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a b s t r a c t

Social network data often involve transitivity, homophily on observed attributes, community structure,
and heterogeneity of actor degrees. We propose a latent cluster random effects model to represent all
of these features, and we develop Bayesian inference for it. The model is applicable to both binary and
odel-based clustering
mall world network
cale-free network

non-binary network data. We illustrate the model using two real datasets: liking between monks and
coreaderships between Slovenian publications. We also apply it to two simulated network datasets with
very different network structure but the same highly skewed degree sequence generated from a preferen-
tial attachment process. One has transitivity and community structure while the other does not. Models
based solely on degree distributions, such as scale-free, preferential attachment and power-law models,
cannot distinguish between these very different situations, but the latent cluster random effects model

does.

. Introduction

Social network data consist of data about pairs of actors or nodes.
ften these data represent the presence, absence, or value of a rela-

ionship between pairs of actors, such as liking, respect, familial
elationship, shared membership in a group of individuals, or vol-
me of trade for collectivities such as countries or companies. In
his article we primarily consider binary social network data, rep-
esenting presence or absence of a relationship, and count data,
epresenting the number of times a relationship between a pair of
ctors was observed. The methods we develop can also be extended
o accommodate for other types of relational data.

Much social network data share a number of features. One of
hese is transitivity, for example the fact that if actor A relates to
ctor B and actor B relates to actor C, then actor A is more likely

o relate to actor C. Another is homophily on observed attributes,
ccording to which actors with similar characteristics are more
ikely to relate. A third feature is clustering, in which actors clus-
er into groups such that ties are more dense within groups than
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between them. It has also been referred to as community structure
(Newman, 2003). This can be due to social self-organization or to
homophily on unobserved attributes, such as interest in the same
sport, about which the analyst might not have information. A fourth
feature is degree heterogeneity, namely the tendency of some actors
to send and/or receive links more than others.

Hoff et al. (2002) proposed the latent space model for social
networks. This postulates an unobserved Euclidean social space in
which each actor has a position. The probability of a link between
pairs of actors depends on the distance between them in the
space and on their observed characteristics. Inference for the model
involves estimating both the characteristics of the latent positions
and the parameters of the model specifying how the probabil-
ity of a link depends on distance and observed attributes. This
accounts for transitivity automatically through the latent space
and is flexible enough to include the other common features of
social network data. This model was extended by Handcock et al.
(2007) — hereafter HRT — to include model-based clustering of the
latent space positions, giving a way to detect groups of actors, or
so-called community structure. Hoff (2005) added random sender
and receiver effects to model inhomogeneity of the actors, simi-
lar to those in the p2 model (van Duijn et al., 2004), and described
its generalized linear model formulation, applying it to non-binary
data.
No model so far proposed has modeled all the four common fea-
tures of social network data noted above: homophily, transitivity,
community structure and heterogeneity in actor degrees. In this
paper, we propose the latent cluster random effects model, which
explicitly models all four features by adding the random sender and

http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:pavel@stat.washington.edu
dx.doi.org/10.1016/j.socnet.2009.04.001
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eceiver or sociality effects as proposed by Hoff (2005) to HRT’s
atent position cluster model. We apply it to count data as well as
inary network data.

In Section 2, we introduce the latent cluster random effects
odel. In Section 3, we describe our Bayesian method for estimat-

ng it using Markov chain Monte Carlo, as well as heuristics for prior
nd starting value selection. In Section 4 we illustrate the model
sing two real network datasets, one binary and the other consist-

ng of counts. We also apply our method to two simulated networks
ith the same, highly skewed degree distribution, but very different
etwork behaviors: one unstructured and the other exhibiting tran-
itivity and clustering. Currently popular methods based on degree
istributions cannot distinguish between these situations, but our
odel does.

. The latent cluster random effects model for social
etworks

We first review the latent position cluster model of HRT, and
hen expand it to allow for actor-specific random effects. The data
e model consist of yi,j, the value of the relation from actor i

o actor j for each dyad consisting of two of the n actors. These
orm the elements of the n × n sociomatrix Y. There may also
e dyadic-level covariate information represented by p matrices
= {xk}p

k=1 ∈Rn×n×p. Both directed and undirected relations can be
nalyzed with our methods, although the models are slightly dif-
erent in the two cases.

The model posits that each actor i has an unobserved position,
i, in a d-dimensional Euclidean latent social space, as in Hoff et al.
2002) and HRT. We then assume that the tie values are stochasti-
ally independent given the distances between the actors’ positions.
pecifically, for binary data,

ogit (p(Yi,j = 1|Z, x, ˇ)) ≡ �i,j =
p∑

k=1

ˇkxk,i,j − ‖Zi − Zj‖, (1)

here logit (p) = log(p/(1 − p)) and ˇ denotes a vector of regression
arameters to be estimated. The model accounts for transitiv-

ty, homophily on the observed attributes x, as well potential
omophily on unobserved attributes via the latent space. As in HRT,
e allow for clustering in the Zi via a finite spherical multivariate
ormal mixture:

i
i.i.d.∼

G∑
g=1

�gMVNd(�g, �2
g Id) i = 1, . . . , n, (2)

here �g is the probability that an actor belongs to the gth group,

o that �g ≥ 0 (g = 1, . . . , G) and
∑G

g=1�g = 1, and Id is the d × d

dentity matrix. Thus the position of each actor is drawn from one
f G groups, where each group is centered on a different mean and
ispersed with a different variance.

To represent heterogeneity in the propensity for actors to form
ies not captured by the dyad-level covariates or actor positions, we
ntroduce actor-specific random effects. The nature of the effects
iffers for directed and undirected relationships. For an undirected
elationship, each actor i has a latent “sociality” denoted by ıi, rep-
esenting his or her propensity to form ties with other actors. The
ffect of these random effects on the propensity to form ties is
odeled as follows:

=
p∑

ˇ x − ‖Z − Z ‖ + ı + ı . (3)
i,j

k=1

k k,i,j i j i j

he sociality ıi is then the conditional log-odds ratio of an actor i
aving a tie with another actor compared to an actor with similar
osition and covariates but having ı = 0.
orks 31 (2009) 204–213 205

This model can also be used for directed relationships. In that
case we define both sender and receiver random effects, ıi and �i,
representing actor i’s propensity to send and receive links, respec-
tively. The model then becomes:

�i,j =
p∑

k=1

ˇkxk,i,j − ‖Zi − Zj‖ + ıi + �j, (4)

where

ıi
i.i.d.∼ N(0, �2

ı ) i = 1, . . . , n,

�i
i.i.d.∼ N(0, �2

� ) i = 1, . . . , n,

and the variances �2
ı

and �2
� measure heterogeneity in the propen-

sity to send and receive links. The use of random effects in the
latent space model was proposed by Hoff (2003), and van Duijn
et al. (2004) who made a similar proposal for the p2 model.

3. Estimation

3.1. Bayesian estimation and prior distributions

We propose a Bayesian approach to estimate the latent cluster
random effects model given by (1), (2), and either (3) or (4). The
approach estimates the latent positions, the clustering model and
the actor-specific effects simultaneously. We implement the meth-
ods computationally using a Markov chain Monte Carlo (MCMC)
algorithm.

We introduce the new variables Ki, equal to g if the ith actor
belongs to the gth group, as is standard in Bayesian estimation of
mixture models (Diebolt and Robert, 1994). We specify prior distri-
butions as follows:

ˇ∼MVNp(�, �),

�∼Dirichlet(	),

�2
ı
∼˛ı�2

0,ı
Inv
2

˛ı
,

�2
�∼˛� �2

0,� Inv
2
˛�

,

�2
g

i.i.d.∼ ˛Z�2
0,Z Inv
2

˛Z
g = 1, . . . , G,

�g
i.i.d.∼ MVNd(0, ω2Id), g = 1 . . . G,

where �, �, 	 = (	1, . . . , 	G), �2
0,Z , ˛Z , �2

0,ı
, ˛ı, �2

0,� , ˛� , and ω2 are
hyperparameters to be specified by the user.

We set 	g equal to the smallest group size we are willing to con-
sider for the network of interest, and � = 0 and � = 9I, which allows
a wide range of values of ˇ. The other hyperparameters are not so
clear-cut. Heuristically, networks with larger clusters call for greater
prior variances, and it is helpful to have slightly stronger priors for
larger clusters, but as a network gets larger, the role of the prior
variances in determining the posterior variances should decline.
The hyperparameter choices we use reflect these intuitions. This is
discussed in more detail by Krivitsky and Handcock (2008a), and
we use the hyperparameters �2

0,Z = (1/8) d/2
√

(n/G), ˛Z =
√

(n/G),

ω2 = (1/4) d/2√n, and 	g =
√

(n/G).

3.2. Markov chain Monte Carlo algorithm

Our MCMC algorithm iterates over the model parameters with
the priors given above, the latent positions Zi, the random effects

ıi and �i, and the group memberships Ki. We update variables
in turn, and block-update those we expect to be highly corre-
lated. For those variables for which a conjugate prior was specified,
full conditional updates are used. The others are updated using
Metropolis–Hastings. We describe these in turn.
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We first describe the full conditional updates. Let ellipsis (“· · · ”)
epresent those variables which the variable being sampled is
onditionally independent of, and thus do not figure in its full con-
itional distribution. The relevant priors being conjugate, the full
onditionals for those variables that can be Gibbs-sampled are as
ollows:

�2
ı
|ı, . . . ∼(˛ı�2

0,ı
+

n∑
i=1

ı2
i )Inv
2

˛ı+n,

�2
� |�, . . . ∼(˛� �2

0,� +
n∑

i=1

�2
i )Inv
2

˛� +n,

�g |Z, K, �2
g , . . .

ind∼ MVNd

(
ngZ̄g

ng+�2
g /ω2

,
�2

g

ng+�2
g /ω2

)
g = 1, . . . , G,

�2
g |Z, K, �g, . . .

ind∼ (˛Z�2
Z,0 + SSZg )Inv
2

˛Z +ng d g = 1, . . . , G,

�|K, . . . ∼Dirichlet(	1 + n1, . . . , 	G + nG),

Pr(Ki = g|�, Z, �g, �2
g , . . .) =

�gfMVNd(�g ,�2
g Id)(Zi)

G∑
k=1

�kfMVNd(�k,�2
k

Id)(Zi)

i = 1, . . . , n,

here SSZg =
∑n

i=11Ki=g(Zi − �g)T (Zi − �g), the sum of squared
eviations of the latent positions in cluster g from their cluster’s
ean, and ng =

∑n
i=11Ki=g , the number of actors assigned to cluster

during a particular iteration.
We now describe the Metropolis–Hastings updates. Two kinds

f Metropolis–Hastings proposals are used. First, actor-specific
arameters (latent space positions and random effects) are updated
ne actor at a time, in a random order. Second, covariate coefficients
re block-updated with the scale of latent space positions and a shift
n random effects.

An independent d-variate normal jump is proposed for each
ctor (in random order). For a particular actor i, the proposal

∗
i ∼MVNd(Zi, �2

Z Id)

s made. At the same time, an independent proposal is made for the
ender and receiver effects of that actor:

ı∗
i
∼N(ıi, �2

ı
),

�∗
i
∼N(�i, �2

� ).

he parameters Z∗
i
, ı∗

i
, and �∗

i
are then accepted or rejected as a

lock. The reason for this block-updating is that parameters per-
aining to a particular node are likely to have strong dependence:
or example, a jump that moves an actor away from others would
e associated with an increase in its random effect, to compensate.

This proposal is symmetric. Because each actor is assigned to
ne cluster at each MCMC iteration, the acceptance probability is

in

(
1,

fY |Zi,ıi ,�i ,...
(y|Z∗

i
, ı∗

i
, �∗

i
, . . .)fMVNd (�Ki

,�2
Ki

Id )(Z
∗
i
)fN(0,�2

ı
)(ı

∗
i
)fN(0,�2

� )(�
∗
i
)

fY |Zi,ıi ,�i ,...
(y|Zi, ıi, �i, . . .)fMVNd (�Ki

,�2
Ki

Id )(Zi)fN(0,�2
ı

)(ıi)fN(0,�2
� )(�i)

)
.

nce per MCMC iteration, a correlated proposal is used to jointly
pdate ˇ, Z, �, �, ı, and � . Jumps hˇ ∈Rp, hZ ∈R, hı ∈R, and h� ∈R
re generated from a correlated multivariate normal distribution:
hˇ

hZ

hı

h�

⎤
⎥⎦∼MVNp+1+1+1(0, �ˇ,Z,ı,� ),
orks 31 (2009) 204–213

and updates are proposed as follows:

ˇ∗ = ˇ + hˇ,

Z∗
i

= exp(hZ )Zi i = 1, . . . , n,

�∗
g = exp(hZ )�g g = 1, . . . , G,

�2∗
g = exp(2hZ )�2

g g = 1, . . . , G,

ı∗
i

= ıi + hı i = 1, . . . , n,

�∗
i

= �i + h� i = 1, . . . , n.

This proposal accommodates expected posterior dependencies. The
proposals to scale latent space positions, means, and variances are
not symmetric in the Metropolis sense, but can be viewed as sym-
metric proposals on the log of the magnitudes of these variables
expressed in polar coordinates. It can be shown that the acceptance
ratio should be multiplied by hnd

Z for latent space positions, hGd
Z for

latent cluster means, and h2G
Z for latent cluster variances.

The acceptance probability is thus

min

(
1,

f ∗
Priorf

∗
Y |ˇ,Z,ı,�,...

∏n
i=1f ∗

Actor i

fPriorfY |ˇ,Z,ı,�,...

∏n
i=1fActor i

h(n+G)d+2G
Z

)
,

with

f ∗
Prior = fMVNp(�, )(ˇ

∗)
G∏

g=1

(fMVNd(0,ω2Id)(�
∗
g)f˛Z �2

0,Z
Inv
2

˛Z
((�∗

g )2))

fPrior = fMVNp(�, )(ˇ)
G∏

g=1

(fMVNd(0,ω2Id)(�g)f˛Z �2
0,Z

Inv
2
˛Z

(�2
g )),

f ∗
Y |ˇ,Z,ı,�,... = fY |ˇ,Z,ı,�,...(y|ˇ∗, Z∗, ı∗, �∗, . . .)

fY |ˇ,Z,ı,�,... = fY |ˇ,Z,ı,�,...(y|ˇ, Z, ı, �, . . .),

and

f ∗
Actor i = fMVNd(�∗

Ki
,�2∗

Ki
Id)(Z

∗
i )fN(0,�2

ı
)(ı

∗
i )fN(0,�2

� )(�
∗
i )

fActor i = fMVNd(�Ki
,�2

Ki
Id)(Zi)fN(0,�2

ı
)(ıi)fN(0,�2

� )(�i).

3.3. Identifiability of parameters and initialization

The likelihood is a function of the latent positions only through
their distances, and so it is invariant to reflections, rotations and
translations of the latent positions. The likelihood is also invariant
to relabelling of the clusters, in the sense that permuting the cluster
labels does not change the likelihood (Stephens, 2000).

We use the approach of HRT to resolve these near non-
identifiabilities by post-processing the MCMC output. The approach
is to find a configuration of cluster labels and positions with implied
distribution close to the corresponding “true” distribution in terms
of Bayes risk. This is done by minimizing the Kullback–Leibler
divergence between the distribution of networks predicted by the
configuration of positions and the posterior predicted distribution
of networks. These are called Minimum Kullback–Leibler (MKL) posi-
tions (Shortreed et al., 2006). The post-processed actor positions are
denoted by ZMKL.

A further source of non-identifiability is that adding a constant
to all of the actors’ sender, receiver, or sociality effects and sub-
tracting it from ˇ0 (where the corresponding covariate matrix x0
is a matrix of ones, controlling the overall density of the network)
also preserves the likelihood. While the prior distributions resolve

this non-identifiability, we found that it resulted in slow mixing in
our MCMC sampling, and addressed it using the correlated proposal
described above.

For visualization purposes, posterior cluster means and vari-
ances corresponding to chosen positions are also needed. We use
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Table 1
Characteristics of example networks.

Sampson’s Monks Unclustered simulated network Clustered simulated network Slovenian publications

Directed Yes No No No
D
A
D
(

t
G
�

a
I
2

t

(

(

(

(

l
D
i

4

i
u
c
a

ata Binary Binary
ctors 18 150
ensity/mean 0.29 0.022

non-0 edges) (88) (244)

he full conditionals for �g , �2
g , �, and K given in Section 3.2 to

ibbs-sample �, �2, �, K |ZMKL, and we use the posterior means of
|ZMKL and �2|ZMKL as point estimates to go with ZMKL.

The proposal distribution variance parameters, �Z , �� , �ı, �ˇ,Z,ı,� ,
re set by the user to achieve good performance of the algorithm.
n practice, adaptive sampling is used (Krivitsky and Handcock,
008a).

To speed convergence, we start the algorithm at an approxima-
ion to the posterior mode. Specifically:

1) Multidimensional scaling is performed on geodesic distances
between the graph vertices to get initial latent space positions
ZMDS (Breiger et al., 1975). These are then centered at the origin.

2) Model-based clustering is used to get a hard clustering KMDS
of ZMDS (Fraley and Raftery, 2002). To improve robustness, the
first time through, locations with Mahalanobis distances from
the origin greater than 20 are excluded. This threshold value
was found experimentally to exclude small graph components
and isolates but still provide a good margin of safety for vertices
containing useful information about structure. For the excluded
points, KMDS is arbitrarily assigned to the largest cluster.

3) Numerical optimization is used to find the posterior mode con-
ditional on KMDS.

4) Steps 2 and 3 are repeated to convergence.

We implemented the algorithms in the open-source package,
atentnet (Krivitsky and Handcock, 2008b) written for R (R
evelopment Core Team, 2008). It was used to analyze the examples

n this paper.

. Examples
We consider four datasets, summarized in Table 1. The first, lik-
ng among monks in a monastery, has previously been analyzed
sing latent position and latent position cluster models, and we
ompare the model fit to those previously obtained. The second
nd third datasets are simulated. Both have the same degree distri-

Fig. 1. Relationships among monks within a monastery and their affiliations as identi
Binary Count
150 124
0.022 85.74
(244) (5972)

bution, but one has both transitivity and clustering, while the other
has neither. The last dataset is a network of Slovenian newspapers,
magazines, and journals, with a count, for each pair of these publi-
cations, of Slovenians surveyed who reported reading both of them.
This allows us to apply this family of models to non-binary data, and
provides an example of a situation where heterogeneity of actors is
better modeled using fixed effects.

4.1. Example 1: Liking between monks

Our first example is the Sampson’s Monks dataset: relations of
“liking” among 18 monks in a monastery (Sampson, 1969). The net-
work analyzed has a directed edge between two monks if the sender
monk ranked the receiver monk in the top three monks for positive
affection in any of the three interviews given over a twelve month
period. The sociogram of this dataset is shown in Fig. 1.

The measurement process for these data imposed constraints on
the monk-specific sender effects. In particular, the sender effects
are limited: Sampson asked each monk to name the three others
that he liked most, three times over the period of the study, so the
out-degree of each monk is bounded. The dataset pools these nom-
inations, so a tie between one monk and another exists if the first
monk nominated the second as one of his top three most liked at
least once. Thus, the number of out-ties a monk has is less a mea-
sure of the monk’s sociality and more a measure of how often the
monk changes his friends. On the other hand, the in-ties were not
constrained, so a monk’s receiver effect can be interpreted as the
popularity of the monk, to the extent that it is reflected by how
many others nominate him as a friend.

Sampson (1969) identified three main groups of monks: the
Young Turks (7 members), the Loyal Opposition (5 members) and
the Outcasts (3 members). The other three monks wavered between

the Loyal Opposition and the Young Turks, which he described as
being in intense conflict (Sampson, 1969, p. 370; White et al., 1976,
p. 752–753).

We fit two versions of our clustering model: a two-dimensional,
three-cluster, latent space model without random effects, and one

fied by Sampson: Young (T)urks, (L)oyal Opposition, (O)utcasts, and (W)averers.
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ig. 2. Minimum Kullback–Leibler estimates of positions in the social space of mo
onk-specific random effects; panel (b) adds receiver random effects. For the latter

he monk due to his receiver effect (also estimated using MKL), and the pie chart r
adii of the unfilled circles are equal to the cluster standard deviations, �g , conditio

ith receiver effects. In accordance with the heuristic described in
ection 3.1, the hyperparameter values used were 	1 = 	2 = 	3 ≈
.45, �2

0 = 0.75, ˛Z ≈ 2.54, �2
0,ı

= 1.0, ˛ı = 3, �2
0,� = 1.0, ˛� = 3,

nd ω2 = 4.5. The MCMC algorithm described was run, with 10,000
urn-in iterations that were discarded, and a further 40,000 iter-
tions, of which we kept every 10th value. Visual inspection of
race plots and more formal assessments of convergence (e.g. those
roposed by Raftery and Lewis (1996)), indicated that the sam-
ling converged and that the number of iterations we used was
ufficient.

The fits are summarized in Fig. 2. From the plots, the monks are
ell separated into the three groups and our model assigns each
onk to the same group that Sampson did: all monks of Loyal Oppo-

ition (and two of the Waverers) are reliably assigned to the “Red”
luster, all the Young Turks to the “Blue” cluster, and all the Out-
asts (and one Waverer) to the “Green” cluster. The Young Turks are
lso more tightly clustered than the Loyal Opposition. (The poste-
ior means of the variances for their clusters are, respectively, 0.716
nd 1.09 for the model without receiver effects and 0.716 and 0.968
or the model with receiver effects.)

An interesting contrast between models with and without
eceiver effects is Monk #1 (Ramauld, a Waverer). This monk is
elatively unpopular: he has out-ties to 4 of the 6 members of Loyal
pposition (as identified in Sampson’s original paper), but few in-

ies from anyone. In the model without receiver effects (Fig. 2a),
his monk is thus pushed to the edge of the Loyal Opposition group.

hen the receiver effects are added (Fig. 2b), this monk moves
oward the center of the Loyal Opposition group because of his out-
ies to them and has a low receiver effect to compensate. Thus, his
osition is more determined by his relations to other monks than
y his overall unpopularity, which is accounted for by the receiver
ffect.

.1.1. Performance of the estimators: a simulation study

We use the results from fitting the latent cluster receiver effects

odel to verify that the model and our implementation of it are
ble to recover the latent positions. Among the 18 monks, there are
nly 18 × 17 = 306 directed dyads — binary observations — and the
atent cluster receiver effects model of dimension 2 has 55 contin-
ithin a monastery. Panel (a) gives estimates from a latent cluster model without
rea of the pie chart is proportional to the conditional odds ratio of a nomination for
nts the proportions of the MCMC draws assigning each monk to each cluster. The
the MKL point estimates.

uous parameters in the likelihood, so in order to test whether the
model is able to recover latent space positions with any accuracy,
we must artificially increase the precision of the estimates. To do
this, we simulated 200 networks based on 200 draws of parameter
configurations from the posterior distribution of the latent clus-
ter random effects model, and, for every ordered pair of monks,
counted the number of simulated networks in which a tie on that
pair was observed. We then fit a latent cluster receiver effects model
with binomial response with 200 trials.

The results are summarized in Fig. 3. The latent space positions
from the fit based on the summed network are very close to those
from the original fit (average Euclidean distance between their MKL
estimates for each actor is 0.18) as are the receiver effects.

4.2. Example 2: A preferential attachment network with and
without transitivity and community structure

There has been a focus on scale-free, preferential attachment
and power-law models for networks, especially in the physics liter-
ature (Newman, 2003). It is common in these models to assume
that all networks with the same degree distribution are equally
likely. As a result, methods based on these models cannot distin-
guish between networks that have the same degree distribution
but whose network structure differs in other ways. The purpose of
this simulated example is to show that our methods can make these
distinctions.

We consider two networks with the same degree sequence gen-
erated via a preferential attachment process (Handcock and Jones,
2004). The first one does not exhibit either transitivity or commu-
nity structure while the second has both.

Each of our simulated networks has 150 actors and an undi-
rected relationship between them. They are sparse networks with
density 0.022. The first network was simulated from the pref-
erential attachment model of Handcock and Jones (2004) using

the methods of Handcock and Morris (2007). In this model the
degree sequences follow a Yule probability distribution, with � =
2.5, and the actors form ties independently given this sequence.
The network generating process exhibits power-law behavior with
scaling exponent 2.5. It is thus a scale-free network with a very
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ig. 3. Recovery of latent space positions and receiver effects from data simulated
anel (a) gives the change from the MKL estimates of latent space positions based o
imulated data (rotated and centered). Panel (b) shows an actor’s MKL receiver effe
imulated data.

ight-skewed degree distribution, and exhibits no transitivity or
lustering. The degree sequence is generated from the Yule dis-
ribution and the network generated using an exponential-family
andom graph model conditional on that degree sequence using
tatnet(Handcock et al., 2003b). The network is visualized in
ig. 4(a). Note how the high-degree actors act as “hubs” for the
ther actors.

The second network has the same degree distribution as the
rst but with latent positions drawn from the model (2) with G = 3
roups in d = 2 dimensions. The clusters are dispersed with �1 =
0, 0), �2 = (−1.5, 1.5), �3 = (1.5, 1.5). The intra-cluster standard
eviation in positions is �g = 0.2. The network is a random draw
rom the Latent Cluster Model conditional on the degree sequence
f the first network. This network also has a power-law degree dis-
ribution. Unlike the first network, it exhibits transitivity and has
lustered latent positions that lead to highly clustered pattern of
inks.

The two networks are shown in Fig. 4. They look very differ-
nt, but they have the same degree distribution, shown in Fig. 4(c).
ote the extreme right tail that is characteristic of scale-free distri-
utions.

We now report the results of fitting the Latent Cluster Random
ffects Model to these networks. In each case, we fit two models:
latent 3-cluster model with no random effects, and a latent 3-

luster model with random sociality effects, both of these with
-dimensional latent spaces (Zi ∈R2). We used the hyperparame-
ers �2

0,Z = 6.25, ω2 = 37.5, and 	1 = 	2 = 	3 = 7.07, based on the
euristic described in Section 3.1.

The fits of the two models (without and with random social-
ty effects) to the unstructured Yule network are shown in Fig. 5.
he estimated latent space positions vary very little for either
odel, with a possible exception of the few very high-degree nodes,

nd, more importantly, the estimated cluster distributions overlap
lmost completely. Thus, neither of the two latent space models

hat we fit finds much evidence of structure or distinct groups. And
n fact there are no groups in the data, so both models reach the
ight conclusion in this case.

The fits of the two models to the clustered network are shown in
ig. 6. Both models were able to detect the distinct groups that are
the posterior of the latent cluster random effects model fit to Sampson’s Monks.
original Sampson’s Monks dataset to the MKL latent space positions based on the
d on the Sampson’s Monks fit plotted against the MKL receiver effect based on the

present in the data—the “Red” cluster is mostly group 1, “Green” is
group 2, and “Blue” is group 3.

To evaluate the quality of the clustering, we use a pairwise met-
ric similar to the Fowlkes–Mallows Index (Fowlkes and Mallows,
1983): given that two nodes drawn at random are from the same
true cluster, what is the probability that the clustering algorithm
assigned them to the same cluster? When using hard clustering
(by assigning a node to the cluster to which the plurality of draws
from the posterior assign it) this probability is 80% for the model
with random sociality effects, and 78% for the model without. How-
ever, looking at the soft clustering, where the metric defined above
is averaged over the posterior distribution, the difference is more
pronounced: 73% for the model with sociality effects and 65% with-
out. Both models identified the clusters of actors in the data quite
well, but the random effects model did so more robustly.

Also of note is the difference in the patterns of estimated latent
positions. The model without random effects gives the “Green”
and “Blue” clusters a hub-and-spokes shape: a few high-degree
nodes in the middle, with many low-degree nodes in a ring around
them, attracted by their ties to the “hub” nodes, but repelled by
their lack of ties to each other. On the other hand, the model with
random sociality effects addresses this by giving the high-degree
nodes a high sociality effect, low degree nodes low sociality effects,
and allowing them to be positioned together, reflecting structure
adjusted for degree.

This example illustrates that networks with the same degree
distribution can have very different network behavior. Methods
based on degree distributions, such as those based on scale-free,
preferential attachment and power-law models (Newman, 2003),
cannot detect these differences. However, our model clearly dis-
tinguished between networks with and without transitivity and
clustering behavior.

4.3. Example 3: Slovenian newspaper and magazine

coreaderships

In 1999 and 2000, CATI Center Ljubljana conducted a sur-
vey, asking over 100,000 people which newspapers, magazines,
and other publications they read, producing a 2-mode, or affilia-
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Fig. 4. Two simulated networks, each with 150 actors and the same degree distribution shown in (c). (a) Yule network (with no transitivity or clustering); (b) Latent Cluster
network, where the labels 1–3 give the true cluster memberships.

Fig. 5. Minimum Kullback–Leibler locations from the models for the unclustered network in Fig. 4(a). In plot (b), the area of the plotting symbol is proportional to the
conditional odds ratio of a tie for its vertex, due to its random sociality effect. For the purposes of visualization, we limit the radii of the plotting symbols so that those vertices
with sociality effects of less than −1 are plotted with the symbol size corresponding to −1, and those with sociality effects of greater than +1 are plotted with the symbol size
corresponding to +1.
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ig. 6. Minimum Kullback–Leibler locations from the models for the clustered netw
roportional to the conditional odds ratio of a tie for its vertex, due to its random so
o that those vertices with sociality effects of less than −1 are plotted with the symb
ith the symbol size corresponding to +1. The numbers 1–3 give the original cluste

ion, network representing which readers read which publications.
hese data were then compiled into a 1-mode, undirected net-
ork of publications as follows: for a pair of publications, the
umber of respondents who read both was counted, producing
weighted network of “coreaderships”. The dataset also breaks

he publications down into 14 groups by type, topic, and audi-
nce: daily newspapers, weekly news and analysis, computers,
usiness, home improvement, fashion, subjects traditionally of

nterest to men, subjects traditionally of interest to women, spe-
ial interest (a catch-all category), women’s, TV guides, regional,
een, and free. For each publication, the total number of respon-
ents who reported reading it was also recorded. These data are
vailable as a Pajek dataset “Revije” or “Journals” (Batagelj and
rvar, 2006). This has previously been analyzed in de Nooy et al.

2005).
We analyze this network to illustrate the application of our

odel to non-binary data, as well as an example of a situation
here a fixed covariate effect can be used in conjunction with a

atent cluster model.
The coreadership for each pair of publications is a count of events

i.e. the respondent reporting that he or she reads that pair of pub-
ications) with a huge number of potential events (over 100,000).
hose events (respondents) are independent, so it would be rea-
onable to approximate the distribution of counts as Poisson. The
odel is as follows:

i,j|�i,j∼Poisson(�i,j) (5)

og(�i,j) = �i,j = ˇ0 − ‖Zi − Zj‖. (6)

ere, the latent position Zi of a publication i can be interpreted as
ts position in a space of publication appeals and interest groups,

ith clusters becoming those of target audience types.
Publication-specific random sociality effects (i.e. ıi and ıj in
i,j = ˇ0 − ‖Zi − Zj‖ + ıi + ıj) could represent the overall popularity
f the publication: a more popular publication would have more
oreaderships. However, the overall popularity of the publication
as observed directly: the number of readers of each publication
as tallied. Thus, rather than using random sociality effects, we use
Fig. 4(b). Note the differing plot scales. In plot (b), the area of the plotting symbol is
effect. For the purposes of visualization, we limit the radii of the plotting symbols
corresponding to −1, and those with sociality effects of greater than +1 are plotted

nments.

fixed readership effects:

�i,j = ˇ0 + ˇ1x1,i,j − ‖Zi − Zj‖,

where x1,i,j is a function of the number of publication readers. We
expect the number of coreaderships of a given pair of publications
to be approximately proportional to their readerships, so we use
x1,i,j = log(ri) + log(rj), where r is a vector of publication total reader
counts, and set the prior mean of ˇ1 (which we called �1) to 1 to
reflect this prior information.

This resembles somewhat the association model of Goodman
(1985) but the specification of the model is not the same. The idea
of scores for the categories that are estimated from the data is
also present in Goodman’s approach. However, this network cannot
be considered as a contingency table, because each respondent in
the original survey could name as many publications as he or she
wanted, incrementing multiple coreadership counts at once.

To explore the strength of homophily exhibited by the cate-
gories, we fit a non-latent-space quasi-independence model of the
following form:

�i,j = ˇ0 + ˇ1(log(ri) + log(rj)) +
14∑

k=1

ˇ1+k1ci=k∧cj=k,

where �i,j are defined as in (5) and ci and cj are defined as the cate-
gories of publications i and j, respectively. Under this model, if two
publications both belong to category k, their expected coreader-
ship is elevated by the multiple eˇk+1 compared to the coreadership
where they do not belong to the same category. Hence a positive
ˇk+1 indicates that publications in category k have disproportion-
ately high coreadership, and a negative ˇk+1 indicates that they
have a disproportionately low coreadership.

We show the maximum likelihood estimates in Table 2. The esti-

mated coefficient of log(ri) + log(rj) is very close to 1, confirming
our expectation that the coreaderships are approximately propor-
tional to the readerships of the publications involved. The signs and
magnitudes of the coefficients of the homophily terms can inform
our expectations of what categories will be successfully clustered.
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Table 2
Coreadership network: differential homophily on categories.

Term Coef. Estimate Std. Err.

Edges ˇ0 −11.480 0.014
log(readership) ˇ1 1.008 0.001

Both publications categorized. . .
Business ˇ2 +0.863 0.014
Computers ˇ3 +2.226 0.019
Fashion ˇ4 +3.325 0.053
Free ˇ5 +0.798 0.248
Home Improvement ˇ6 −0.072 0.043
Men’s Interest ˇ7 +1.310 0.031
Regional ˇ8 −2.331 0.107
Special Interest ˇ9 +0.559 0.022
Teen ˇ10 +1.554 0.022
TV Guides ˇ11 −0.281 0.013
Weekly News ˇ12 +0.152 0.011
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Table 4
Publications assigned to Cluster 2, ordered by firmness of assignment.

Title Category Topics

Slovene English

Ribič Fisherman Men’s Interest fishing
Lovec Hunter Men’s Interest hunting
Gasilec Firefighter Special Interest firefighting
Vzajemnost Reciprocity Special Interest health, retirement
Družina Family Weekly News Catholicism
Ognjišče Hearth Special Interest Catholicism
O konjih About Horses Special Interest horses, equestrianism
Moj mali svet My Little World Special Interest gardening, decoration
Slovenske bradze Slovene Furrow Special Interest agriculture
Kmetovalec Farmer Business agriculture

demonstrated. While this is a network of publications, the net-

T
C

C

B
C
F
F
H
M
R
S
T
T
W
W
W
D

H

Women’s ˇ13 +0.416 0.006
Women’s Interest ˇ14 +1.540 0.030
Daily News ˇ15 −0.696 0.008

Using a three-dimensional latent space allowed the model to
etect a fairly consistent clustering with up to 5 clusters, which
uccessfully separates those publication categories that had within-
ategory homophily, such that publications within that category
ad greater-than-expected coreader counts with each other. The
lustering also detected at least one reader demographic not iden-
ified by the categories. We found that a two-dimensional latent
pace could not adequately represent the structure in the data, and
roduced no clusters.

The most informative fit in three dimensions was obtained using
6-cluster model. One of the clusters did not have the plurality

f MCMC draws assign any publications to it, after dealing with
abel-switching as recommended by Stephens (2000), but including
t seemed to facilitate mixing, as fitting a model with 5 clusters
esulted in 4 non-empty clusters. The clustering is not very strong,
n the sense that for many of the publications, no single cluster has
clear majority of the posterior mass for a publication assigned to

t. However, it does detect some of the categories.
The cross-tabulation between clustering and known categories

s given in Table 3. All the publications in each of the categories
ith very high homophily coefficients in Table 2 (Computers and

ashion) were assigned to the same clusters, and the majority of
he posterior mass would put a pair of publications within one

f these categories into the same cluster. Men’s Interest and Teen
agazines also had high coefficients, and tended to be sorted into

he same clusters, though not as consistently. Computer magazines
nd Men’s Interest magazines consistently share a cluster, possibly

able 3
lustering versus categories.

ategory Homophily coefficient Cluster

1 2

usiness 0–1 2
omputers > 2
ashion > 2
ree 0–1 2 3
ome Improvement < 0 1
en’s Interest 1–2 2

egional < 0 5 2
pecial Interest 0–1 3 7
een 1–2 5
V Guides < 0 2 1
eekly News < 0 2 2
omen’s 0–1 3 2
omen’s Interest 1–2 3

aily News < 0 2 1

ere, we use the same measure of quality of clustering as in the previous example, broke
Kmečki glas Rural Voice Business agriculture

Note that only those publications assigned to Cluster 2 in the majority of posterior
draws, rather than plurality, are listed.

reflecting the demographics of computer professionals and hobby-
ists in Slovenia. On the other hand, Women’s Interest magazines
were not sorted into the same clusters to the same extent, despite
their high coefficient. Groups of publications with small or negative
homophily coefficients tended to be spread out across clusters.

Furthermore, 11 of 13 publications categorized as Business were
assigned to Cluster 4, with the remaining 2 assigned to Cluster 2, and
10 of 12 magazines categorized as Men’s Interests were assigned to
Cluster 5, with the remaining 2 also assigned to Cluster 2. Further
examination of these publications, using Google Search (2009) and
Google Translate (2009) services, showed the two Business maga-
zines, Kmečki glas (Rural Voice) and Kmetovalec (Farmer), to be about
agriculture, and the two “Men’s Interest” magazines, Ribič (Fish-
erman) and Lovec (Hunter) to be, respectively, about fishing and
hunting. These and other publications with the majority of their
posterior mass in Cluster 2 are listed in Table 4. They are ordered by
their posterior probability of being assigned to this cluster. These
publications include religious, gardening, and retiree magazines,
which suggests that this cluster may capture a rural, older, more
conservative demographic.

In this example actor degree effects are observed directly rather
than being inferred, and are modeled as fixed rather than random
effects, providing an example of combining covariate effects with
latent space network models, and usefulness of this class of mod-
els for detecting clusters in networks with weighted edges is also
work’s clusters appear to represent reader demographics more than
publication types: indeed the clustering algorithm appears to have
discovered a demographic which was not included in the categories
of the dataset. We also found that in this situation, the sampling

Quality metric

3 4 5 Hard Soft

11 74% 45%
8 100% 59%

4 100% 60%
2 2 4 22% 22%

3 62% 28%
10 72% 41%

1 47% 28%
2 8 3 26% 21%

100% 46%
1 1 28% 20%

2 28% 18%
2 35% 25%
5 43% 25%
1 1 28% 17%

n down by category in the dataset.
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lgorithm may effectively use one of the clusters to facilitate detect-
ng the others.

. Discussion

We have introduced an extension to the latent space model of
off et al. (2002) and the latent position clustering model of HRT

hat also models heterogeneity in actor sociality levels by includ-
ng random effects or with fixed covariates. We found this to give
atisfactory fits to two real network datasets, one with binary data
onsisting of the presence or absence of relationships, and one with
ount data. We also applied our method to two simulated networks
ith the same, highly skewed degree distribution, but very different
etwork behavior: one with transitivity and clustering and other
ithout. Currently popular methods based on the degree distribu-

ion only cannot distinguish between such very different kinds of
etworks, but our model is able to do so.

For directed data we have limited ourselves to modeling the two
andom effects of each individual as uncorrelated. Hoff (2005) and
an Duijn et al. (2004) modeled the sender and receiver effects for
he same individual as correlated, using a bivariate normal distri-
ution with a Wishart prior. This is a natural extension to the latent
luster random effects model.

One problem we have not addressed here is that of choosing
he number of groups and the latent space dimension. This can be
one by recasting the problem as one of statistical model selec-
ion and using Bayesian model selection to solve it. HRT did this
or choosing the number of groups in their latent position cluster

odel, Oh and Raftery (2001) did so for choosing the dimension
f the latent space for a related Bayesian multidimensional scal-
ng model, and Oh and Raftery (2007) did this for choosing both
he number of groups and the latent space dimension simulta-
eously in model-based clustering for dissimilarities. This work
ould be adapted and extended to the latent cluster random effects
odel.
We have used a Euclidean distance for our latent social space. In

he case of latent cluster models with spherical multivariate nor-
al clusters, using Euclidean distance to determine tie probabilities

as the advantage of consistency with the clustering process: the
robability of a particular node belonging to a particular cluster

s a function of Euclidean distances from the center of each clus-
er to that node. However, this is not the only possible measure
n which to base the model. In particular, Hoff et al. (2002) and
off (2005) used an inner product, which has certain advantages.
chweinberger and Snijders (2003) proposed using an ultrametric
istance.

While we provide a reasonable heuristic for our choice of hyper-
arameters, the heuristic itself is a result of experimentation, and it
ould be desirable to have a more principled way of choosing the
yperparameters. One possibility would be to fit a logit model with
ode-specific effects, and then use the variances of these effects to
btain an empirical-Bayes-type prior.
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