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Abstract

Despite recent high profile studies identifying counter-intuitive behaviors (e.g. obesity [3])
as being socially contagious, Shalizi and Thomas [12] have demonstrated that homophily
on latent attributes is indistinguishable from influence. For sociologists to unequivocally
identify influence effects in networks they must rule out the possibility of latent homophily
as an explanation. This requires either undertaking the Sisyphean task of measuring every
hidden attribute that might influence the formation of links in social networks or, our goal,
determine the conditions for distinguishing influence from homophily even in the presence
of unobserved attributes. Our test is inspired by the Bell inequalities: a simple inequal-
ity involving observed probability distributions which is obeyed by classical physics, but
violated by quantum physics. We show any model producing correlations between actors
through static latent homophily alone will obey certain constraints, and we develop and
test a technique to detect violation of these constraints.

1 Introduction

Sociologists often observe that individuals who are connected in a social network exhibit behaviors that are
highly correlated. This correlation is usually explained via two effects: homophily and influence. Influ-
ence, or contagion, supposes that actors change to become more similar to their neighbors in the network.
Whereas, homophily posits that individuals form connections in the network precisely because they are al-
ready similar. Distinguishing true sources of influence is very important in situations where we might like
to affect the influencer to promote a desired change as in, e.g., social policy or viral marketing.

An example illustrates the difficulty of distinguishing the two. Suppose Alice is friends with Bob, a smoker,
and some time later Alice begins smoking. If Alice would not have begun smoking if she had not known
Bob, we would certainly say she was influenced by Bob. Unfortunately, this counterfactual is impossible
to test. An alternate explanation is that Alice and Bob both suffer from depression, and that is why they
became friends. Alice is already predisposed to start smoking, and would have begun even if she had never
met Bob. A typical sociological study would attempt to control for this covariate – either by measuring
Alice and Bob’s depressive tendencies or some substitute that indicates those tendencies. In this case, the
difficulty comes from trying to measure all possibly relevant covariates; this is the approach taken in [2, 3].

Shalizi and Thomas [12] show that under a general non-parametric model of homophily, influence and
homophily on unobserved attributes cannot be distinguished. Their results rely only on basic facts about the
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structure of graphical models (see, e.g., [9] for a review). They conclude that either one needs to measure all
relevant covariates or strong parametric constraints on the correlation model are necessary. Previous work
distinguishing homophily and influence either assumed such parametric constraints explicitly [13], or only
considered homophily on observed attributes [5], or assumed a symmetry between the hidden attributes of
influencers and those influenced [1].

We develop a test for latent homophily that makes none of the previous assumptions. Our contributions are
as follows:

• In Section 2, we define homophily models as in [12], adding a natural restriction that, effectively,
hidden attributes are fixed over time. We call these static latent homophily (SLH) models, see
Fig. 1.

• From the perspective of algebraic geometry, we show in Section 3 that the space of probability
distributions over observed behaviors is restricted for SLH models. Section 4 introduces an efficient
method to find a nonlinear convex relaxation of this space.

• We use this relaxation in Section 5 to demonstrate that a simple influence model acting on a real
social network taken from the online news community “digg.com” produces correlations outside of
the bounds of those allowed by SLH.

2 Latent homophily models

In Fig. 1, we start with the most general picture of latent homophily. We have two actors Alice(A) and
Bob(B) whose actions we observe at various time steps, t = 1, . . . , T . We consider some hidden attributes
of Alice(RA) and Bob(RB) and E depends somehow on both hidden attributes and represents information
about edges between them (e.g., a time-dependent sequence of edges, possibly directed or weighted, pos-
sibly including edges of various kinds). Unlike previous works [1, 5], we do not assume that E depends
symmetrically on RA and RB ; an important consideration in the case of asymmetric (directed) links. Al-
though we do not explicitly include some observed attributes in this model as in [12], there presence makes
no difference to the results.

Given E, what correlations are possible between A and B? Below we use the definition of the graphical
model [9] in Fig. 1 along with some simple manipulations using Bayes’ rule.

p(A1:T , B1:T |E) =
∑

RA,RB

p(A1:T |RA)p(B1:T |RB)p(E|RA, RB)p(RA)p(RB)/p(E)

=
∑

RA,RB

p(A1:T |RA)p(B1:T |RB)p(RA, RB |E)
(1)

We also take into account that At may depend on At−1 in addition to RA.

p(A1:T ,B1:T |E) =
∑
R

p(RA, RB |E)
∏

t

p(At|At−1RA)p(Bt|Bt−1RB) (2)

Since the hidden variables RA, RB can in principle be arbitrarily correlated and the dependence on the
hidden variable is also arbitrary, we shorten the notation from RA, RB to just R from here on.

It is easy to see that an arbitrary marginal distribution p̄(A1:T , B1:T ) can be written in a manner consistent
with this graphical model,1 given appropriate definition of p(R). Let R be a vector of 22T values so that

1In fact, in a future longer version of this work we will demonstrate that |dom(R)| ∼ 2T is a necessary and sufficient
condition to reproduce an arbitrary correlation between A and B.
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each is associated with a pair of sequences for Alice and Bob, R = (A,B) . Now take

p(R = (A,B)|E) = p̄(A,B)

p(At|At−1, R = (A′, B′)) = δAt,A′t
(3)

and similarly for B. Plugging these values into Eq. 2, we reproduce the arbitrary distribution p̄.

Intuitively, we have reproduced arbitrary correlations by making the space of our hidden attribute large and
then allowing the dependence of At on R to change at each time step. Effectively, this is the same as
allowing the hidden attribute to fluctuate with time. Generally, when we say that actions depend on hidden
attributes, this is not what we mean. We assume that the attributes (e.g. gender, IQ, etc.) are not changing
(or at least not quickly) with respect to the observed actions (smoking, posting on a social network, etc.),
and we wish to explain the latter in terms of the former. Therefore, below, we restrict ourselves to models
with this property.

At  Bt  

At-1 Bt-1

RA RB

Et-1  
A1:T

R

E1:T B1:T

A1:T

R

B1:T

At  Bt  

At-1 Bt-1

RA RB

E  RA RB

E  B1:TA1:T

Figure 1: A slice of a latent homophily model. We observe a sequence of actions for
A1, . . . , At−1, At, . . . , AT (sometimes abbreviated A) and B that depend on some hidden attributes
RA, RB . Presence and properties of edges between them, E, depend in some arbitrary way on RA, RB .

Static latent homophily model We now define static latent homophily models (SLH) by demanding the
crucial addition of stationarity: the transition probability does not change over time.

∀t, t′, r : p(At = a|At−1 = b, R = r) = p(At′ = a|At′−1 = b, R = r). (4)

The homophily model of [12] also looks like Fig. 1, but without the stationary assumption in Eq. 4. Note
that the demonstration in Eq. 3 that latent homophily reproduces arbitrary correlations only holds without
stationarity.

The stationary Markov assumption restricts the probability of observing certain sequences. If Bob’s state is
a sequence of coin flips, it is highly unlikely that Alice independently produces the same sequence without
seeing (or being influenced by) Bob’s coin flips. We will make this intuition more precise in the next section.
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3 Algebraic geometry of SLH

Looking at Eq. 2, we can see that we have just defined a polynomial mapping from the small space of
conditional probabilities to the larger space of Alice and Bob’s observed joint probability distribution. The
structure of Eq. 2 is a convex combination over the (possibly infinite) factorizable joint distributions.

For simplicity, we now consider a SLH where we restrict ourselves to variables At, Bt ∈ {±1}, and we
have conditioned on some arbitrary measurement of E (e.g., E is a directional link from A to B, or E is an
edge of a certain weight, etc.). Each variable sequence, A1:T is a Markov chain with associated transition
probabilities that depend on the unknown value of R. We denote by α+(α−) the probability that A flips
from +(−) to −(+) at some time step and α0 = p(A1 = +1). We have similar parameters for B : β+,−,0.
For legibility below, we suppress the functional dependence of these probabilities on R and we take A to
represent the sequence A1:T .

p(A1:T |R) =αF+(A)
+ α

F−(A)
− (1− α−)S−(A)(1− α+)S+(A)α

1/2(1+A1)
0 (1− α0)1/2(1−A1) (5)

F±(A) =
T−1∑
t=1

1
4

(1±At)(1−At+1At)

S±(A) =
T−1∑
t=1

1
4

(1±At)(1 +At+1At)

The same equations hold replacing A with B and α with β.

We can define the vector,
x = (x1, . . . , x6) ≡ (α+, α−, α0, β+, β−, β0).

Now consider the expected outcomes from some arbitrary set of measurements
yj ≡ 〈Oj(A,B)〉, j = 1, . . . , n.

In principle, the set of Oj(A,B) could consist of the indicator functions for each possible outcome (in
which case n = 22T ), but we would like to reserve the ability to pick a smaller set of measurements for
computational reasons later on. Then

fj(xR) ≡
∑
AB

p(A1:T |R)p(B1:T |R)Oj(A,B)

yj =
∑
R

p(R|E)fj(xR)
(6)

This represents a polynomial mapping from R6 → Rn where the domain is the region
K = {x ∈ R6 : gi(x) = xi(1− xi) ≥ 0, i = 1, . . . , 6}

because each xi represents a different transition (or prior) probability. The set of all y is just the convex hull
of f(x) where x ∈ K.

Consider the following representations of this convex set,
SLH = conv({y ∈ Rn : ∃x ∈ K, y = f(x)})

B = {b ∈ Rn : ∀x ∈ K, y = f(x), 1− b · y ≥ 0}. (7)

The set function “conv” represents the convex hull of a set. The second line gives a representation of the
convex hull in terms of an intersection of half-spaces [11].2 Clearly, if ∀x ∈ K, b · f(x) ≤ 1, this is also true
for any convex combination, ∀xR ∈ K, b · (

∑
R p(R)f(xR)) ≤ 1.

2Note that our formulation implicitly presupposes that the origin is on the interior of our convex set. This condition
can be insured with a simple translation of the vector y. E.g. y → y −

R
K

dxf(x)/
R

K
dx
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Given a representation of the convex hull, B, one can determine that a point ŷ is outside SLH by finding a
b0 ∈ B such that b0 · ŷ > 1. If we consider a subset RB ⊂ B, this set amounts to a convex relaxation on the
original set SLH . That is,

b0 ∈ RB ∧ b0 · ŷ > 1→ ŷ /∈ SLH,
but for this relaxation, the converse is not true.

4 SOS Relaxation

We now consider a subset of B which can be efficiently described and optimized over. We are trying to
describe the set of b so that 1− b · f(x) ≥ 0, for x ∈ K. When dealing with positive polynomials, a simple,
effective relaxation is to consider bounded degree sums-of-squares polynomials

SOSd = {s(x) : ∃qi(x) ∈ R[x], deg(qi(x)) ≤ d/2, s(x) =
∑

i

qi(x)2}.

That is, if we can write 1−b ·f(x) = s0(x), for s0 ∈ SOSd, we are guaranteed that it is positive. In general,
it is not true that every positive polynomial can be written as an SOS (see [8] for a review of the large body
of work about SOS and positive polynomials). SOS polynomials have the desirable property that they can
be written in the form

s(x) = zᵀAz,

where z = (1, x1, x1x2, x1x
2
2...) is a vector of monomials in the variables and A � 0 indicates a positive

semidefinite matrix. Then our condition for 1 − b · f(x) = s0(x) amounts to linear relationships between
coefficients along with a linear matrix inequality, A � 0. These types of problems are called semidefinite
programs(SDP) and many powerful techniques exist to solve them. We use SOSTools [10] in MATLAB to
convert SOS programs to SDP which are then solved by, e.g., SeDuMi [14].

In our case, because we only demand positivity on a bounded region K, defined by polynomials gi(x) ≥ 0,
we make things a little easier. Not only do we consider SOS polynomials s(x), we also consider polynomials
in the “positive cone” of gi(x). Roughly, that is just the set of polynomials that are formed as sums of
products of the gi(x) and s(x) ∈ SOS. Clearly, if gi(x) ≥ 0,∀x ∈ K → s(x)gi(x) ≥ 0,∀x ∈ K and
s(x)g1(x)g2(x) ≥ 0,∀x ∈ K, and so on.

Therefore, we define the set, RB1 ⊆ . . . ⊆ RBd ⊆ B.

RBd ={b ∈ Rn : ∀x ∈ K, si(x) ∈ SOSd, 1− b · f(x) = s0(x) +
∑

i

si(x)gi(x)}

By construction, s0(x) +
∑

i si(x)gi(x) ≥ 0 for all x ∈ K. For any b ∈ RBd, this proves 1 − b ·
f(x) ≥ 0, and for any y in the convex hull of f(x), this will also be true. This amounts to a sequence of
convex relaxations of the set SLH . Note that as defined, this sequence does not necessarily converge to
SLH , though straightforward generalizations of this technique can provide theoretical, if computationally
impractical, guarantees of convergence [4].

For a specific observed distribution ŷ, we search for a hyperplane b ∈ RBd so that b · ŷ is maximized.

max
b,si(x)

b · ŷ

1− b · f(x)−
∑

i

si(x)gi(x) = s0(x)

si(x) ∈ SOSd

(8)

This format corresponds to a sum-of-squares (SOS) program and it can be efficiently translated into a
semidefinite program and solved numerically [8].
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Solving this SOS is constructive in that it provides specific SOS polynomials proving that 1 − b · y ≥ 0,
for any y ∈ SLH . Furthermore, if we find a solution b such that b · ŷ > 1, this constitutes proof that the
statistics ŷ could not have been generated by a SLH.

5 Results

We tested our results using a real world social network from the online news portal “digg.com” [6]. This
network had M = 1, 731, 659 edges and N = 279, 634 nodes. In principle, we cannot know for sure
whether information spread on this network is due to influence or homophily, so we begin, as in [5], by
doing a semi-synthetic analysis by simulating a known influence model on the real graph of the social
network.

For our influence model we started all the nodes in a random state ±1. At each of M steps, we picked a
random (directed) edge from A→ B and had B copy A’s state. Then we considered three time slices from
this evolution to construct the statistics p̂(A1:3, B1:3|E = 1), where E = 1 means there exists a directed
edge fromA toB. Using Eq. 8, we construct an observableO, such that 〈O〉SLH ≤ 1, while the mean value
of this observable on our data is maximized. We can use Hoeffding’s inequality to give the confidence that
〈O〉data > 1. Because this confidence goes like ∼ 1 − e−M , our confidence to rule out SLH in this case is
indistinguishable from 1.

5.1 Conclusion

Intuitively, our test to rule out SLH is motivated by Bell inequalities in quantum physics (see [7] for a
computer scientist friendly introduction). In that case, you have two particles that are spatially separated
and you want to check whether there exists a “local hidden variable” theory that describes the measured
correlations. Bell showed that all correlations produced by local hidden variable theories would satisfy a
simple linear equality. Subsequent experiments violated this inequality confirming the existence of what
Einstein referred to as “spooky action at a distance.” In some sense, we have constructed a Bell inequality
for social networks where we are detecting “spooky” correlations between friends.

We have constructed an efficient test that can rule out static latent homophily as an explanation for correla-
tions in social networks. Tests on a simulated influence model on a real world social network show that our
test can rule out SLH in such cases. Future work will test the technique on real processes occurring on large
online social networks. We would also like to extend the nonlinear convex relaxation technique for other
graphical models with hidden variables.
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