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Pseudoli kelihood Estimation for Social Networks 

DAVID STRAUSS and MICHAEL IKEDA* 

Interest in log-linear modeling for social-network data has grown steadily since Holland and Leinhardt (1981) proposed their 
p ,  model. That model was designed for a single binary relationship (directed graph) representing interactions between individuals. 
It assumed that interactions between pairs of individuals are mutuajly independent. Subsequent work has extended the model 
in various ways, including block-modeling and the case of dependence between pairs of individuals. In empirical work it would 
often be desirable to fit a wide variety of these models, as the differences in predictions or goodness of fit are likely to provide 
insights into the data. This has not been common practice, however, because estimation for some of the models has been 
difficult, and the maximum likelihood schemes developed for others involve different computer programs not always available 
in standard packages. The focus of this article is on a general estimation technique that maximizes the pseudolikelihood, the 
product of the probabilities of the binary variables, with each probability conditional on the rest of the data. The method is 
shown to be equivalent to a weighted least squares procedure and thus can be carried out with standard computer packages. 
In cases where true maximum likelihood estimation is available for comparison the two methods seem to work about equally 
well. The pseudolikelihood estimation is used in an example where the fits of a large number of different models are compared. 
Some of these models, such as various Markov block models, have not previously been proposed. In this example (as in others 
considered) it appears that the p,-type models are overparameterized, and that much more parsimonious models give tolerable 
fits. 

1. INTRODUCTION 

During the last few years the modeling of social-network 
data has become increasingly popular in statistics. In its 
simplest form a social network is a square array, or graph, 
G of binary random variables yij, with the event yij = 1 
denoting an arc, or tie, between individuals i and j. In 
different contexts this might indicate that i knows j, i does 
business with j, i reports to j, and so on. Numerous prob- 
ability models for such data have been developed in so- 
ciology and other disciplines [see Strauss and Freeman 
(1989) for a review]. Holland and Leinhardt (1981) were 
the first to develop a. log-linear model for network data. 
Their proposed p, model for the graph distribution of G 
assumes independence of the dyads (yij, yji) but includes 
parameters for density and reciprocity of arcs and for the 
individuals' tendencies to emit and attract arcs. Since then 
numerous generalizations of the model have been devel- 
oped. These include the case of polytomous data (e.g., 
Wasserman and Iacobucci 1986), the treatment of multiple 
relationships (Fienberg, Meyer, and Wasserman 1981, 1985; 
Wasserman 1987), stochastic block models (Holland, Las- 
key, and Leinhardt 1983; Wang and Wong 1987; Wasser- 
man and Anderson 1987), and Markov models admitting 
dyad dependence (Frank and Strauss 1986). The article 
by Wasserman and Iacobucci contains a useful summary. 

Parameter estimation for the models assuming dyad in- 
dependence can be performed with maximum likelihood. 
As noted by Holland and Leinhardt (1981), however, the 
relaxation of that assumption makes estimation difficult, 
and this has inhibited the development of dyad-dependent 
models. The problem arises because of an intractable nor- 
malizing function in the likelihood, which generally makes 
maximum likelihood estimation impossible. In this article 
we propose an estimation method that we call maximum 
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istician, Statistical Research Division, U.S. Bureau of the Census, Wash- 
ington, DC 20233. The authors thank Barry Arnold for some helpful 
discussions, and two referees and an associate editor for detailed com- 
ments that have substantially improved the article. 

pseudolikelihood estimation. The pseudolikelihood func- 
tion is simply the product of the probabilities of the yij, 
with each probability conditional on the rest of the data. 
The method avoids the technical difficulty inherent in the 
maximum likelihood approach and can be performed with 
standard statistical packages. 

The number of log-linear models available has become 
large enough that a classification scheme is useful. Here, 
we consider a classification based on three factors: (a) 
whether the model assumes dyad independence; (b) 
whether it is suitable for symmetric arrays (undirected 
graphs), with yij = yj,, or for asymmetric arrays (digraphs); 
(c) whether it is a block model, with parameters corre- 
sponding to an a priori grouping of individuals. This leads 
to the eightfold classification shown in Table 1. Models 
for most of the categories are already familiar, and we 
introduce some new models for the other cases. All of the 
models in Table 1can conveniently be fitted with the pseu- 
dolikelihood method. 

In most of this article we restrict attention to models 
for a single relationship, represented by a binary array 
{yij). In Section 2 we begin by specifying the models in 
terms of the conditional probabilities of the yij, given the 
rest of the data. This conditional form proves convenient 
for our classification of the models; it is also the natural 
way to express the models when pseudolikelihood esti- 
mation is used. In Section 3 we develop the method and 
show its relationship to both a logistic regression proce- 
dure and maximum likelihood. It turns out that the first 
two are equivalent, and they are equivalent to maximum 
likelihood in the symmetric dyad-independence case. In 
Section 4 we analyze some well-known data of Sampson 
(1968); by fitting a variety of models. In data analysis it is 
often advisable to consider a wide range of possible mod- 
els, and our aim here is to point out and illustrate several 
issues that arise in practice. 
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Table 1. Classification of Models 

Classification Nonblock models Block models 

Dyad-independent 
Directed graph 
Undirected graph 

PI,(2.3) 
Symmetric p,, (2.5) 

Wang and Wong (1987), (2.6) 
(2.8) 

Dyad-dependent (Markov) 
Directed (PI,0,T), (2.1 1) See Section 4. 
Undirected (p,0-T), (2.9) (p,a,T), block model, (2.12) 

NOTE: The display numbers correspond to models defined In Section 2. Some additional examples are given in Section 4. 

2. MODELS 

Let G be a realization of a g x g random binary array 
(graph); that is, G = {ylj:i # j; 1 5  i, j 5 g). The dyad 
Dij is the ordered pair (yi,, y,,). We write G; for the 
realization G with yij set to 1, G; for the realization with 
yil set to 0, and Cij (complement) for a specification of 
{y,: (r, s) # (i, j)). When no confusion arises the subscripts 
on C will be suppressed. We are concerned with log-linear 
models of the form 

where 8 is a vector of parameters and x(G) a correspond- 
ing vector of graph statistics. For a symmetric graph the 
components of x might be the number of lines 2 y,,, the 
number of triads C C I: yijyjkyk,, and so on. The nor- 
malizing function Z(8) is the sum of exp{Qtx(G)) over all 
2g(g-l) possible graphs. For graphs with g I6, say, it is 
feasible to compute Z explicitly, but for large graphs in 
the dyad-dependent case the Z function is intractable. 
As a result, maximum likelihood estimation for the dyad- 
dependent models is not available. From (2.1), however, 
it follows that Pr(y,, = 1 1 C) = Pr(G-)/{Pr(G+) + 
Pr(G-)), a form that does not involve Z. With the no- 
tation logit(t) = log{t/(l - t)) we have, more compactly, 

where Ax,, = x(G+) - x(G-) is the vector of changes in 
x(G) when yil changes from 1 to 0. We refer to a valid 
specification (2.2) as a logit model. 

The conditional probabilities (2.2) are not necessarily 
compatible in the sense of being consistent with some joint 
probability distribution Pr(G). Arnold and Press (1989) 
gave sufficient conditions for compatibility. In the present 
context, however, one would normally know Pr(G) in ad- 
vance or be able to deduce it from inspection of (2.2). It 
is worth noting that the logit models are identifiable in the 
sense that the distribution Pr(G) corresponding to (2.2) is 
unique. This too follows from a result of Arnold and Press 
(1989). Their method of proof, in our context, is to con- 
struct a Markov chain of graphs G,  with the conditional 
probabilities from (2.2) as transition probabilities. The 
state space is the set of all possible graphs, and the tran- 
sitions are the possible changes of a single Y,~,  either to y,, 
or 1 - y,,. The pairs ij are taken cyclically In some fixed 
order. The chain is evidently aperiodic and irreducible, 

and thus has a long-run distribution that must be the unique 
distribution consistent with the logit model. 

One might ask why the models are expressed in terms 
of conditional probabilities of the variables y,, rather than 
the dyads D,, since the latter have been the traditional 
modeling unit. The reason is that if we define a pseudo- 
likelihood as the product of the conditional likelihoods of 
dyads rather than yij's, the maximization would no longer 
be equivalent to a regression procedure that can be per- 
formed with standard computing packages. Much of the 
advantage of the pseudolikelihood approach would thus 
be lost. The choice between the two conditional specifi- 
cations is in any event only a matter of notation: As we 
have seen, there is a one-to-one correspondence between 
graph models (2.1) and compatible logit models of form 
(2.2), and a similar result holds for compatible specifica- 
tions of dyad-conditional probabilities. Thus each logit 
model is a dyad model, and vice versa. 

We now consider the model classification of Table 1and 
express various cases in logit form. Holland and Leinhardt 
(1981) defined their p ,  model by 

Here rn = 42,2, yi1y,,, the number of mutual arcs, y + +  
is the total number of arcs, and so on. The parameters y ,  
p, {a,), and {p,) relate to overall mutuality, density, ex- 
pansiveness, and attractiveness, respectively. (Holland and 
Leinhardt used the symbols p and 8 in place of our y and 
p.) Side conditions 2 ai = C = 0 ensure that the model 
is identifiable. Expressed in logit form, (2.3) is simply 

logit pl(yij  = 1 1 C) = p + yy,, + a, + p,. (2.4) 

To obtain a symmetric form, appropriate for an undirected 
graph, note that in this case m = y++ and yi+ = y+,. This 
suggests that in (2.3) y + p be replaced by a new param- 
eter p, and a, + pibe replaced by ai.The resulting logit 
model is 

A side condition for the a, is required for identifiability; 
the natural choice is C a, = 0. 

Wasserman and Galaskiewicz (1984), Wang and Wong 
(1987), and others proposed a directed-graph model that 
retains the dyad independence but introduces parameters 
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associated with a block structure. In logit form, the model 
may be written as 

= P + VYjl + f f i  + bj + 2 2 Aklbij.kl, (2.6) 
k I 

where the Akl are the block parameters and 

bij,,, = 1 if (i, j) belongs to block k, 1 

= 0 otherwise. (2.7) 

A block-diagonal form of (2.6) arises when Akl = 0 for 
k # I .  Wang and Wong considered a single block-param- 
eter model, where Akl = 1 if k = 1 and 0 otherwise. A ver- 
sion of (2.6) for undirected graphs is easily constructed as 
before. It is 

logit Pr(yij = 1 I C) = p + Qi + ff j  + 2 2 Akldij,kl. 

We now turn to models that do not assume dyad in- 
dependence. The general class is too complicated to be 
useful for data analysis, and we restrict ourselves to Mar- 
kov models (Frank and Strauss 1986). For such models 
Pr(yjj = 1 I C) depends solely on those y, such that at 
least one of r and s is equal to i or j. One of the simplest, 
called the (p, a ,  z) model by Frank and Strauss, is the 
undirected-graph model 

Here R is the number of arcs (cases where y,, = I),  S is 
the number of two-stars (i.e., distinct subscripts i, j, k such 
that yjjy, = I) ,  and T is the number of triads (i, j, k) such 
that yijyjkyki = 1. AS before, p is a parameter related to 
overall density; a and z correspond to clustering and to 
transitivity of arcs. The logit form is 

logit Pr( y,, = 1 I C) = p + GAS + TAT, (2.10) 

where AS is the change in the number of two-stars when 
yij changes from 1 to 0, for example. This form conveni- 
ently displays how the odds of an arc between i and j 
depend on the neighbors. 

Frank and Strauss considered directed Markov graphs 
as well. The range of possible models then becomes very 
broad; for example, two-stars may be "outstars" of form 
{ij, ik) (both arcs originating from the same vertex i), 
"instars" of form {ji, ki), or of mixed form {ij, jk). The 
number of each type could be taken as a graph statistic, 
each with its own parametet. Similarly, there are several 
triad-count statistics (Frank and Strauss 1986; Holland and 
Leinhardt 1976) that may be included. In practice one 
would usually require a model with rather few parameters. 
We do not attempt to list the possible cases, but instead 
give some examples in Section 4. 

Of course, it is possible to create a model combining 
the Markov property with the expansiveness and attrac- 
tiveness parameters of the p1model. One simple version 

that encompasses both (2.4) and (2.10) is 

where we might take S to be the number of two-stars of 
form {ij, ik) and T to be the number of {ij, jk, ki) triads, 
for example. This may be called a ( p , ,  a ,  t )  model. A 
natural question to consider in practice is whether (2.11) 
gives a substantially better fit than (2.4) or (2.10). 

Finally, we propose a class of Markov block models. 
These may be defined in a way that parallels the block 
models (2.6). For example, consider a symmetric array 
{yi,) partitioned into blocks BkI. One simple Markov block- 
diagonal model is 

where 

the number of two-stars within block k, and 

Tck)= YhiYijYhj, (2.14) 
h, i , j  

the number of transitive triads within block k. Of course, 
one could make the parameters a k  (or the parameters zk) 
equal, include parameters for off-diagonal blocks, and in- 
clude pl-type parameters ai ,  p,, and so on. Equation (2.12) 
specifies one example of a Markov block model for un- 
directed graphs. It is straightforward to define correspond- 
ing Markov block models for directed graphs as well. We 
see some of these models in the example of Section 4. 

The logit form of (2.12) is 

where AS$;) is the increase in the number of two-stars 
within block k resulting from a change of y,, from 0 to 1, 
for example. The increase will be 0 unless i and j are both 
in block k. In that case AS!) is just (yih + yjh), with 
the sum over h in block k. 

For some parameter values the Markov models without 
blocks are unsuitable for large data sets because of the 
possibility of degeneracy (Strauss 1986). To see this, con- 
sider for simplicity the (p, a ,  z) model (2.9) with a = 0. 
It can be shown that if z is positive, then as the number 
of vertices g tends to infinity the probability that an ar- 
bitrarily large proportion of lines are present tends to 1. 
Loosely speaking, a sufficiently large graph is sure to be 
almost complete, whatever the value of p, if z is positive. 
An analogous situation obtains for the case a > 0, r = 0. 
This means that for large graphs the model is unlikely to 
generate data sets displaying more than one cluster of arcs. 
Nevertheless, if the data display clustering (or cliquing) 
and if it seems legitimate to take the corresponding block 
structure as given, then the Markov block models may be 
a plausible choice. As we shall see, they are no harder to 
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fit than the dyad-independence block models, and which 
are preferable for a given data set is largely an empirical 
question. 

3. ESTIMATION 

We have noted that for dyad-dependence models the 
awkward normalizing constant Z(8) in the likelihood (2.1) 
generally makes maximum likelihood estimation impos- 
sible. The dyad-dependence models are in many respects 
analogous to interactive models on the rectangular lattice, 
such as the Ising model; there too an intractable normal- 
izing constant rules out the possibility of maximum like- 
lihood estimation (Strauss 1986). Our proposed estimation 
method is related to procedures suggested by Besag (1974, 
1975) for the lattice case. We define the pseudolikelihood 
function to be 

and a maximum pseudolikelihood estimator (MPE) to be 
a value of 8 that maximizes (3.1). Since no conditional 
probability in (3.1) involves Z(8), PL(B) should be much 
easier to maximize than the true likelihood (2.1). The 
MPE generally differs from the maximum likelihood es- 
timator (MLE) except when the conditional probabilities 
in (3.1) are independent of C . This occurs in the symmetric 
block model (2.8) and its special case, the symmetric pl 
mode1 (2.5). 

We now show that maximization of (3.1) can be per- 
formed by a logistic regression. More formally, we have 
the following theorem. 

Theorem. For a given logit model of form (2.2), max- 
imization of (3.1) is equivalent to a maximum likelihood 
fit of logistic regression to the mode1 (2.2) for independent 
observations y,,. It can be implemented as an iteratively 
reweighted Gauss-Newton least squares procedure. 

Proof. It is convenient to replace the indexes (i, j) with 
a single index r.  Let Prdenote the conditional probability 
of y,, given Cr [as defined by (2.2)], and set Qr = 1 -
Pr. Denote the components of 8 by Ok (k = 1, 2, . . .). 
The pseudolikelihood (3.1) can be written as PL = 

II, P;rQt-yr. The pseudolikelihood estimators are thus 
solutions of the equations 

which simplify to 

This can be written as 

where wr = l / (PrQr) ,  provided that the w, are treated as 

constants in the differentiation. But this is iteratively re- 
weighted least squares, with the weights wr recomputed 
at each step from the current value of 8. 

This result is (almost) a special case of a more general 
result on maximum likelihood for the generalized linear 
model (e.g., see McCullagh and Nelder 1983, sec. 2.5). 
It shows that maximization of (3.1) can be performed 
by a standard logistic-regression computer routine, even 
though the variables y,, in (2.2) are not conditionally inde- 
pendent. We have used the version in the BMDP package 
throughout our work. To implement it one constructs a 
set of g(g - 1) observations, each consisting of a binary 
"dependent" variable y,, and a vector of "independent" 
variables Axij. The latter are given by x(G+) - x(G-), 
as in (2.1), and are easily constructed from the data matrix 
G. We note that logistic regression had previously been 
suggested as an ad hoc procedure by Frank and Strauss 
(1986) in connection with the (p, 0,z) model (2.10). 

Maximum likelihood estimation is feasible for all of the 
dyad-independent models discussed here; the methods of 
Darroch and Ratcliff (1972) and Feinberg et al. (1985), 
among others, have been used to implement it. Never- 
theless, if one wishes to fit both dyad-dependent and dyad- 
independent models to the same data set, it seems desir- 
able to do so with a single computer package (as can be 
done with the MPE). In addition, much of the supple- 
mentary information automatically supplied by the pro- 
gram will be useful, even though the true model is not a 
standard logistic regression. For example, the number of 
yij correctly classified by the regression function with vari- 
ous cut points will usually be of interest. The information 
on which explanatory variables in the logistic regression 
contribute most of the predictions of the yij is sometimes 
useful as well. One caution should be noted, however: 
The quoted standard errors of the estimated parameters 
do not apply, because the g(g - 1) observations in the 
regression are certainly not independent. 

Since it is difficult to compare the MLE and MPE an- 
alytically, we offer some experimental comparisons. For 
Markovian models MLE is only really feasible when there 
is a single parameter, in which case a graphical method is 
available (Strauss 1986). Using a Metropolis-type simu- 
lation method given in that article, we generated reali- 
zations of the (p, a ,  z) model with p = z = 0 and various 
values of a .  Results are shown in Table 2. For each value 
of a there were five replicates, with the mean and root 
mean squared error computed for the MPE and the MLE. 
The two methods appear to give estimators that are about 
equally good. A similar conclusion applies to results in 
Table 3, which corresponds to p = a = 0 and various 
values of z. In addition, we performed some experiments 
with smaller graphs, of size g = 15 and 20. As expected, 
both methods gave more variable estimates than those for 
the larger graphs, but the root mean squared errors for 
the two methods were again quite close in all cases. 

For the multiparameter Markov models it becomes dif- 
ficult to perform systematic comparisons because the MLE 
is not available. In the case of the dyad-independence 
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Table 2. Comparison of Estimators for Data From a 

One-Parameter Markov Model: (p, u, s) Model 


With p = s = 0; g = 30 


Root mean 
squared error 

True Mean of MLE's Mean of MPE's MLE's MPE's 

models, however, the MPE and MLE may be readily com- 
pared, and they have consistently given similar results. A 
typical case is the Sampson data of Section 4. We estimated 
the parameters of the p,  model with both methods and 
derived the two sets of unconditional fitted probabilities. 
For this 18 x 18 data set there were 18 x 17 = 306 pairs. 
In 254 cases the absolute difference of the fitted proba- 
bilities was less than .05, and in 299 cases less than . lo .  
A similar procedure with the p, block-diagonal model (2.6) 
gave even closer agreement, with corresponding counts of 
292 and 304. The correlation between the two sets of pre- 
dictors was .935 in the first case and .997 in the second. 
We found similar agreement between the two sets of pa- 
rameter estimates (see Sec. 4). 

The consistency of the MPE and MLE deserves some 
comment. Consistency is not a meaningful term unless 
the parameter set remains fixed as the number of vertices 
g tends to infinity. This condition is not satisfied by the 
general p, model, for example. The (p, o, z) model (2.9) 
does satisfy it, but as we have seen, that model is some- 
times degenerate. In certain simple cases matters can be 
resolved satisfactorily. For example, consider, the pl model 
where all the parameters cui are constrained to be equal 
and the parameters /I,are constrained to be equal. Then, 
the common values may both be taken to be 0, and the 
counts of mutual, asymmetric and null dyads follow a tri- 
nomial distribution. It is easy to show that the maximum 
likelihood estimates of V /  and p in (2.3) are then almost 
surely consistent. It can be verified directly that the MPE 
estimates are identical to the MLE's for this case, even 
though the likelihood and pseudolikelihood functions are 
not equal. Similar conclusions hold for the block-model 
extension (2.6) of this simple case. 

If we have a random sample of n realizations from a 
g x g graph model, we can compute an MPE by maximiz- 

Table 3. Comparison of Estimators for Data From a 

One-Parameter Markov Model: (p, o,t) Model 


With p = o = 0; g = 30 


Root mean 
squared error 

True s Mean of MLE's Mean of MPE's MLE's MPE's 

ing the product of the n pseudolikelihoods. The behavior 
of this estimator as n tends to infinity follows from general 
results of Arnold and Strauss (1988): The estimator is 
consistent and asymptotically normal, with asymptotic ef- 
ficiency given by certain information quantities. Although 
these results are encouraging for the use of the MPE, note 
that the case of one realization from a "large" graph is 
more common than a large random sample of n graphs of 
a fixed order g. We noted earlier that interactive lattice 
models share many features of the dyad-dependence mod- 
els. Thus it is worth remarking that Geman and Graffigne 
(1987) proved the consistency of the MPE as the lattice 
becomes large. 

Parameter identifiability can be an issue in block model- 
ing. For example, suppose that we have a partition of 
integers I ,  . . . ,g into disjoint subsets, and let B be the 
set of pairs (ij) such that i and j belong to the same subset. 
Given a symmetric graph G, let 

be the number of transitive triads, and let TBbe the number 
of such triads with ij, jk, and ik belonging to B. Consider 
the Markov block model 

which is equivalent to  

The parameters in (3.5) are certainly identifiable. Never- 
theless, suppose that we observe a graph with y,, = 0 
whenever (ij) does not belong to B. Then, the columns 
ATB and AT in (3.6) are identical, and the logistic regres- 
sion is ill-conditioned. A similar issue would arise in max- 
imum likelihood estimation of (3.5). In applications there 
should be no problem, because one would not contemplate 
a model such as (3.5) unless the block structure were al- 
ready known, and in that case the redundancy of the term 
zT should be apparent by inspection of the data. 

4. AN EXAMPLE 

To illustrate the methods and some special points that 
arise in applications, we consider the well-known mon-
astery data of Sampson (1968). In Table 4 the 1s indicate 
some degree of liking between two monks. The partition 
lines correspond to a by-now traditional block structure 
for the 18 monks; for example, see Wasserman and An- 
derson (1987). 

Table 5 summarizes the fitting of the directed-graph 
models of Section 2; some explanation of the symbols for 
the models is given in the footnote. The MPE has been 
used in all cases. The table shows various summary sta- 
tistics associated with the models. The maximized pseu- 
dolikelihood is one criterion for model comparisons. Even 
for the Markovian models this can be interpreted as a true 
likelihood for the logistic regression model (3.2), so [fol- 
lowing Holland and Leinhardt (1981) and Wang and Wong 
(1987)l we might refer twice the difference of the log- 
pseudolikelihood to the x2distribution as an informal test 
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Table 4. Sampson's (1968)Data 

Monk 

Monk 1 2 3 4 5 6 7 8 9 10 1 1  12 73 74 75 76 77 

statistic. The sum of absolute residuals 2 ly,, - pi,/is a 
useful measure of fit as well. The weighted sum of squared 
residuals, which is the quantity minimized by MPE, is not 
shown because it seems to provide little additional infor- 
mation. The final column shows the maximum number of 
correct predictions of the value of y,,, based on the logistic 
regression with known C,'s and an optimal cut point. This 
is a standard feature in discriminant analysis, and it is an 
option with logistic regression in most computer packages. 
The total number of predictions is 18 x 17 = 306. Pre- 
dicted probabilities derived from MPE are generally con- 
ditional on the C,'s and thus may not agree closely with 
the unconditional predictions from MLE (except, of 
course, when the methods are equivalent). Note that the 
comparisons discussed in the following are based on 
conditional prediction. 

Model 1, the one-parameter Bernoulli model, is in- 
cluded to provide a baseline for comparisons; its fit is poor. 

Model 2 is a p ,  model with all a,and j3,set to 0. This leaves 
just the mutuality and density parameters I,U and p in (2.3). 
Model 3 is the p,,  and according to the informal pseu- 
dolikelihood ratio test its improvement in fit over Model 
2 is insufficient to justify the additional 34 parameters. 
(The same conclusion could be reached by comparison of 
the true log-likelihoods, - 133.9 and - 118.5.) The inclu- 
sion of an additional parameter zc, corresponding to a 
count of cyclic triads with y,,yjkyki = 1, gives Model 4, 
which fits only slightly better. 

We now turn to the block models, taking the block 
structure of Table 4 as given a priori. Model 5 (denoted 
by pl , A) is a one-parameter extension to pl [see (2.6)]. It 
was previously fitted to this data by Wang and Wong (1987). 
The relatively high log-pseudolikelihood of -79.9 is close 
to the true log-likelihood of -82.1. For comparison, the 
values of {a;) obtained by MLE and MPE are plotted in 
Figure l a ;  the sets of estimators are in good agreement. 

Table 5. Models for Sampson's Data 

Number of residuels 
less than Maximum number 

Number of Maximized log- Sum of absolute of correct 
Model parameters pseudolikelihood value of residuals 1 .3 .7 predictions 

1. Bernoulli 
2.W ? P 
3.Pl 
4. P I ,  T c  

Block models 
5. Pl, 2 
6 . ~ 1 ,ah 
7.  W ,  p ,  j. 
8. W ,  P ,  a; 
9.  W ,  P ,  ub 

10. w , p ,  oh 
11. W ,  P, a;k 
12.W ,  P ,  sb 
13.W ,  P ,  7 ; ~  

- -  - -

NOTE: v and p are the mutuality and density parameters, as in the pl model; i. IS the block parameter in the model of Wang and Wong (2.6); subscripts I, 0, and M on o Indicate indegree, 
outdegree, and mixed, respectively; subscripts C and TR on r denote cycl~c or transitive triads, respectively; a prune on a or r indicates a within-block count; and a subscript k on a parameter 
indicates a separate value for each block. 
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Figure 1. Parameter Estimates for the (p,, A) Model (2.6) by Maximum Likelihood and Maximum Pseudolikelihood: (a) Estimates of {a,}(1 s 
i s 18); (b) Estimates of ID,} (2 s j s 18). 

The same is true for the estimates of {/I,),shown in Figure yi ,yjk.]The ( y ,  p,  A) model, 7, has 34 fewer parameters 
lb .  than Model 5, yet its fit is not much worse. As before, the 

Model 5 fits the data substantially better than the others informal ,y2 test indicates that inclusion of the {ai)and {/I,) 
considered so far. An almost identical fit is provided by is unnecessary. 
the Markov block model, Model 6. [See (2.12); the prime The remaining cases in the table are Markov block mod- 
on the clustering parameter a indicates a count within els. The number of potential models is very large, and we 
blocks only, and the suffix M denotes mixed pairs of form have reported only a few of them. Model 8 is the best- 

Table 6. Predicted Conditional Probabilities, Multiplied by 100, for Sampson's (1968) Data 

(u / ,  p, I.) block model (7) with u/ = 1.03, p = - 1.86, and i. = 1.31 

0 37 37 37 37 37 37 4 4 4 4 4 4 4 4 4 4 4 
62 0 62 62 62 62 37 4 4 4 4 4 4 4 11 4 4 4 
62 62 0 62 37 37 62 4 4 4 4 4 4 4 4 4 4 4 
37 37 37 0 62 37 62 4 4 4 4 4 4 4 4 4 4 4 
62 62 37 62 0 37 62 4 4 4 4 4 4 4 4 4 4 4 
37 62 37 37 62 0 37 4 4 4 4 4 4 4 4 4 4 4 
37 37 62 37 37 62 0 4 4 4 4 4 4 4 4 4 4 4 

4 4 11 4 4 4 4 0 62 62 62 62 62 37 4 4 4 4 
4 4 4 4 4 4 4 62 0 62 62 37 37 37 4 11 4 4 
4 4 4 4 4 4 4 62 37 0 37 62 62 62 4 4 11 11 
4 4 4 4 4 1 1  4 37 62 37 0 37 37 37 4 4 4 4 
4 4 4 4 4 4 4 37 37 37 62 0 37 62 4 4 4 4 
4 4 4 4 4 4 4 62 37 62 37 62 0 62 11 4 4 4 
4 4 4 4 4 4 4 37 37 37 37 37 62 0 4 4 4 4 

1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 0 62 37 37 
4 4 4 4 4 4 4 4 11 4 4 4 4 4 37 0 62 62 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 37 62 0 62 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 62 62 62 0 

( y / ,  p, a;) Markov model (8), with p = -2.75, y /  = 1.72, and U; = .71 

0 52 35 21 35 21 21 6 6 6 6 6 6 6 6 6 6 6 
26 0 75 59 75 42 21 6 6 6 6 6 6 6 2 6 6 6 6 
26 86 0 59 52 21 42 6 6 6 6 6 6 6 6 6 6 6 
6 52 35 0 75 21 59 6 6 6 6 6 6 6 6 6 6 6 

26 86 52 42 0 12 59 6 6 6 6 6 6 6 6 6 6 6 
6 86 52 21 86 0 12 6 6 6 6 6 6 6 6 6 6 6 
6 69 75 12 35 59 0 6 6 6 6 6 6 6 6 6 6 6 

6 6 2 6 6 6 6 6 0 59 75 42 59 75 12 6 6 6 6 
6 6 6 6 6 6 6 86 0 86 26 21 52 12 6 2 6 6 6 
6 6 6 6 6 6 6 86 21 0 12 59 75 42 6 6 26 26 
6 6 6 6 6 2 6 6 52 59 52 0 12 52 12 6 6 6 6 
6 6 6 6 6 6 6 52 35 35 42 0 35 42 6 6 6 6 
6 6 6 6 6 6 6 86 35 75 12 59 0 26 2 6 6 6 6 
6 6 6 6 6 6 6 69 35 35 12 12 75 0 6 6 6 6 

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 59 21 21 
6 6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 0 42 59 
6 6 6 6 6 6 6 6 6 6 6 6 6 6 12 42 0 59 
6 6 6 6 6 6 6 6 6 6 6 6 6 6 42 42 42 0 
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fitting three-parameter Markov block model. Its fit is very 
similar to (if marginally worse than) that of Model 7. The 
subscript 0 on a'  in Model 9 indicates outstars, that is, the 
sum within blocks of y,,y,,. The poor performance of that 
model undoubtedly reflects Sampson's sampling scheme, 
whereby most of the outdegrees were constrained to be 
three. Note that Model 11, which allows the clustering 
parameter in Model 8 to differ among blocks, offers very 
little improvement. This parallels Wang and Wong's (1987) 
finding that different block parameters were unnecessary 
in their model. The three-parameter Markov models 12 
and 13 are included only for illustration. They differ in 
which types of triads are counted: cyclic, as in hi, ij, and 
jh, or transitive, as in hi, ij, and hj. Frank and Strauss 
(1986) categorize the complete set of sufficient statistics 
needed for the most general homogeneous Markov graph. 

Taking account of parsimony, the best models in Table 
5 appear to be the three-parameter models 7 and 8. Each 
has a mutuality and a density parameter, and one addi- 
tional parameter to account for the higher density of arcs 
within blocks. The interpretations of the block parameters 
I. and a; are quite different, and there are no obvious 
grounds for preferring one over the other. Table 6 shows 
the fitted conditional probabilities (of y,, = 1, given Ci,) 
for two models, and the parameter estimates in each case. 
Outside the three diagonal blocks there are just two values 
for the probabilities, corresponding to yji = 0 and y,, = 
1. Within the blocks the Markov conditional probabilities 
differ because they depend on neighboring dyads, whereas 
the other model predicts just two probabilities. The ability 
of these models to provide reasonable fits with so few 
parameters is worth noting; we have found much the same 
pattern in other data sets that we have examined. 

5. CONCLUDING REMARKS 

We have seen that maximum pseudolikelihood estima- 
tion is easy to implement and can be used for a large class 
of models. The class includes dyad-dependent (Markov) 
models, for which maximum likelihood is not generally 
feasible; in our experience, Markov models frequently 
provide satisfactory fits to data showing clustering or tran- 
sitivity. The fitting of a wide variety of models is often a 
useful way to gain insight into the network structure. 

We have restricted attention to the case of a single binary 
variable {y,,). The logit form for models and the associated 
pseudolikelihood scheme can be generalized to multivari- 
ate and polytomous cases. We conclude with some brief 
remarks on these. For the polytomous case, let a be a 
generic value of yIj, and suppose that the value 0 has pos- 
itive probability. For log-linear models of form (2.1) we 
can write 

a logit form analogous to those of Section 2. We can again 
define a pseudolikelihood by 

II.Pr(Kj = Yij 1 Cij), (5.1) 
i f i  

As in the binary case, maximization of (5.1) can be shown 
to be equivalent to the MLE for a polytomous logistic 
regression; this can be performed by the CATMOD pro- 
cedure in the SAS computer package. In the multivariate 
case, if D,,, denotes the dyad (i, j) with respect to relation 
r, one can define a pseudolikelihood as 

n Pr {I? (Dilr = d,,,) 1 Cijif ]  

for example, where Cij denotes {(Yklr, Ylkr): (k, I) # (i, j); 
r = 1, 2, . . .). Maximization of this is not equivalent to 
logistic regression, but it will be free of the troublesome 
normalizing function. We can even reduce the problem to 
a logistic regression by defining instead a "doubly-pseudoH- 
likelihood 

where C,,, denotes {y,.,,,: (k, I, s) # (i, j, r)). We are 
currently studying the properties of such estimators. 

[Received June 1987. Revised January 1989.) 
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