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Abstract We discuss a statistical model of social network data derived from matrix
representations and symmetry considerations. The model can include known predic-
tor information in the form of a regression term, and can represent additional struc-
ture via sender-specific and receiver-specific latent factors. This approach allows for
the graphical description of a social network via the latent factors of the nodes, and
provides a framework for the prediction of missing links in network data.

Keywords Eigenvalue decomposition · Exchangeability · Prediction · Singular
value decomposition · Social network · Visualization

1 Introduction

Social network data are characterized by a set of binary link variables yi,j measured
on pairs of a set of n nodes, in which yi,j indicates the presence of a link from node
i to node j . Frequently accompanying such data are vectors of predictor variables
xi,j that may be specific to nodes or pairs. For example, in a set of n schoolchildren
yi,j = 1 could indicate that child i claims child j as a friend, and xi,j could contain
demographic information about the pair such as age, sex, SES and co-residence in
the same neighborhood.

Writing the network as an n × n matrix Y and the predictor information as an
n × n × p-dimensional array X, a common approach to the analysis of such data is
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to fit a statistical model relating Y to X. A statistical model can provide many forms
of inference, such as a description of the relationship between Y and X, a measure
of the uncertainty in this relationship via confidence intervals, and predictions about
missing or future network data. Perhaps the simplest model that relates Y to X is the
ordinary logistic regression model:

Pr(Y|β,X) =
∏

i �=j

exp{θi,j yi,j }
1 + exp{θi,j } (1)

log odds(yi,j = 1) = θi,j = β ′xi,j .

Equation (1) indicates that the observations {yi,j } are assumed to be statistically inde-
pendent. Inference for the regression coefficient β in this situation is fairly straight-
forward (see, for example, McCullagh and Nelder 1983), and is provided by most
statistical software packages. However, this assumption is strongly violated in most
social network datasets. In many networks there is heterogeneity in activity levels
across nodes. For example, in social settings some people are more active than others,
and on the web some pages are more heavily linked. This across-node heterogene-
ity leads to within-node homogeneity of ties: The relationships {yi,1, yi,2, . . . , yi,n}
will often be more similar to each other than they are to other network measurements
because they all share something in common: they all involve node i. This typically
is manifested statistically by a strong within-node dependence of ties, a violation of
the independence assumption in (1). Other manifestations of network dependence
include reciprocity and clustering. Reciprocity is the notion that yi,j and yj,i will
be statistically dependent. For example, friendship ties are generally positively corre-
lated. Clustering is the phenomenon in which a subset of nodes exhibit a large number
of within-group ties and relatively few ties outside of the group. This is related to the
notion of transitivity (“a friend of a friend is a friend”). See Wasserman and Faust
(1994) for more on common structures of network data.

One approach to statistical inference and modeling of such dependence patterns
has been the use of exponentially parameterized random graph models, or “p∗” mod-
els (Wasserman and Pattison 1996). In these models the probability of a network Y
is parameterized by a linear regression term plus a linear combination of network
statistics. For a single pair of nodes, the log-odds of a link from i to j can be written
as

log odds(yi,j = 1) = β ′xi,j + α1t1(Y−(i,j)) + · · · + αmtm(Y−(i,j)). (2)

The log-odds written above is the conditional log-odds, which indicates how the
probability of a link from i to j may depend on Y−(i,j), the data from other pairs
of nodes. The statistics t1(Y−(i,j)), . . . , tp(Y−(i,j)) are related to the sufficient sta-
tistics and are typically functions of such things as the total number of ties in the
network, the number of reciprocal ties and the number of transitive triangles. It is
often quite difficult to estimate the parameters β and α, and the resulting models of-
ten display considerable lack-of-fit (Snijders 2002; Handcock 2003). However, these
models are conceptually straightforward and the parameter estimates can provide a
representation of the global features of the network.
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An alternative approach to modeling dependencies among relational data is the
use of random effects models. Random effects models are a cornerstone of many
statistical methods for the analysis of dependent data, although their application to
the analysis of relational network data has been fairly recent. In the context of logistic
regression, such models take the form

Pr(Y|θi,j ) =
∏

i �=j

exp{θi,j yi,j }
1 + exp{θi,j } ,

θi,j = β ′xi,j + zi,j .

As in (1), the data are modeled as conditionally independent given the θi,j ’s, but
the θi,j ’s depend on the set of zi,j ’s, the unobserved random effects. The zi,j ’s are
then modeled to account for potential dependencies in the data. For example, we
might want to allow for heterogeneity in the total volume of sending and receiving
activity across nodes. This could be accomplished by a model of the form zi,j =
ai + bj . Although such an additive random effects model for the zi,j ’s generally
provides a drastic improvement in model fit over ordinary logistic regression, it is
unable to represent higher-order network structure, such transitivity or clustering of
nodes. Recently, some authors have taken a non-additive approach to modeling the
zi,j ’s. Nowicki and Snijders (2001) represent the probability of a link between nodes
i and j as depending on their membership to a set of unobserved latent classes. Hoff
et al. (2002) and Hoff (2005) model the probability of a link as depending on the
similarity of nodes i and j in a space of unobserved latent characteristics. These
types of models are able to represent standard network behavior such as clustering
and transitivity, and estimation for these types of models is generally less problematic
than estimation for models of the form (2).

In the remainder of this article we motivate a multiplicative latent factor effects
model for social network data. In this model, structure in the network is represented
by the form zi,j = u′

iDvj + εi,j , where ui and vj represent vectors of sender-specific
and receiver-specific latent nodal attributes. This is a more general form of the bilin-
ear mixed-effects model discussed in Hoff (2005), in that the characteristics of a node
as a sender may differ from its characteristics as a receiver. In the next section we mo-
tivate this type of model based on matrix representations and invariance properties.
In Sect. 3 we briefly discuss a method of parameter estimation using a Markov chain
Monte Carlo algorithm. Section 4 presents a data analysis of international conflict
data. Using this example, it is shown how the latent factor model can be used to graph-
ically represent patterns in the data and make predictions about missing network data.
Undirected network data is considered in Sect. 5, and a discussion follows in Sect. 6.

2 Latent variable models

Consider a model for binary network data of the form

log odds(yi,j = 1) = θi,j ,

θi,j = β ′xi,j + zi,j . (3)
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Here the regression term β ′xi,j represents patterns in the data related to known pre-
dictor variables xi,j and zi,j represents any additional patterns in the data unrelated to
those of the predictors. As discussed above, one simple model for social network data
is obtained by restricting zi,j = ai + bj , i.e. letting zi,j represent only additive row
effects and column effects. In this section we motivate a more general non-additive
row and column effects model based on matrix decomposition methods, and further
justify the model by an invariance assumption for the distribution of the zi,j ’s known
as exchangeability.

2.1 Models via matrix decompositions

Let Z be an n × n random matrix of effects representing deviations of the log-odds
θi,j from the linear predictor β ′xi,j . We can write Z = M+E, where the mean matrix
M represents systematic patterns in the effects and E represents noise. A basic result
from matrix theory is that every n × n matrix M has the representation

M = UDV′,

where

• U is an n × n matrix with orthonormal columns;
• V is an n × n matrix with orthonormal columns;
• D is an n × n diagonal matrix, with diagonal elements {d1, . . . , dn}.
The triple {U,D,V} is called the singular value decomposition of M. The squared
elements of the diagonal of D are the eigenvalues of M′M and the columns of V
are the corresponding eigenvectors. The matrix U can be obtained from the first n

eigenvectors of MM′. The number of non-zero elements of D is the rank of M.
In applications such as signal processing, image analysis and more recently large-

scale gene expression data, researchers often represent the main patterns of a noisy,
matrix-valued dataset with the first few singular vectors and values of the matrix. The
goal of such reduced-rank approximations is to represent the main patterns in the
data matrix while eliminating the lower-order noise. For model (3), this motivates the
reduced-rank representation Z = UDV′ + E where U,D and V all have K columns,
with K � n, thus restricting M to be of rank K . Letting ui and vj be the ith and j th
rows of U and V respectively, the entries of Z have the representation

zi,j = u′
iDvj + εi,j ,

which has an appealing interpretation as a multiplicative model based on row and
column factors. In this model the relationship between i and j is a product of a
vector of K latent sender-specific factors ui with latent receiver-specific factors vj ,
weighted by D. The model for binary network data thus becomes

log odds(yi,j = 1) = θi,j ,

θi,j = β ′xi,j + uiDv′
j + εi,j . (4)
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2.2 Models via exchangeability

The matrix Z discussed above represents structures in the data that are not associ-
ated with known covariate information X. The model (4) represents this structure as
a function of latent row-specific and column-specific factors, plus noise. Such a rep-
resentation has a justification and interpretation as a type of random effects model,
via a concept from probability theory known as exchangeability. An infinite sequence
of random variables z1, z2, . . . is said to be exchangeable if for every integer n, the
distribution of {z1, . . . , zn} is equal to that of {zπ1, . . . , zπn} for any permutation π of
{1, . . . , n}. Exchangeability is more general than independence: a sequence of inde-
pendent and identically distributed random variables is exchangeable, but not neces-
sarily vice versa. Exchangeable models are commonly used in statistics for sequences
of random variables which have something in common, but are indistinguishable in
that their labels carry no information. A remarkable theorem of de Finetti makes this
concept precise: Any sequence of exchangeable random variables has the representa-
tion zi = f (μ, εi), where μ and the εi ’s are independent random variables. Relating
to the above discussion, μ is the quantity shared by all members of the exchangeable
sequence and the εi ’s determines the patternless way in which they differ.

The concept of exchangeability extends to matrices. A matrix Z is said to be row-
and-column exchangeable (RCE) if the random variables {zi,j } are equal in distribu-
tion to the set {zπ1i,π2j } for all finite permutations π1 and π2. Exchangeability in this
case can be interpreted as saying that the row labels and the column labels carry no
information about Z. The analog of de Finetti’s theorem in this case is as follows:

Theorem 1 (Aldous 1981) If Z is an RCE matrix, then there exists a function f

and independent random variables μ, {u1, u2, . . .}, {v1, v2, . . .}, {εi,j , i = 1, . . . , j =
1, . . .} such that zi,j

d= f (μ,ui, vj , εi,j ).

(The “
d=” above means “equal in distribution”.) This theorem says that any statistical

model for an RCE matrix can be expressed in terms of a “grand mean” μ, row effects
{ui}, column effects {vj }, and independent disturbance terms {εi,j }.

Returning to our model for social network data, the effects {zi,j } are meant to
represent any patterns in the data beyond any known covariate information X. In this
sense, the zi,j ’s are unrelated to any node-specific information we may have, and
so it may be appropriate to model the zi,j ’s as being the components of an RCE
array. By virtue of Theorem 1, this justifies the use of a model of the form zi,j =
u′

iDvj + εi,j , i.e., modeling the effects {zi,j } as functions of row-specific, column-
specific and dyad-specific random effects.

A less restrictive form of matrix exchangeability is the concept of weak exchange-
ability, under which the random variables {zi,j } are equal in distribution to the set
{zπi,πj } for any simultaneous permutation π of both the row and the column labels.
Such a modeling assumption might be desirable if one wanted to relate the outcomes
involving node i as a sender {zi,1, zi,2, . . .} to the outcomes involving i as a receiver
{z1,i , z2,i , . . .}. In this case, it would be appropriate to develop a statistical model in
which the row effect ui of each node is correlated with its column effect vi , and to
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allow εi,j to be correlated with εj,i . Additive statistical models of this form for nor-
mally distributed data have been called “social relations models” (Warner et al. 1979;
Wong 1982), and have been extended to the analysis of binary social network data in
Hoff (2005).

3 Parameter estimation

The unknown quantities in our model include

• � = {θi,j }, the set of log-odds;
• β , the vector of regression coefficients;
• U and V, both n × K matrices with orthonormal columns, denoted U =

{U[,1], . . . ,U[,K]} and V = {V[,1], . . . ,V[,K]};
• D = diag{d1, . . . , dK}, an n × n diagonal matrix.

Estimation of the model parameters is most easily done in a Bayesian context: Given
a prior distribution on the model parameters, obtain their posterior distribution via
Bayes rule, p(�,β,U,D,V|Y) ∝ p(Y|�,β,U,D,V) × p(�,β,U,D,V). Various
posterior quantities of interest, such as posterior means, confidence intervals and pre-
dicted values are functions of this posterior distribution. Although these quantities
cannot be derived directly, they can be approximated via Markov chain Monte Carlo
sampling, a type of stochastic algorithm that generates a dependent sequence of real-
izations of the parameters. Such algorithms can be constructed so that the empirical
distribution of the generated parameters approximates the desired posterior distrib-
ution (see, for example, Tierney 1994). Given starting values ψ0 = {�,β,U,D,V}
one such MCMC scheme iteratively generates a sequence ψ1,ψ2, . . . as follows:

1. sample β from its full conditional distribution p(β|�,U,D,V);
2. for k ∈ 1 . . . ,K ,

(a) sample U[,k] from p(U[k]|�,U[,−k],D,V);
(b) sample V[,k] from p(V[k]|�,U,D,V[,−k]);
(c) sample D[k,k] from p(D[k,k]|�,U,D[−k,−k],V);

3. sample �∗ = Xβ + UDV′ + E∗, where E∗ is a matrix of standard normal noise.

Replace θi,j by θ∗
i,j with probability

p(yi,j |θ∗
i,j )

p(yi,j |θi,j )
∧ 1.

From a current state of the parameters ψs , one run of the above procedure gener-
ates a new set of parameters ψs+1. Run iteratively, the distribution of the generated
samples converges to the desired posterior distribution p(ψ |Y), and posterior quan-
tities of interest can be approximated from the empirical distribution of the generated
samples. For example, the posterior mean of β can be approximated by the empirical
mean of the MCMC samples, and the endpoints of a 95% confidence interval can
be obtained from the 2.5% and 97.5% sample quantiles. More details on the above
sampling scheme, and software to run such an algorithm, is available at my website:
www.stat.washington.edu/hoff.

http://www.stat.washington.edu/hoff
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4 Example: international conflict data

In this section we illustrate the use of model (4) with an analysis of a social network of
international conflicts among 130 nations from 1990–2000, compiled by Mike Ward
and Xun Cao of the University of Washington Political Science department. For these
data, yi,j = 1 if country i initiates one or more conflicts with country j sometime dur-
ing 1990–2000. Standard practice in the international relations literature is to relate
the entries yi,j of the sociomatrix Y to vectors of explanatory variables xi,j via lo-
gistic regressions of the form log odds(yi,j = 1|β,xi,j ) = β ′xi,j . For the analysis in
this section, xi,j is an eight-dimensional vector of regressor variables including an
intercept and the following seven predictors :

1. log population of the aggressor nation;
2. polity score of the aggressor (a measure of democracy);
3. log population of the target nation;
4. polity score of the target;
5. geographic distance between aggressor and target;
6. product of the aggressor polity score and the target polity score (an interaction

term);
7. number of intergovernmental organization having both nations as members.

More details on the data are available in Ward and Hoff (2005). Models such as these
are often used in the political science literature to evaluate various hypotheses about
the nature of international relations. For example, it is often hypothesized that rates
of conflict are lower among democratic countries, and among countries that are co-
members of intergovernmental organizations.

As discussed in Sect. 1, ordinary logistic regression models for such data are lim-
ited in their ability to describe patterns in the data and typically have poor predictive
performance. In the next two subsections we show how the multiplicative latent factor
model can represent higher-order network patterns, and how predictive performance
is drastically improved upon by the inclusion of these factors.

4.1 Data description and visualization

The dataset contains information on the presence or absence of conflicts among 130
nations, giving 130 × 129 = 16770 binary observations. The network is very sparse,
with only 1.2% of the pairs having links ( 1

n(n−1)

∑
i �=j yi,j = 0.012). We fit the model

log odds(yi,j = 1|β,xi,j ) = β ′xi,j + uiDv′
j + εi,j

to the data, with the dimension of the latent factors being K = 2. This was done
by constructing a Markov chain of length 100,000 using the algorithm described in
Sect. 3. For simplicity, we used independent diffuse normal(0,1000) prior distribu-
tions for the regression coefficients β and the diagonal elements of D. The priors
distributions on U and V were taken to be the uniform distributions on the space of
orthonormal n × 2 matrices.

Figure 1 displays posterior 2.5,50 and 97.5% quantiles of the regression coeffi-
cients of the seven predictor variables, providing a posterior estimate and a 95% confi-
dence interval for each. The results indicate strong relationships between conflict and
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Fig. 1 Regression coefficients. Large dots are posterior medians, small dots are the 2.5% and 97.5%
quantiles

Fig. 2 Aggressor and
target-specific latent variables.
Directions of aggressor-specific
latent variables are given on the
outer circle, directions of
target-specific latent variables
on the inner. Conflicts between
countries are given in green lines

geographic distance (with higher conflict rates between geographically proximate
nations), and between conflict and population (with higher conflict rates between
countries with large populations). Less strong are the relationships between conflict
and the other predictors, but the results indicate lower rates of conflicts among de-
mocratic countries and among countries that are co-members of intergovernmental
organizations

Posterior estimates of the multiplicative latent factors are shown in Fig. 2. These
were obtained from the first two left- and right-singular vectors of the posterior mean
of the matrix UDV′, yielding two two-dimensional vectors {ûi , v̂i} for each nation.
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The directions of these vectors are plotted in Fig. 2 for each country involved in a
conflict, with the direction of ûi indicated in red and v̂i in blue. The size of the text
for each country is related to the magnitude of their vectors. Finally, links between
countries are shown by green lines.

These latent factors indicate a large amount of structure in the data beyond that
which can be represented by a simple ordinary logistic regression with a small num-
ber of predictors. For example, conflicts in the Middle East and Persian Gulf show up
clearly as clusters of aggressors and targets at roughly 180 and 270 degrees from the
horizontal axis. Conflicts among African countries appear on the opposite side of the
circle. Note that very few links cross through the center of the circle. This indicates
that the pattern of conflicts can be well represented by these two-dimensional latent
factors.

4.2 Link prediction

When the number of nodes in a social network is large it may be difficult or impos-
sible to make measurements on each pair of nodes, resulting in a large number of
missing values in the dataset. In these situations it may be desirable to make predic-
tions about the unobserved, missing data based on the observed data. To evaluate the
ability of the multiplicative latent factor model to predict missing links, we performed
the following prediction experiment on the international conflict data:

1. Randomly divide the set of n × (n − 1) ordered pairs of indices (i, j) into two
parts, a training set T and a test set M .

2. Estimate the parameters of model (4) using the MCMC algorithm, using the data
YT = {yi,j : (i, j) ∈ T } and treating the data in M as missing.

3. Based on the results of the Markov chain, obtain fitted values p̂i,j =
E[ exp{θi,j }

1+exp{θi,j } |YT ] for each {yi,j : (i, j) ∈ M}
4. Compare p̂i,j to yi,j for each pair (i, j) ∈ M .

The above steps constitute one-half of a two-fold cross-validation procedure, a pro-
cedure often used to evaluate the predictive performance of statistical models. In
general, an m-fold cross validation procedure consists of dividing the dataset into m

parts, and making predictions for each part based on parameters estimated from the
remaining m−1 parts. Note that in cross-validation, increasing the model complexity
doesn’t always improve the model fit, as the predictive performance of the model is
evaluated by predictions for data that were not used to obtain parameter estimates.

Step 1 above divided the dataset into sets T and M , each containing data on 8385
pairs of countries. The number of missing links in the test set was

∑
(i,j)∈M yi,j =

103. Steps 2, 3 and 4 were performed for K = 0,1,2 and 3 to see how the predictive
performance changed as the complexity of the model was increased via the dimen-
sion of the latent factors. The results of this prediction study are shown in two plots
in Fig. 3. The first plot refers to the following scenario: Imagine that a dataset with
missing information is obtained. Let the set M consist of all pairs for which yi,j is
missing. The task is to identify pairs (i, j) ∈ M for which it is likely that yi,j = 1, i.e.
the task is to find the missing links. One strategy would be to fit a statistical model
with the available data YT , obtain predicted probabilities p̂i,j = Pr(yi,j = 1|YT ) for
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Fig. 3 Predicting links. The left panel indicates the number of missing links uncovered as a function of
the number of pairs checked. The right panel gives prediction error rates as a function of a prediction
threshold p

all node pairs {i, j} ∈ M , and then investigate the node pairs having the highest pre-
dictive probabilities of having a link. The first panel of Fig. 3 plots the results of
this exercise for models with K = 0,1,2 and 3-dimensional latent vectors. For each
value K being considered, predictive probabilities were made for each (i, j)-pair in
M based on the parameter estimates from YT . The first panel of Fig. 3 tells us how
many links we would find if we were to investigate the pairs having the highest pre-
dictive probabilities. For example, if we were to investigate the pairs in M having
the top 100 predictive probabilities using the K = 2 estimates, we would uncover 90
links, or almost 90% of the total number of missing links. In contrast, if we didn’t
use the latent effects model (K = 0) we would uncover only 49.

The second panel of Fig. 3 looks at the predictive performance in a different way.
Consider predicting yi,j for (i, j) ∈ M as ŷi,j = 0 or ŷi,j = 1 according to whether
or not p̂i,j < p or p̂i,j ≥ p for some threshold p. The plot displays the true positive
rates Pr(yi,j = 1|ŷi,j = 1) in solid lines, as well as the fraction of links that are re-
covered Pr(ŷi,j = 1|yi,j = 1) in dashed lines, for various prediction criteria p. For
example, if p = .25, a model with K = 2 yields a set of predicted links in which
91.5% are true links, and the set of predicted links will include 83.5% of the actual
missing links. In contrast, if we don’t use a latent effects model these numbers will
be Pr(yi,j = 1|ŷi,j = 1) = .711 and Pr(ŷi,j = 1|yi,j = 1) = .311 respectively. These
results show that a two-dimensional latent factor model has dramatically better pre-
dictive performance than a model lacking such structure, and that a three-dimensional
factor model is unnecessary, given that it has similar predictive performance to that
of a two-factor model.

We suggest the following general approach to link prediction in the presence of
missing data:

1. Let M = {(i, j) : yi,j is missing} and T = {(i, j) : yi,j is observed}.
2. Using data on pairs in T , use a cross validation procedure to obtain an optimal K

and the associated prediction and error rates.
3. Use parameters estimates from the optimal model to make predictive probabilities

p̂i,j for missing pairs (i, j) ∈ M .
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4. Make predictions or search for more links based on the p̂i,j ’s.

Cross-validation procedures obtain prediction and error rates under the assumption
that the data are missing at random. If inclusion in the set M is not random then the
estimated prediction and error rates may not be accurate. However, the results might
still provide some guidance as to which of the pairs in M are most likely to have a
link.

5 Extension to undirected data

A social network is called undirected if it consists of binary relationships between
nodes in which yi,j = yj,i by design. In this case, a model analogous to the one de-
veloped in Sect. 2 can be constructed using similar results on matrix decompositions
and exchangeability. For undirected data, we can write the model in (3) as

log odds(yi,j = yj,i = 1) = θi,j ,

θi,j = β ′xi,j + zi,j ,

where now the effects zi,j can be represented with a symmetric n × n matrix Z. We
write Z = M + E as before, with all matrices being symmetric. Analogous to the
singular value decomposition, every square, symmetric matrix M has an eigenvalue
decomposition of the form M = U	U′, where 	 is a diagonal matrix of real numbers
and U is an orthonormal matrix. This motivates a model of the form mi,j = u′

i	uj ,
giving

log odds(yi,j = yj,i = 1) = β ′xi,j + u′
i	uj + εi,j (5)

with εi,j = εj,i . The interpretation is that the relationship between i and j is a func-
tion of the observed predictor variables xi,j and unobserved latent factors ui and uj .
As in the case of directed network data, such a model has a justification via exchange-
ability: By assumption, all known information distinguishing the nodes is contained
in X, and so it is reasonable to model Z such that {zi,j } is equal in distribution to
{zπi,πj } for any permutation π . The symmetric matrix Z is thus weakly exchange-
able, and a theorem of Aldous (1985) says that any model for a symmetric, weakly
exchangeable Z can be written

zi,j
d= f (μ,ui, uj , εi,j )

for some function f which is symmetric in its second and third arguments.

6 Discussion

In the analysis of social network data it is often desirable to make inference about
local network structure. For example, it might be of interest to graphically describe
regions of the network, or to make predictions about the potential for the presence
of unobserved links between a set of nodes. This article has presented a model-based
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approach to making such inference. Motivated by ideas from matrix decomposition
theory and the theory of exchangeable matrices, the approach is based on a latent
variable model in which network structure is represented in terms of unobserved la-
tent node-specific factors. This approach allows for the graphical description of the
network in terms of the latent factors, and can make predictions about missing ob-
servations in social network data. Software and example analyses are available at my
website, www.stat.washington.edu/hoff.
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