directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.

[21] E. R. Gansner and S. North. An open graph visualization system and its
applications to software engineering. Software - Practice & Experience,
30:1203–1233, 2000.

[22] L. F. Greengard. The rapid evaluation of potential fields in particle systems.
The MIT Press, Cambridge, Massachusetts, 1988.

[23] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms
for sparse matrix factorization. IEEE Transactions on Parallel and Dis-
tributed Systems, 5:502–520, 1997.

[24] S. Hachul and M. Jünger. Drawing large graphs with a potential field based
multilevel algorithm. In Proc. 12th Intl. Symp. Graph Drawing (GD ’04),
volume 3383 of LNCS, pages 285–295. Springer, 2004.

[25] R. Hadany and D. Harel. A multi-scale algorithm for drawing graphs nicely.
Discrete Applied Mathematics, 113:3–21, 2001.

[26] K. M. Hall. An r-dimensional quadratic placement algorithm. Management
Science, 17:219–229, 1970.

[27] D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs.
J. Graph Algorithms and Applications, 6:179–202, 2002.

[28] D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs.
Journal of graph algorithms and applications, 6:179–202, 2002.

[29] D. Harel and Y. Koren. Graph drawing by high-dimensional embedding.
lncs, pages 207–219, 2002.

22

[30] B. Hendrickson and R. Leland. A multilevel algorithm for partition-
ing graphs. Technical Report SAND93-1301, Sandia National Laborato-
ries, Allbuquerque, NM, 1993. Also in Proceeding of Supercomputing’95
(http://www.supercomp.org/sc95/proceedings/509 BHEN/SC95.HTM).

[31] I. Herman, G. Melancon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE TRANSACTIONS
ON VISUALIZATION AND COMPUTER GRAPHICS, 6:24–43, 2000.

[32] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28:983–990, 2009.

[33] Y. F. Hu. A gallery of large graphs. http://research.att.com/

~yifanhu/GALLERY/GRAPHS/index.html.

[34] Y. F. Hu. Efficient and high quality force-directed graph drawing. Mathe-
matica Journal, 10:37–71, 2005.

[35] Y. F. Hu and Y. Koren. Extending the spring-electrical model to overcome
warping effects. In Proceedings of IEEE Pacific Visualization Symposium,
pages 129–136. IEEE Computer Society, 2009.

[36] Y. F. Hu and J. A. Scott. A multilevel algorithm for wavefront reduction.
SIAM Journal on Scientific Computing, 23:1352–1375, 2001.

[37] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31:7–15, 1989.

[38] Y. Koren, L. Carmel, and D. Harel. Ace: A fast multiscale eigenvectors
computation for drawing huge graphs. In INFOVIS ’02: Proceedings of the
IEEE Symposium on Information Visualization (InfoVis’02), pages 137–
144, Washington, DC, USA, 2002. IEEE Computer Society.

[39] E. Krujaa, J. Marks, A. Blair, and R. Waters. A short note on the history
of graph drawing. In Proc. 9th Intl. Symp. Graph Drawing (GD ’01), pages
272–286. Springer-Verlag, London, UK, 2002.

[40] J. B. Kruskal. Multidimensioal scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29:1–27, 1964.

[41] J. B. Kruskal and J. B. Seery. Designing network diagrams. In Proceedings
of the First General Conference on Social Graphics, pages 22–50, Washing-
ton, D.C., July 1980. U. S. Department of the Census. Bell Laboratories
Technical Report No. 49.

[42] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. In SIGCHI CON-
FERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI
’95), pages 401–408. ACM, 1995.

23

[43] D. R. Maddison and K.-S. S. (eds.). The tree of life web project.
http://tolweb.org, 2007.

[44] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J. Fekete. Topology-
aware navigation in large networks. In CHI ’09: Proceedings of the 27th
international conference on Human factors in computing systems, pages
2319–2328, New York, NY, USA, 2009. ACM.

[45] T. Munzner. Exploring large graphs in 3d hyperbolic space. IEEE Comput.
Graph. Appl., 18:18–23, 1998.

[46] T. Munzner and P. Burchard. Visualizing the structure of the world wide
web in 3d hyperbolic space. In VRML ’95: Proceedings of the first sym-
posium on Virtual reality modeling language, pages 33–38, New York, NY,
USA, 1995. ACM.

[47] A. Noack. An energy model for visual graph clustering. In Proceedings of
the 11th International Symposium on Graph Drawing (GD 2003), volume
2912 of LNCS, pages 425–436. Springer, 2004.

[48] S. Pfalzner and P. Gibbon. Many-Body Tree Methods in Physics. Cam-
bridge University Press, Cambridge, 1996.

[49] A. Quigley. Large scale relational information visualization, clustering, and
abstraction. PhD thesis, Department of Computer Science and Software
Engineering, University of Newcastle, Australia, 2001.

[50] A. Quigley and P. Eades. Fade: Graph drawing, clustering, and visual
abstraction. LNCS, 1984:183–196, 2000.

[51] I. Safro, D. Ron, and A. Brandt. Multilevel algorithms for linear ordering
problems. J. Exp. Algorithmics, 13:1.4–1.20, 2009.

[52] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical systems. IEEE Trans. Systems, Man and Cybernetics, SMC-
11(2):109–125, 1981.

[53] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psy-
chometrika, 17:401–419, 1952.

[54] D. Tunkelang. A Numerical Optimization Approach to General Graph
Drawing. PhD thesis, Carnegie Mellow University, 1999.

[55] W. Tutte. How to draw a graph. Proceedings of the London Mathematical
Society, 13:743–768, 1963.

[56] C. Walshaw. A multilevel approach to the travelling salesman problem.
Oper. Res., 50:862–877, 2002.

[57] C. Walshaw. A multilevel algorithm for force-directed graph drawing. J.
Graph Algorithms and Applications, 7:253–285, 2003.

24

[58] C. Walshaw. Multilevel refinement for combinatorial optimisation prob-
lems. Annals of Operations Research, pages 325–372, 2004.

[59] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph par-
titioning for adaptive unstructured meshes. Journal of Parallel and Dis-
tributed Computing, 47:102–108, 1997.

[60] D. Watts and S. Strogate. Collective dynamics of “small-world” networks.
Nature, 393:440–442, 1998.

[61] G. Young and A. S. Householder. Discussion of a set of points in terms of
their mutual distances. Psychometrica, 3:19–22, 1938.

25

