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Abstract

One impediment to the statistical analysis of network data has been the difficulty in modeling

the dependence among the observations. In the very simple case of binary (0-1) network data,

some researchers have parameterized network dependence in terms of exponential family

representations. Accurate parameter estimation for such models is quite difficult, and the

most commonly used models often display a significant lack of fit. Additionally, such models

are generally limited to binary data. In contrast, random effects models have been a widely

successful tool in capturing statistical dependence for a variety of data types, and allow

for prediction, imputation, and hypothesis testing within a general regression context. We

propose novel random effects structures to capture network dependence, which can also

provide graphical representations of network structure and variability.



1 Network Dependence

Network data typically consist of a set of n nodes and a relational tie yi,j, measured on each

ordered pair of nodes i, j = 1, . . . , n. This framework has many applications, including the

study of war, trade, the behavior of epidemics, the interconnectedness of the World Wide

Web, and telephone calling patterns.

It is often of interest to relate each network response yi,j to a possibly pair-specific vector

valued predictor variable xi,j. A flexible framework for doing so is the generalized linear

model (see, for example McCullagh and Nelder 1983), in which the expected value of the

response is modeled as a function of a linear predictor β ′xi,j, where β is an unknown vector

of regression coefficients to be estimated from the data. The ordinary regression model

E(yi,j) = β ′xi,j is perhaps the most commonly used model of this type. A generalized

linear model for binary (0-1) data is logistic regression, which relates the expectation of the

response to the regression variable via the relation g(E[yi,j]) = β ′xi,j, where g(p) = log p

1−p
.

As an example of the use of such statistical models, consider the analysis of strong

friendship ties among 13 boys and 14 girls in a sixth-grade classroom, as collected by Hansell

(1984). Each student was asked if they liked each other student “a lot”, “some”, or “not

much”. A strong friendship tie is considered present if a student likes another student “a lot.”

Also recorded is the sex of each student. The data, presented in Figure 1, suggest a general

preference for same-sex friendship ties. Of potential interest is statistical estimation of this

preference, as well as a confidence interval for its value. One approach for such statistical

analysis would be to formulate the logistic regression model g(E[yi,j|xi,j, β]) = β0 + β1xi,j,

where xi,j is one if children i and j are of the same sex, and zero otherwise, and β = (β0, β1)

are parameters to be estimated.

Estimation of regression coefficients β typically proceeds under the assumption that the

observations are conditionally independent given β and the xi,j’s. However, this assumption

is often violated by many network datasets. For example, the data on friendship ties display

several types of dependence:

Within-node dependence: The number of ties sent by each student varies considerably,

ranging from 0 to 19 with a mean of 5.8 and a standard deviation of 4.7 (the standard

deviation of the number of ties received was 3.2). This node level variability suggests

that responses from the same individual are positively dependent, in that the proba-

bility that yi,j = 1 (i sends a tie to j), is high if we know yi,k = 1 for lots of other nodes

k, and lower if yi,k is mostly zero. More formally, we may wish to have a model in

which Pr(yi,j = 1|yi,1, . . . , yi,j−1, yi,j+1, . . . , yi,n) is an increasing function of yi,k, k 6= j.
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Figure 1: (a) Sociomatrix for friendship data: Rows and columns 1-13 are boys, 14-27 are

girls; (b) Graphical representation of friendship data: Dark blue lines are reciprocated ties.

Reciprocity: For directed relations, it is often expected that yi,j and yj,i are positively

dependent. The classroom data exhibit a sizable degree of reciprocity, in that the

number of pairs in which yi,j = yj,i = 1 is 24, which is more than we would expect due

to just random chance: In only 11 of 500 (2.2%) random permutations of the network

data, holding constant the number of ties sent by each student, did the number of

such reciprocal dyads exceed 24. The average number of reciprocal dyads in the 500

permutations was 17.2. This suggests an appropriate model would be one which allowed

for positive dependence between yi,j and yj,i.

Transitivity and Balance: In many situations we expect that two nodes with a positive

relation will relate similarly to other nodes. For relations which are positive or negative,

this has led to the concept of “balance” in which a positive value for yi,j implies yi,k and

yj,k are likely to be of the same sign for other nodes k. A related concept is transitivity,

in which a large value of yi,j together with a large value of yj,k implies a large value of

yi,k (see Wasserman and Faust, 1994, Chapter 6).

The classroom data exhibit a large degree of transitivity, in that the number of non-

vacuously transitive ordered triples (see Wasserman and Faust, page 244), is 400. In

500 random permutations of the network data, holding constant the number of ties

sent by each student, the largest observed number of transitive triples was 347. This

indicates the data exhibit significantly more transitivity than would be expected due to

just random chance and node-level variability, and an appropriate model should allow

for some form of transitive dependence.
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In this article, we discuss statistical regression models which can describe such types of

network dependence. This is done by incorporating random effects structures in a general-

ized linear model setting. We discuss parameter estimation for these models in a Bayesian

framework, and provide example statistical analyses of the classroom data described above

and of a dataset on alliances and conflict among New Guinean tribes.

2 Network Random Effects Models

Generalized linear models, or glm’s, are ubiquitous tools which extend linear regression

models to non-normal data and transformably additive covariate effects (McCullagh and

Nelder, 1983). A standard glm assumes the expectation of the response variable yi,j can be

written as a function of a linear predictor η = β ′xi,j. Assuming observations are conditionally

independent given the xi,j’s and β, the model is:

Pr(y1,2, . . . , yn,n−1|X, β) =
∏

i6=j

p(yi,j|xi,j, β)

g(E[yi,j|xi,j, β]) = ηi,j = β ′xi,j.

Examples of glm’s include ordinary linear regression, logistic regression, Poisson regression,

and quasilikelihood methods.

As discussed above, one feature that distinguishes network data is the likely dependence

among the yi,j’s. This lack of independence makes standard glm models inappropriate. In

other settings which involve dependent data, a common approach to parameter estimation

has been the generalized linear mixed-effects model (McCulloch and Searle, 2002) in which

it is assumed the network observations can be modeled as conditionally independent, given

appropriate random effects terms which can be incorporated into the glm framework. The

model above becomes

Pr(y1,2, . . . , yn,n−1|X, β, γ) =
∏

i6=j

p(yi,j|xi,j, β, γi,j) (1)

g(E[yi,j|X, β, γi,j]) = ηi,j = β ′xi,j + γi,j,

where γi,j is an unobserved random effect. The distribution of and dependence among the

γi,j’s determines the dependence among the yi,j’s. For many kinds of network data, we may

wish to find a form for the γi,j’s that induces the kinds of dependence described above, such

as within-node dependence, reciprocity, transitivity, and balance.

A simple approach to modeling the node variability that gives rise to within-node de-

pendence is the use of random intercepts, that is, to let γi,j = ai + bj + εi,j, where ai and bj
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represent independently distributed sender- and receiver-specific effects. Such a distribution

on the ai’s and bj’s induces a positive dependence among responses involving a common

node. Typically, the distribution of these effects are taken to be normal distributions with

means equal to zero, and variances to be estimated from the data.

Modeling other forms of network dependence is not as straightforward. In the case of

binary logistic regression, Hoff, Raftery, and Handcock (2002) propose using a latent-variable

approach as a means of modeling balance, transitivity, and reciprocity in network data. As

applied to the glm above, such an approach presumes the error εi,j can be written as a

function f of independent k-dimensional latent variables zi, zj ∈ R
k so that εi,j = f(zi, zj),

i, j = 1, . . . , n. The function f is chosen to be simple and to mimic the forms of network

dependence described above. Incorporating both the random intercepts and the zi’s into the

model, and assuming independent normal distributions, (1) becomes

ηi,j = β ′xi,j + ai + bj + f(zi, zj)

a1, . . . , an ∼ i.i.d. Normal(0,σ2
a)

b1, . . . , bn ∼ i.i.d. Normal(0,σ2
b )

z1, . . . , zn ∼ i.i.d. Normal(0,Ik × σ2
z),

where β, σ2
a, σ

2
b , and σ2

z are parameters to be estimated, and Ik is the k × k identity matrix.

Additionally, if the researcher is interested in local network structure, it may be desirable to

estimate ai, bi, zi for each node.

It remains to choose a suitable function f . One approach is to presume reciprocity,

transitivity, and balance arise due to the existence of unobserved node characteristics, and

that nodes relate preferentially to other nodes with similar values of those characteristics.

This motivates letting f be a measure of “similarity” between the random effects zi and zj,

which gives rise to a “latent position” interpretation as discussed in Hoff et al. (2002). For

example, consider the following forms for f :

• (distance model) f(zi, zj) = −|zi − zj|;

• (inner product model) f(zi, zj) = z′izj.

In the case of directed responses, each of the above functions induces a degree of reciprocity

as εi,j = f(zi, zj) = f(zj, zi) = εj,i due to the symmetry of f . The common error term

induces a positive dependence between yi,j and yj,i.

The above functions also give rise to higher-order dependence. For example, the distance

model gives an error structure that is inherently transitive, since |zi−zj | ≤ |zi−zk|+ |zk−zj|
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by the triangle inequality. The observation of strong ties from i to k and k to j suggests

that |zi − zk| and |zk − zj| are small, and therefore |zi − zj| cannot be too large and we

might expect strong ties from i to j. The inner product model satisfies a similar but more

complicated relation: in the special case that the vectors zi are of unit length, z′izj ≥

z′izk + z′kzj − (1 + 2
√

(1 − z′kzi)(1 − z′kzj)).

An undirected signed graph is said to be balanced if the product of the relations in all

cycles is nonnegative, i.e. yi1,i2 ×yi2,i3 ×· · ·×yik−1,ik ≥ 0 for all sequences of indices for which

the corresponding data are available (Wasserman and Faust 1994, Chapter 6). As f(zi, zj)

exists in the model for each pair i, j, balance in terms of this random effect is equivalent to the

balance of the complete graph formed by the sociomatrix with i, jth entry equal to f(zi, zj).

For a complete signed graph, all cycles are balanced if and only if each triad is balanced,

i.e. f(zi, zj) × f(zj, zk) × f(zk, zi) ≥ 0 for all triples i, j, k. Interestingly, this is satisfied

by the inner product model in one dimension (zi ∈ R), as (z′izj) × (z′jzk) × (z′kzj) ≥ 0. For

zi ∈ R
k, k > 1, these terms are not necessarily balanced, although they are “probabilistically”

balanced in the following sense: if the directions of the zi’s are uniformly distributed, then

the expected number of balanced triads exceeds the number of imbalanced triads, with the

difference decreasing with increasing k. An additional feature of the inner product model is

that if the directions of the z′
is are uniformly distributed, then in general E(z′

izj) = 0. In

particular, if each zi is a vector of k independent normal random variables with mean 0 and

variance σ2
z , then z′izj will have mean 0 and variance kσ4

z , furthering the interpretation of

z′izj as an error term.

On the other hand,−|zi − zj| is always negative, and so we lack this interpretation for

the distance model. However, the distance model may be easier to interpret as a spatial

representation of network structure: The zi’s can be interpreted as positions in a latent

“social space,” with nodes having strong ties to one another being estimated as close together,

and subsets of nodes with strong within-group ties being estimated as clusters in this social

space. Additionally, plotting estimates and confidence regions for the zi’s gives a graphical,

model-based representation of the network data.

3 Parameter Estimation

Given network data Y = {yi,j} and possible regressor variables X = {xi,j}, the goal is to

make statistical inference on the unknown model parameters, which we generically denote

as θ. The parameter θ may include the regression coefficients β, the variances of the random

effects, and possibly the random effects themselves. We take a Bayesian approach to param-
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eter estimation, in that we posit a (potentially diffuse) prior probability distribution p(θ),

and base our inference on the posterior, or conditional distribution of the parameters given

the information in the data, which is given by Bayes’ rule, p(θ|Y ) = p(Y |θ) × p(θ)/p(Y ).

A closed form expression for the desired conditional distribution is generally unavailable,

however we can make approximate random samples from this distribution using Markov

chain Monte Carlo (MCMC) simulation (Gelfand and Smith 1990, Besag, Green, Higdon,

and Mengersen 1995). MCMC-based inference constructs a dependent sequence of θ-values

as follows: Given the lth-value θl in the sequence,

• sample a parameter value θ∗ from a proposal distribution J(θ|θl);

• compute the acceptance probability

r = max

(

1,
p(Y |θ∗)p(θ∗)J(θl|θ

∗)

p(Y |θ)p(θ)J(θ∗|θl)

)

;

• set θl+1 = θ∗ with probability r, otherwise set θl+1 = θl.

The particular details, such as the choice of the proposal distribution J , will depend on the

model and the data. See Hoff et al. (2002) for MCMC algorithms designed specifically for

such latent variable models.

The result of the algorithm is a sequence of θ values having a distribution that is approx-

imately equal to the target distribution p(θ|Y ). Statistical inference can be based on these

samples. For example, a point estimate of θ is often taken to be the posterior mean, which

is approximated by the average of the sampled θ-values. Posterior confidence intervals can

be based on the sample quantiles.

4 Example Data Analyses

We now apply the methods described above to the statistical analysis of two example

datasets. In the first example, we use the inner product model as a means of making

inference on the preference for same sex friendship ties in Hansell’s classroom data. In the

second example, we use the distance model to make inference on the network of alliances

among sixteen New Guinean tribes studied by Read (1954). Both datasets involve binary

network data, although the methods are easily adapted to other types of network data via

an appropriate generalized linear model.
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4.1 Classroom Friendships

Hansell’s (1984) data exhibit a tendency of children to form same sex friendship ties, in that

72% of the ties are same-sex. We consider a statistical analysis of this preference, in which

we estimate the log odds of a same-sex tie, as well as make a confidence interval for its value.

This is done via the logistic regression model with random effects described above,

g(E[yi,j|β, xi,j, γi,j]) = β0 + β1xi,j + γi,j,

where xi,j is the indicator that i and j are of the same sex, β = {β0, β1} are parameters to

be estimated, and γi,j is a random effect. In this parametrization, β0 is the log odds of a

friendship between children of opposite sexes, and β0 + β1 is the log odds for children of the

same sex.

As described in the introduction, Hansell’s (1984) classroom data exhibit several forms

of network dependence, including node-level variability, reciprocity, and transitivity. This

suggests we model the data with node-specific rates of sending and receiving ties, as well as

a term which captures reciprocity and transitivity. We choose the following inner-product

model with random sender and receiver effects:

log odds(yi,j = 1) = β0 + β1xi,j + ai + bj + z′izj

a1, . . . , an ∼ i.i.d. Normal(0, σ2

a)

b1, . . . , bn ∼ i.i.d. Normal(0, σ2

b )

z1, . . . , zn ∼ i.i.d. Normal(0, σ2

z)

The parameters in this model are the regression coefficients β0 and β1, as well as the variance

terms σ2
a, σ

2
b , σ

2
z , which determine the dependencies between ties.

A Bayesian analysis was performed using the methods outlined in Section 3. The prior

distributions for β0 and β1 were taken to be independent, diffuse normal distributions, both

having mean zero and variance 100. The variance terms σ2
a, σ

2
b , σ

2
z were given diffuse inverse-

Gamma(2,1) distributions, having an expectation of one but an infinite variance. An MCMC

algorithm was used to obtain the 500,000 approximate samples from the posterior distribu-

tion p(β0, β1, σ
2
a, σ

2
b , σ

2
z |Y ). Marginal posterior distributions of β1, σ

2
a, σ

2
b , σ

2
z are presented in

Figure 2. The results suggest a significant preference for same sex friendship ties, in that the

posterior distribution for β1 is centered around a median of 1.49, and a 95% quantile-based

confidence interval for β1 is (0.84, 2.11), which does not contain zero. The posterior dis-

tributions of σ2
a and σ2

z have deviated from their prior distributions and have moved to the

right, giving evidence for sender-specific variability as well as the need for the latent variables
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z1, . . . , zn. The posterior for σ2
b concentrates mass on low values, and is not much different

from the prior distribution, indicating little evidence for strong receiver-specific variability.
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Figure 2: Marginal posterior distributions for the classroom data: Dashed lines represent

the prior distributions for the variance parameters, solid lines the posterior. Vertical lines

give the posterior median.

In comparison, a naive approach to inference would be to treat each possible tie as a

Bernoulli random variable, independent of all other ties. Using standard logistic regression,

our estimate of β1 is 1.3 with a standard error of 0.2, giving an approximate 95% confidence

interval of (0.91,1.70), which is of substantially smaller width than the interval obtained

with the random effects model. Of course, we might expect the confidence interval based on

this naive analysis to be too small, as it incorrectly assumes all ties between individuals are

independent and thus overestimates the precision of the parameter estimate.
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4.2 Tribal alliances

Read (1954) describes a number of network relations between sixteen New Guinean tribes.

Here we consider the network of alliances between tribes, letting yi,j = 1 if tribes i and j

have an alliance, and yi,j = 0 otherwise. We analyze these data using the simple distance

model with no covariates or separate sender- and receiver-specific random effects:

log odds Pr(yi,j = 1|β0, zi, zj) = β0 − |zi − zj|,

where β0 represents the baseline odds of a tie between two nodes that have the same latent

position (i.e. β0 the maximum log odds of a tie), and the zi’s are latent positions in R
2.

Without separate sender- and receiver-specific effects, we may expect that tribes with many

alliances will be estimated as being more centrally located, and those with few ties as being

on the periphery.

Bayesian estimates and confidence intervals for β0 and the zi’s are obtained using the

methods outlined in Section 3. In particular, samples of latent positions from the posterior

distribution p(z1, . . . , z16|Y ) are plotted in the first panel of Figure 1 (colors are chosen so

that nearby node locations will have similar colors). Additionally, a black line drawn between

nodes indicates the presence of an alliance.

Ad-hoc approaches, or simple point estimates of latent locations, might uncover some of

the structure of the network. Our method goes beyond this by providing posterior confidence

regions for node locations, which in turn give us a model-based measure of uncertainty about

the network structure. Additionally, forms of predictive inference can be obtained from such

a model. For example, suppose that the presence or absence of an alliance between pair (i, j)

is unobserved or missing. The model can be fit with all available information (excluding the

unknown yi,j), and from the available information the posterior distributions of zi and zj

can be obtained. From these, predictive inference about the value of yi,j can be made.

Also collected by Read (1954) were data on conflicts between the tribes. It is interesting

to note that, based on a clustering of nodes (1,2,15,16), (3,4,6,7,8,11,12), and (5,9,10,13,14),

there were no within-cluster conflicts, even though not every tribe within a cluster had an

alliance with every other cluster co-member. Additionally, node 7, towards the center of

the alliance structure, had no conflicts with any of the other 15 tribes. We note that both

responses (conflict and alliance) could be modeled concurrently by a similar method, in

which a multinomial logistic random effects model is employed in place of the binary logistic

random effects model above.
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Figure 3: Tribal alliance network and marginal posterior distributions of locations.

5 Discussion

This article proposes a form of generalized linear mixed-effects model for the statistical

analysis of network data for which parameter estimation is practical to implement. The

approach has some advantages over existing social network models and inferential procedures:

the approach allows for prediction and hypothesis testing; lends itself to a model-based

method of network visualization; is highly extendable and interpretable in terms of well

known statistical procedures such as regression and generalized linear models; and has a

feasible means of exact parameter estimation.

The models discussed here can capture some types of network dependence, although it is

possible (or even likely) that in many datasets there are types of dependencies that cannot

be well-represented with these models. It then becomes important to develop methods for

assessing model lack of fit, and determining the effect of lack of fit on the estimation of

regression coefficients. Furthermore, it may be useful to combine the types of random effects

discussed here with other types of random effects, or latent variables. For example, Nowicki

and Snijders (2001) discuss a latent class model, a useful model for identifying clusters of

nodes that relate to others in similar ways. Their latent class model, combined with types
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of random effects models presented here and possibly other random effects structures, could

provide a rich class of models for dependent network data.
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