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Abstract

This article discusses the use of a symmetric multiplicative interaction effect to capture certain types

of third-order dependence patterns often present in social networks and other dyadic datasets. Such

an effect, along with standard linear fixed and random effects, is incorporated into a generalized

linear model, and a Markov chain Monte Carlo algorithm is provided for Bayesian estimation and

inference. In an example analysis of international relations data, accounting for such patterns

improves model fit and predictive performance.
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1 Introduction

Dyadic data consist of measurements that are made on pairs of objects or under a pair of conditions,

so that yi,j denotes the value of the (possibly directed) measurement from i to j. Examples include

social network analysis, “round robin” experiments in psychology, and comparative data in which

yi,j might be a measure of similarity between units i and j. In the social networks literature,

modeling has focused on the binary case where yi,j is either zero or one, indicating the presence or

absence of a “link” from i to j. This has led to the development of data analysis tools based on

directed graphs and the study of exponentially parameterized random graph models (Wasserman

and Pattison 1996). For valued (non-binary) dyadic datasets, a perceived lack of statistical tools

has sometimes led to ad-hoc reductions of valued responses to binary data. However, ANOVA

methods are available for valued dyadic data: the so-called social relations model (Warner, Kenny,

and Stoto 1979; Wong 1982) allows for the decomposition of the variance into sender and receiver

specific effects, as well as allows for correlation between responses within a dyad. Such a model

has been studied in the context of a linear group symmetry model by Li (2002), and advances in

variance component analysis have been made by and Gill and Swartz (2001) and Li and Loken

(2002). These models generally presume normally distributed data and additive effects, and thus

the lack of any sort of dependence beyond those specified by second-order moments. In contrast,

many observed dyadic datasets exhibit certain forms of third-order dependence, and often it is of

scientific interest to quantify these higher order patterns.

In this article we propose a class of generalized additive models based on the social relations

model, but incorporate third order dependence via a bilinear effect. The bilinear effect for a pair

(i, j) is simply the inner product of unobserved characteristic vectors zi and zj , specific to units i

and j respectively. This approach is similar in spirit to the latent variable methods proposed by

Hoff, Raftery, and Handcock (2002) to capture transitivity in a social network dataset, but has

some computational and conceptual advantages. The bilinear effect is also a type of multiplicative

interaction (Gabriel 1978; Marasinghe and Johnson 1982; Oman 1991). The models presented in

this article are similar to the generalized bilinear regression models studied by Gabriel (1998), who

considered approximate maximum likelihood estimation in the context of factorial designs. In this

article, we show how a bilinear effect can be used to represent certain forms of dependence often

seen in dyadic data, and develop a Markov chain Monte Carlo algorithm based on Gibbs sampling,

providing arbitrarily exact Bayesian inference. With some modifications, the algorithm can be used

as a means of making Bayesian inference for a broad class of generalized bilinear regression models

with mixed effects.

In the next section, we discuss the basic linear mixed effects model for dyadic data and the

resulting dependence structure. In Section 3, we discuss types of third-order dependence often seen

in network datasets and the use of a bilinear effect to capture such dependence. Section 4 gives

a Markov chain Monte Carlo (MCMC) algorithm which can be used to obtain samples from the
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posterior distribution of the parameters. Issues such as model fit, model selection and interpretation

are discussed in the context of a data analysis on international relations in Section 5. A discussion

follows in Section 6.

2 Linear Mixed Effects Models for Exchangeable Dyadic Data

Suppose we are only interested in estimating the linear relationships between responses yi,j and a

possibly vector valued set of variables xi,j, which could include characteristics of unit i, character-

istics of unit j, or characteristics specific to the pair. In this case we might consider the regression

model

yi,j = β′xi,j + εi,j, (1)

where yi,i is typically not defined. The generalized least squares estimate β̂ and its covariance

matrix depend on the joint distribution of the εi,j’s only through their covariance. It is often

assumed in regression problems that the regressors xi,j contain enough information so that the

distribution of the errors is invariant under permutations of the unit labels. This assumption is

equivalent to the n× n matrix of errors (with an undefined diagonal) having a distribution that is

invariant under identical row and column permutations, so that {εi,j : i 6= j} is equal in distribution

to {επ(i),π(j) : i 6= j} for any permutation π of {1, . . . , n}. This condition is called weak row-and-

column exchangeability of an array. For undirected data, such exchangeability implies a “random

effects” representation of the errors, in that εi,j is equal in distribution to f(µ, ai, aj , γi,j) where

µ, ai, aj , γi,j are independent random variables and f is a function to be specified (Aldous 1985,

Theorem 14.11). If in addition to the above invariance assumption we also model the errors as

Gaussian, then the joint distribution can be represented in terms of a linear random effects model.

In the more general case of directed observations, we can represent the joint distribution of the

εi,j’s as follows:

εi,j = ai + bj + γi,j (2)

(ai, bi)
′ ∼ multivariate normal(0,Σa,b), Σab =

(

σ2

a σab

σab σ2

b

)

(γi,j, γj,i)
′ ∼ multivariate normal(0,Σγ), Σγ =

(

σ2

γ ρσ2

γ

ρσ2

γ σ2

γ

)

,

with effects otherwise being independent. The covariance structure of the errors (and thus the

observations) is as follows:

E(ε2
i,j) = σ2

a + 2σab + σ2
b + σ2

γ E(εi,jεi,k) = σ2
a

E(εi,jεj,i) = ρσ2
γ + 2σab E(εi,jεk,j) = σ2

b

E(εi,jεk,l) = 0 E(εi,jεk,i) = σab
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and so σ2
a represents the dependence of observations having a common sender, σ2

b that of obser-

vations having a common receiver, and ρ represents the correlation of observations within a dyad

(often interpreted as “mutuality” or “reciprocity”). This has been called the “social relations” or

“round robin” model (Warner et al. 1979; Wong 1982), and is related to a model for diallel cross

data used by Cockerham and Weir (1977). The model is a special case of a linear group symmetry

model (Andersson and Madsen, 1998), and has been studied in this context by Li (2002). Recent

advances in variance component estimation have been made by Gill and Swartz (2001) and Li and

Loken (2002).

To analyze responses in particular sample spaces, the error structure described above can be

added to a linear predictor in a generalized linear model:

θi,j = β′xi,j + ai + bj + γi,j (3)

E(yi,j|θi,j) = g(θi,j)

p(y1,2 . . . , yn,n−1|θ1,2 . . . , θn,n−1) =
∏

i6=j

p(yi,j|θi,j).

This is a generalized linear mixed-effects model with inverse-link function g(θ), in which the obser-

vations are modeled as conditionally independent given the random effects, but are unconditionally

dependent. The covariance pattern for the observations is given approximately as

Cov(yi1,j1 , yi2,j2) = E[Cov(yi1,j1 , yi2,j2 |θi1,j1 , θi2,j2)] + Cov[E(yi1,j1 |θi1,j1), E(yi2 ,j2 |θi2,j2)]

= E[0] + Cov[g(θi1 ,j1), g(θi2 ,j2)]

≈ Cov(θi1,j1 , θi2,j2) × g′(β′xi1,j1)g
′(β′xi2,j2),

where the pattern for Cov(θi1,j1 , θi2,j2) is the same as that for the εi,j’s given above. However, unlike

the linear regression case, β̂ is not given by linear combinations of the observations, and E(β̂) and

Cov(β̂) are not functions of only the first and second order moments of the data. Model lack of fit,

or third and higher order dependence, will affect our inference on β. Many dyadic datasets exhibit

certain forms of third order dependence. Indeed, it is these higher order patterns of dependence

that are often of interest, and may also provide information useful for predictive inference.

3 Modeling Third Order Dependence Patterns

Some dependence patterns commonly seen in dydaic datasets have been given the descriptive titles

of transitivity, balance, and clusterability. In the context of binary data, graph theoretic definitions

of these concepts appear in Wasserman and Faust (1994, chapter 6) and are as follows:

Transitivity: For directed binary data, an ordered triad i, j, k is transitive if whenever yi,j = 1

and yj,k = 1, we have yi,k = 1, i.e. “a friend of a friend is a friend.”
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Balance: For signed unordered relations, a triad i, j, k is said to be balanced if yi,j ×yj,k×yk,i > 0.

The idea is that if the relationship between i and j is “positive” then they will relate to

another unit k in an identical fashion, so that if yi,j > 0 then yj,k and yk,i are either both

positive or both negative.

Clusterability: This is a relaxation of the concept of balance. A triad is clusterable if it is balanced

or the relations are all negative. The idea is that a clusterable triad can be divided into groups

where the measurements are positive within groups and negative between groups.

In a statistical sense, a dataset will display varying degrees of transitivity, balance, or clusterability.

Often it is found that there are more transitive, balanced, or clusterable triads than would be

expected under models (2) or (3). Another indication of third order dependence would be if after

fitting a regression model and obtaining the residuals ε̂i,j, the average value of ε̂i,j × ε̂j,k × ε̂k,i is

substantially larger than zero, the expected value presumed by model (2).

Hoff et al. (2002) used simple functions of latent characteristic vectors in a fixed effects setting

to capture some forms of transitivity, balance, and clusterability. For example, they considered

models in which θi,j = β′xi,j + f(zi, zj) where f(zi, zj) = −|zi − zj | (“the distance model”) or

f(zi, zj) = z′izj/|zj | (“the projection model”). In what follows, we consider a similar approach

using the inner product kernel f(zi, zj) = z′izj , and give random and fixed effects interpretations.

Adding the bilinear effect z ′izj to the linear random effects in models (2) and (3) gives

εi,j = ai + bj + γi,j + ξi,j (4)

ξi,j = z′izj

where the random effects ai, bj and γi,j are modeled with the multivariate normal distributions

described above. We have written ξi,j = z′izj to suggest the interpretation of z ′izj as a mean-zero

random effect: If the z’s are modeled as independent k-dimensional multivariate normal random

vectors with mean zero and covariance matrix Σz, then the resulting distribution for the ξ’s has

the following moment properties:

• E(ξi,j) = 0;

• E(ξ2
i,j) = trace Σ2

z;

• E(ξi,jξj,kξk,i) = trace Σ3
z;

with all other second and third order moments equal to zero. Note that an orthogonal transfor-

mation of the z’s leaves z ′izi invariant, so we can assume Σz is a diagonal matrix (otherwise, the

off-diagonal terms are non-identifiable). For simplicity we focus on the case Σz = σ2
zIk×k, for which

the above moments are 0, kσ4
z , and kσ6

z respectively. With ξi,j added to the error term, the nonzero
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second and third order moments are

E(ε2
i,j) = σ2

a + 2σab + σ2
b + σ2

γ + kσ4
z E(εi,jεi,k) = σ2

a

E(εi,jεj,i) = ρσ2
γ + 2σab + kσ4

z E(εi,jεk,j) = σ2
b

E(εi,jεj,kεk,i) = kσ6
z E(εi,jεk,i) = σab.

Thus the effect ξi,j = z′izj can be interpreted as a mean-zero random effect able to induce a particular

form of third-order dependence often found in dyadic datasets. Marginally, as k increases the

distribution of ξi,j will converge to a normal distribution, due to the central limit theorem. Jointly,

the Markov dependence graph for the ξ’s has two dyads as neighbors if they have at least one unit

in common.

Considered as fixed effects, the ξ’s can be viewed as interaction terms that are highly constrained

due to the functional dependence on the z’s. The constraint is easy to visualize in terms of the

z’s: If zi and zj are vectors of similar direction and magnitude, then z ′
izk and z′jzk will not be too

different. This feature can be related to transitivity, which is conceptually a measure of how ξ i,k

is a function of ξi,j and ξj,k. Considering for the moment z’s scaled to have unit length so that

|zi − zj | =
√

2(1 − z′izj), by the triangle inequality we have

1 − z′izk ≤ 1 − z′izj + 1 − z′jzk + 2
√

(1 − z′izj)(1 − z′jzk), or

ξi,k ≥ ξi,j + ξj,k −

[

1 + 2
√

(1 − ξi,j)(1 − ξj,k)

]

,

which gives a lower bound for ξi,k in terms of ξi,j and ξj,k.

Balance and clusterability describe how similar ξi,k and ξj,k are as a function of ξi,j. For scaled

z’s, we have

|ξi,k − ξj,k| = |z′k(zi − zj)| ≤ |zk| × |zi − zj| = |zi − zj|.

Noting that z′izj = cos(φi − φj), where φi is the angle of zi from a fixed axis, we have

|zi − zj | = 2 sin[(φi − φj)/2]

= 2 sin
1

2
cos−1(z′izj)

=
√

2(1 − ξi,j),

and so |ξi,k − ξj,k| ≤
√

2(1 − ξi,j). If ξi,j is large, the difference between ξi,k and ξj,k must be small.

If ξi,j is negative one, the difference is unconstrained and could range from zero to a maximum of

two (in this scaled case).

4 Parameter Estimation

In the frequentist setting, approximate estimation for generalized linear mixed effects models often

proceeds via Taylor expansions and iteratively reweighted least squares for the fixed effects, along
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with approximate restricted maximum likelihood estimation for the variance components (Schall

1991; Breslow and Clayton 1993; Wolfinger and O’Connell 1993; McGilchrist 1994). The accuracy

of these approximate methods is generally dependent on the sample size, see Booth and Hobert

(1998) for a discussion. Gabriel (1998) suggests an algorithm along these lines for the generalized

bilinear mixed effects model. Alternatively, Zeger and Karim (1991), Gelfand, Sahu and Carlin

(1996), and Natarajan and Kass (2000) have proposed Gibbs sampling approaches to parameter

estimation for generalized linear mixed effects models. However, estimation is more difficult for the

complicated dependence structure of the random effects in the invariant normal model (2). Gill

and Swartz (2001) have proposed a Gibbs sampling scheme for estimation of random effects in the

linear case with the identity link, although we have found that their algorithm does not mix well

when covariates are included, due to a weak identifiability of the unit level random effects and

certain regression coefficients: As discussed in Gelfand, Sahu, and Carlin (1995) the random effects

a and b will be confounded to a degree with each other and to regression parameters associated with

predictors that do not vary across receivers (i.e. sender-specific effects) or across senders (receiver-

specific effects). For example, a population-level intercept is one such parameter. To obtain a

“cleaner” partition of the variance and a more efficient MCMC sampling scheme, we decompose

xi,j into xi,j = (xd,i,j, xs,i, xr,j), i.e. into dyad specific regressors xd,i,j, sender specific regressors xs,i

and receiver specific regressors xr,j. The generalized bilinear model is then rewritten as

θi,j = β′
dxd,i,j + (β′

sxs,i + ai) + (β′
rxr,j + bj) + γi,j + z′izj

or equivalently

θi,j = β′
dxd,i,j + si + rj + γi,j + z′izj

si = β′
sxs,i + ai

ri = β′
rxr,i + bi.

This parameterization for the linear unit-level effects is similar to the “centered” parameterizations

suggested by Gelfand et al. (1995, 1996). Note that an intercept can be thought of as both a sender

or receiver specific effect. For symmetry, we include the constant 1/2 at the beginning of each xs,i

and xr,j vector, and estimate the first components of βs and βr as being equal.

Using the above reparameterization for θi,j, we estimate the parameters for the generalized

bilinear regression model by constructing a Markov chain in {βd, βs, βr,Σab, Z, σ2
z ,Σγ} (where Z

denotes the k × n matrix of latent vectors), having p(βd, βs, βr,Σab, Z, σ2
z ,Σγ |Y ) as the invariant

distribution. This is obtained via an algorithm based on Gibbs sampling, which also samples s, r

and the θ’s. The basic algorithm is to iterate the following steps:

1. Sample linear effects:

(a) Sample βd, s, r|βs, βr,Σab,Σγ , θ, Z (linear regression);
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(b) Sample βs, βr|s, r,Σab (linear regression);

(c) Sample Σab and Σγ from their full conditionals.

2. Sample bilinear effects:

(a) For i = 1, . . . , n: sample zi|{zj , j 6= i}, θ, β, s, r,Σz ,Σγ (a linear regression);

(b) Sample Σz from its full conditional.

3. Sample dyad specific parameters: Update {θi,j, θj,i} using a Metropolis-Hastings step:

(a) Propose (
θ∗i,j
θ∗j,i

) ∼ MVN( (
β′xi,j + ai + bj + z′izj

β′xj,i + aj + bi + z′jzi

),Σγ);

(b) Accept (
θ∗i,j
θ∗j,i

) with probability
p(yi,j |θ

∗

i,j)p(yj,i|θ
∗

j,i)

p(yi,j |θi,j)p(yj,i|θj,i)
∧ 1.

Various combinations of the above steps can be used to estimate different models. The steps in 1

alone provide a Bayesian estimation procedure for the linear regression problem having an error

covariance as in (2). Bayesian estimation of the normal bilinear model with the identity link could

proceed by replacing each θi,j with yi,j and only iterating steps 1 and 2. Estimation of a generalized

linear mixed effects model with random effects structure given by (2) could proceed by iterating

steps 1 and 3. The full conditional distributions required to perform steps 1 and 2 are given below.

Note that the θ’s are essentially unrestricted in the above sampling scheme. At this level the

fit is saturated and does not depend on the regressors, at least to the degree that the prior for

Σγ is diffuse. What the MCMC algorithm above provides is essentially a saturated fit for the θ’s

(although somewhat smoothed by the common variance) and an ANOVA-like decomposition of the

θ’s into regressor, sender, receiver and inner-product effects.

4.1 Conditional Distributions for the Linear Effects Components:

Noting that θi,j − z′izj = β′
dxi,j + si + rj + γi,j, we see that conditional on the θ’s and z’s, the

other parameters can be sampled using a standard Bayesian normal-theory regression approach,

although with a complicated covariance structure.

Full conditional of (βd, s, r): Similar to Wong’s (1982) approach to the invariant normal model,

we let ui,j = θi,j + θj,i − 2z′izj and vi,j = θi,j − θj,i for i < j. We then have

(

u

v

)

=

(

Xu

Xv

)









βd

s

r









+

(

δu

δv

)

, (5)

where Xu and Xv are the appropriate design matrices and δu and δv are vectors of independent

error terms with variances σ2
u = 2σ2

γ(1 + ρ) and σ2
v = 2σ2

γ(1 − ρ) respectively. The full conditional

distribution of (βd, s, r) is then proportional to p(u, v|βd, s, r,Σγ) × p(s, r|βs, βr,Σab) × p(βd). For

7



a multivariate normal (µβd
,Σβd

) prior distribution on βd, the term in the exponent of the full

conditional is

φ′

[(

Σ−1

βd
µβd

Σ−1

sr Xsrβsr

)

+ X ′

uu/σ2

u + X ′

vv/σ2

v

]

−
1

2
φ′

[(

Σ−1

βd
0

0 Σ−1

sr

)

+ X ′

uXu/σ2

u + X ′

vXv/σ2

v

]

φ

where φ′ = (β′
d s′ r′), Xsr and βsr are the combined design matrix and regression parameters for s

and r, and Σsr is the covariance matrix of (s′ r′)′, which is easily derived from Σab. The conditional

distribution is thus multivariate normal (µ,Σ) where

µ = Σ

[(

Σ−1
βd

βd0

Σ−1
sr Xsrβsr

)

+ X ′
uu/σ2

u + X ′
vv/σ2

v

]

Σ =

[(

Σ−1
βd

0

0 Σ−1
sr

)

+ X ′
uXu/σ2

u + X ′
vXv/σ

2
v

]−1

.

Note that the inverse of Σsr is given by

Σ−1
sr =

(

(σ2
b/∆)In×n −(σab/∆)In×n

−(σab/∆)In×n (σ2
a/∆)In×n

)

, ∆ = σ2
aσ

2
b − σ2

ab.

Full conditional of (βs, βr): The full conditional of (βs, βr) is proportional to p(s, r|βs, βr,Σab)×

p(βs, βr). Assuming a multivariate normal (µβsr
,Σβsr

) prior distribution for the combined regression

parameters, the full conditional is a multivariate normal distribution with mean and variance (µ,Σ)

given by

µ = Σ

[

Σ−1
βsr

µβsr
+ XsrΣ

−1
sr

(

s

r

)]

Σ = (Σ−1
βs,r

+ X ′
srΣ

−1
sr Xsr)

−1

Full conditional of Σab: The full conditional of Σab is proportional to p(s, r|βs, βr,Σab)p(Σab).

Using a prior distribution of Σab ∼ inverse Wishart(Σab0, ν) (parameterized so that E(Σab) =

Σab0/(ν − 3)), the full conditional of Σab is Σab|a, b ∼ inverse Wishart(Σab0 + (a b)′(a b), ν + n),

where a = (s − Xsβs) and b = (r − Xrβr).

Full conditional of Σγ: Using prior distributions of σ2
u ∼ inverse gamma(αu1, αu2) and σ2

v ∼

inverse gamma(αv1, αv2), the full conditionals are given by σ2
u|u ∼ inverse gamma(αu1+ 1

2

(n
2

)

, αu2+
1
2

∑

[ui−ûi,j]
2) and σ2

v |v ∼ inverse gamma(αv1+
1
2

(n
2

)

, αv2+
1
2

∑

[vi−v̂i,j]
2), where ûi,j = E[ui,j |βd, xi,j, si, rj ] =

β′
d(xi,j + xj,i) + si + sj + ri + rj, and v̂i,j is given similarly. The covariance matrix Σγ can be re-

constructed from σ2
u and σ2

v via σ2
γ = (σ2

u + σ2
v)/4 and ρ = (σ2

u − σ2
v)/(σ

2
u + σ2

v).
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4.2 Conditional distributions for the Bilinear Effects Component:

Let ei,j = (θi,j + θj,i − ûi,j)/2, the residual of the symmetric part of the matrix of θ’s after fitting

the linear effects, and let δu,i,j = γi,j + γj,i. Considering the full conditional of zi, we have

ei,1 = z′iz1 + δu,i,1/2

ei,2 = z′iz2 + δu,i,2/2

...

ei,n = z′izn + δu,i,n/2,

and we see that sampling zi from its full conditional is equivalent to a (Bayesian) linear regression

problem. Modeling the z’s as a priori independent multivariate normal (0,Σz) variables, the full

conditional of zi is multivariate normal (µ,Σ) with

µ = 4ΣZ−iei,−i/σ
2
u

Σ = (Σ−1
z + 4Z−iZ

′
−i/σ

2
u)−1

where Z−i denotes the k × (n − 1) matrix obtained by removing the ith column of Z, and ei,−i

denotes the vector of residuals {ei,j : j 6= i}. Using an inverse-Wishart(Σz0, ν) prior, the full

conditional of Σz is inverse-Wishart(Σz0 + ZZ ′, ν + n). Alternatively, if we restrict Σz to be

σ2
zIk×k and use an inverse gamma(α0, α1) prior, then the full conditional is given by σ2

z |Z ∼ inverse

gamma(α0 + (nk)/2, α1 + trace(Z ′Z)/2).

5 Data Analysis: International Relations in Central Asia

We analyze data on international relations in central Asia as recorded by the Kansas Event

Data Project (http://www.ku.edu/∼keds/project.html) and described by Schrodt, Simpson,

and Gerner (2001). News stories are downloaded from the Reuters Business Briefing Service on

Afghanistan, Armenia, Azerbaijan, and the former Soviet Republics of Central Asia, and political

interactions between countries are recorded and categorized. We take our response yi,j to be the

total number of “positive” actions reportedly initiated by country i with target j from 1992 to 1999

(i.e. after the breakup of the Soviet Union), as recorded by the KEDS project. Positive actions

here include such events as approval, endorsement or praise of one government by another, military

assistance, formation of alliances, promises of financial or policy support and others (essentially all

events having Goldstein scale values greater than 2.5, except cease-fire or ceding of power. See the

KEDS project webpage for more details). We include in our population the 99 countries closest in

geographic distance to Afghanistan, plus the United States, giving a total of n = 100 countries for

analysis. We note that seventeen of the one-hundred countries had zero actions as either initiators

or targets of actions over the seven year period.
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5.1 Data Description

Some descriptive plots of the raw data are given in Figure 1. Panel (a) plots log(1 +
∑

j:j 6=i yi,j)

versus log(1+
∑

j:j 6=i yj,i) for each country i. The quantities
∑

j:j 6=i yi,j and
∑

j:j 6=i yj,i are typically

called the outdegree and indegree of unit i, respectively. Note the strong correlation, which suggests

a large value of σab/(σaσb) in the random effects model being considered. In panel (b) we plot the

log of each country’s outdegree plus one, log(1+
∑

j:j 6=i yi,j), versus log population, which suggests

a positive relationship between response and population (a plot of log-indegree versus population is

similar). In panel (c) we plot the response on a log scale versus the geographic distance in thousands

of miles between countries i and j. More precisely, this distance is the “minimum distance” between

two countries, and is zero if i and j share a border. On average, the number of events between two

countries decreases as geographic distance increases. This pattern is made more clear by separating

out the measurements involving the United States (which are circled).
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Figure 1: Relationships between (a) Outdegree and indegree; (b) Outdegree and population; (c)

Response and geographic distance. Responses involving the United States are circled.

5.2 Model and Priors

Note that the data are from an observational study, and that the data are not randomly sampled.

Rather, we have defined a population of units based on geographic distance and have measurements

on all pairs. For this analysis, we primarily interpret a probability model as a tool for describing

the variance in the dataset, and the regression coefficients as measures of the multiplicative, or

log-linear, components of the relationship between response and regressors.

We fit the random effects model (4) to the data using a Poisson distribution and the log-link,

so that each response yi,j is assumed to have come from a Poisson distribution with mean eθi,j , and
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that the y’s are conditionally independent given the θ’s. We decompose the variance in the θ’s as

follows:

θi,j = β0 + βdxi,j + βsxi + βrxj + εi,j

εi,j = ai + bj + γi,j + z′izj ,

where xi,j is the geographic distance between i and j and xi is the log population of i. For estimation

of variance components, we model the random effects as having the following multivariate normal

distributions: (ai, bi)
′ ∼ MVN(0,Σab), (γi,j, γj,i)

′ ∼ MVN(0,Σγ), zi ∼ MVN(0, σ2
zIk×k). Prior

distributions of the parameters are taken to be

• β ∼ multivariate normal(0, 100 × I4×4);

• Σab ∼ inverse Wishart(I2×2, 4);

• σ2
u, σ2

v ∼ i.i.d. inverse gamma(1, 1), σ2
γ = (σ2

u + σ2
v)/4, ρ = (σ2

u − σ2
v)/(σ

2
u + σ2

v).

Posterior calculations proceed as described in Section 4.

5.3 Selecting the Latent Dimension:

One issue in model fitting is the selection of the dimension k of the latent variables z. Selection of k

could depend on the goal of the analysis. For example, if the goal is descriptive, i.e. the desired end

result is a decomposition of the variance into interpretable components, then a choice of k = 1, 2

or 3 would allow for a simple graphical presentation of a multiplicative component of the variance.

Alternatively, one could examine model fit as a function of k based on the log-likelihood, or use a

cross-validation criterion if one is primarily concerned with predictive performance.

Considering likelihood-based measures of fit, the log-probability of the data given the values of

the parameters gets evaluated for each update of the θ’s, and so log p(Y |θ) =
∑

i6=j log p(yi,j|θi,j) can

be calculated with no extra effort. However, such a quantity is not appropriate for selecting between

models. As described in Section 4, the model is essentially unrestricted in the θ’s, giving a nearly

saturated fit which does not depend much on the choice of k or the regressors (provided the prior

for Σγ is sufficiently diffuse). A likelihood that is more appropriate is the marginal probability of

data within a pair, log p(Y |β, a, b, Z,Σγ ) =
∑

(i,j) log p(yi,j, yj,i|β, ai, bj , aj , bi, zi, zj ,Σγ), where the

sum is over unordered pairs. This is essentially the log-likelihood treating the a, b, and z’s as fixed

effects. Note that in general log p(yi,j, yj,i|β, ai, bj , aj , bi, zi, zj ,Σγ) is an integral over γi,j and γj,i

that needs to be approximated, except in the case of the normal model with the identity link.

In some situations the purpose of the model is to make predictions of unobserved data. For

example, suppose only a subset of the n(n − 1) responses were randomly chosen to be measured.

As long as we have some measurements for each unit, we can estimate the effects a, b and z for each

unit and make predictions for missing responses based on these estimates. Although prediction is
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k LLP(k) log p(y|β̂, â, b̂, Ẑ, Σ̂ε) AIC

0 -3558.78 -2432.54 -2638.54

1 -3351.76 -2316.56 -2622.56

2 -3078.79 -2214.68 -2620.68

3 -3076.73 -2123.49 -2629.49

4 -3077.30 -2038.05 -2644.05

Table 1: Selection of k

not the goal for these data, for illustrative purposes we compare the marginal probability criterion

discussed above to the following four-fold cross validation procedure:

1. Randomly split the set of ordered pairs {i, j : i 6= j} into four test sets A1, A2, A3, A4.

2. For k = 0, 1, 2, 3, 4 :

(a) For l = 1, 2, 3, 4 :

i. perform the MCMC algorithm using only {yi,j : {i, j} 6∈ Al}, but sample values of

θi,j for all ordered pairs.

ii. Based on the sampled values of θi,j compute the posterior mean θ̂i,j for {i, j} ∈ Al

and the log predictive probability lpp(Al) =
∑

{i,j}∈Al
log p(yi,j|θ̂i,j).

(b) Measure the predictive performance for k as LPP(k) =
∑4

l=1 lpp(Al).

3. Select k based on LPP(k).

For these data, the marginal likelihood and cross-validation criteria for selecting k are given

in Table 2. The cross validation procedure suggests that models having a dimension of k = 2, 3

or 4 have roughly the same predictive performance. In terms of the marginal likelihood criterion,

the biggest improvements in fit are in going from k = 0 to k = 1 and from k = 1 to k = 2. The

improvements in fit in going from 2 to 3 and from 3 to 4 dimensions are smaller. Using an AIC-like

criterion and penalizing the improvement in likelihood by the number of additional parameters (100

per additional dimension), we would choose k = 2. Based on these results (and our ability to plot

results in two-dimensions) we choose to present the results for the k = 2 model in more detail.

5.4 Results for k = 2

Two Markov chains of length 200,000 each were constructed using the algorithm described above.

The first chain used starting values of zero for all regression coefficients and country-specific in-

tercepts, the identity matrix for Σab and Σγ , a value of 0.1 for σ2
z , and components of Z sampled

independently from a normal (0, σ2
z ) distribution. The second chain used starting values obtained
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Figure 2: Marginal MCMC output for regression coefficients. Solid lines are from the Markov chain

with data-informed starting values, dashed lines from the chain with uninformed starting values.

βd βs βr σ2
a σ2

b σab σ2
γ ρ σ2

z

mean -0.18 1.00 0.94 6.46 6.37 6.4 1.23 0.95 1.99

sd 0.04 0.17 0.17 1.23 1.2 1.21 0.14 0.01 0.27

Table 2: Posterior means and standard deviations for k = 2

from the following procedure: Maximum likelihood estimates of βd, s and r were obtained by fit-

ting an ordinary generalized linear model using geographic distance as a regressor and sender and

receiver labels as factor variables. Estimates of β0, βs, βr, and Σab were obtained from the esti-

mates of s and r. The iteratively reweighted least-squares fitting procedure produces a matrix R of

working residuals, with the off diagonal elements undefined. An estimate Ẑ of Z was then obtained

by approximating R with a matrix product of the form Z ′Z. This can be done with an iterative

least-squares procedure, similar to the Gibbs sampling procedure outlined in Section 4.2: see ten

Berge and Kiers (1989) for more details on this problem. An estimate of Σγ is then obtained from

R − Ẑ ′Ẑ.

Samples of parameter values were saved from the Markov chains every 100 iterations, and are

plotted in Figures 2 and 3. Both chains appear to have achieved stationarity after about 50,000

iterations, and so we base our inference on the saved samples after this point. Posterior means and

standard deviations of the model parameters, based on the 3000 saved MCMC samples (1500 from

each chain), are given in Table 2. As in the raw data, we see a negative relation between response

and geographic distance (E[βd|y] = −0.18), and a positive relation between response and country

13



0 50000 100000 150000 200000

0
2

4
6

8
10

iteration

σ a2

0 50000 100000 150000 200000

0
2

4
6

8
10

iteration

σ b2

0 50000 100000 150000 200000

1.
0

1.
2

1.
4

1.
6

iteration

σ ε2

0 50000 100000 150000 200000

1.
0

1.
5

2.
0

2.
5

3.
0

iteration

σ z2
Figure 3: Marginal MCMC output for variance component parameters.

populations (E[βs|y] = 1.00, E[βr |y] = 0.94). We also estimate a strong positive correlation of

within-dyad responses as well as the within-country random effects a and b.

Next, we analyze the posterior distribution of the the k × n matrix of latent vectors Z. Note

that the probability model depends on Z only through the matrix of inner products Z ′Z, which is

invariant under rotations and reflections of Z. Therefore, log Pr(Y |Z, β,X) = log Pr(Y |Z ∗, β,X)

for any Z∗ which is equivalent to Z under the operations of rotation or reflection. Values of Z

sampled from the posterior distribution may seem at first to be highly variable, but perhaps are

nearly rotations of each other and are thus not highly variable in terms of the resulting inner

product matrices. To appropriately compare sample values of Z, we must first rotate them to

a common orientation. For these data this is done using a “Procrustean” transformation (Sibson

1978), in which for each sample Z we find the rotation Z ∗ of Z that has the smallest sum of squared

deviations from an arbitrary fixed reference matrix Z0. The rotated matrix Z∗ which minimizes the

sum of squares is given by Z∗ = Z0Z
′(ZZ ′

0Z0Z
′)−1/2Z. See Hoff et al. (2002) for further discussion.

The resulting mean of Z∗ is given in Figure 4. Marginal uncertainty in the z’s could be displayed

by plotting sample z∗’s over the plot of the means, using colors to distinguish between countries.

Generally, two countries will be modeled as having z’s in the same direction if they have large

responses to one another relative to their total number of actions and covariate values, and/or if

their responses involving other countries are similar (a model which can distinguish between these

two phenomena is proposed in the discussion). For example, Croatia and Slovenia are each recorded

as the initiator of an action with the other as a target, and each initiates an action with Serbia as

well. With the exception of one action from Slovenia to Italy, these are the only events recorded

for Croatia and Slovenia, and so these countries are “similar” in that they have actions involving
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Figure 4: Posterior mean of Z

each other and to Serbia, and only one other action involving another country. Bosnia-Herzegovina

and Denmark have no actions with Croatia or Slovenia, but like Croatia and Slovenia they each

have one action with Serbia and very few actions otherwise (each has one action with Azerbaijan,

and no other actions), and are thus located in a similar direction. Serbia, although active with

this group of countries (on the scale of their response rates), has actions with 10 other countries,

and is therefore placed more towards the center. Of course, the posterior variances of the z’s for

Croatia, Slovenia, Bosnia-Herzegovina, and Denmark are quite high, as our information about them

is coming primarily from the few nonzero responses among them.

Finally, we evaluate some aspects of model adequacy via goodness of fit statistics. This is

done by comparing the observed value of a statistic of interest T (Y ) to its posterior predictive

distribution p(T (Ypred)|Y ). Samples from the posterior predictive distribution are obtained by

simulating datasets using the parameters sampled by the Markov chain (see, for example Gelman,

Carlin, Stern and Rubin 1995 chapter 6).

In the present case we might be interested in any over or under dispersion of the data relative

to the Poisson model. We evaluate any such lack of fit by considering as test statistics the overall

sample variance of log(yi,j+1), as well as the sample variance of {log(yi,j+1) : j 6= i} for each i, that

is, the variance of responses from each sender, on a log scale. The posterior predictive distributions

of these quantities were estimated by sub-sampling 1000 values of (βd, s, r, Z,Σγ ) from the two
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Figure 5: Goodness of fit tests: (a) Posterior predictive distribution of population variance. (b)

Posterior predictive confidence regions for country-specific variance in action initiation.

Markov chains, generating a dataset from each sub-sampled set of parameter values, and then

computing the statistics from each generated dataset. The results are plotted in Figure 5. The first

panel gives a histogram of 1000 samples from the posterior predictive distribution of the overall

variance. The posterior predictive distribution is centered around the observed overall variance,

given by the vertical line, and no lack of fit is indicated by this statistic. The second panel of Figure

5 plots the observed sender-specific variances for each country versus a 95% posterior predictive

interval for that quantity. The confidence intervals contain the observed values for 97 of the 100

countries, and thus do not indicate much lack-of-fit. The Poisson model seems to fit the variance

in response reasonably well, at least in terms of these statistics.

6 Discussion

This article has presented an approach to modeling third order dependence patterns often seen

in dyadic datasets, such as social networks. The models are based on generalized linear mixed

effects models with the addition of a reduced-rank interaction term composed of inner products

of latent characteristic vectors. Such an approach allows for the analysis of dyadic data using

familiar regression tools, but also allows one to capture patterns such as transitivity, balance, and

clusterability which are often of interest to social science researchers. Other approaches to capturing

such dependence patterns have used metric distances (Hoff et al. 2002) and ultrametric distances

(Schweinberger and Snijders, 2003), although not in the presence of the covariance structure (2).

While such latent distance models may be easy to understand, the inner-product approach has

some conceptual appeal, as the term z ′izj can be viewed as a mean-zero random effect.
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Another dependence pattern often of interest to researchers is that of stochastic equivalence,

in which two units i and j are said to be stochastically equivalent if their responses have the

same probability distribution, i.e. p(yi,1, . . . , yi,n) = p(yj,1, . . . , yj,n). The model considered in this

paper, as well as the latent distance approaches mentioned above, potentially confound stochastic

equivalence patterns with those of clusterability and balance: two units will generally be estimated

to have similar latent characteristic vectors if they have strong relations to each other, or have

similar relations to others unit units. However, in some datasets there may be clusters of units that

relate similarly to others, but not strongly to each other. Nowicki and Snijders (2001) considered

a latent class model which identified clusters of such stochastically equivalent units, but did not

separately consider clustering based on strength of relations. A possible approach to modeling both

types of patterns is to extend the bilinear effect discussed in this paper to a more general asymmetric

bilinear effect such as z ′iRzj, where R is a k × k matrix. Estimation of similar types of effects has

been considered by by Gabriel (1998), and least squares representations of an asymmetric matrix

Y by Z ′RZ has been considered by ten Berge and Kiers (1989), Kiers (1989) and Trendafilov

(2002), among others. In the present application, the vector zi could be interpreted as giving

grades of membership for unit i to each of k classes, and Rlm as the response rate from class l to m.

Interestingly, the restriction of each zi to be unity at one component and zero at the others gives

a representation of the latent class model of Nowicki and Snijders (2000). Unrestricted estimation

of z′iRzj , in the presence of the error structure (2), is a topic of current research by the author.

The data analyzed in Section 5, along with R-functions for implementing the proposed methods,

are available at the author’s website www.stat.washington.edu/hoff.
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