
SETTINGS IN SOCIAL NETWORKS:

A MEASUREMENT MODEL†

Michael Schweinberger††
Tom A.B. Snijders

A class of statistical models is proposed which aims to recover latent

settings structures in social networks. Settings may be regarded as

clusters of vertices. The measurement model builds on two assump-

tions. The observed network is assumed to be generated by hierar-

chically nested latent transitive structures, expressed by ultrametrics.

It is assumed that expected tie strength decreases with ultrametric

distance. The approach could be described as model-based clustering

with an ultrametric space as the underlying metric to capture the de-

pendence in the observations. Maximum likelihood methods as well

as Bayesian methods are applied for statistical inference. Both ap-

proaches are implemented using Markov chain Monte Carlo methods.

1. Introduction

Links between entities are commonly studied in terms of networks. Examples

are friendship ties between individuals, cooperation or competition between

organizations, wars between nations, links between websites etc. This article

focuses on social networks (Wasserman and Faust, 1994), where the entities

typically correspond to (corporate) actors, such as individuals or organiza-

tions.

Since the range of human interaction is restricted by time, money, geographi-

†This article is based on the first author’s Master’s Thesis (2002).
††Authors’ address: ICS/Statistics & Measurement Theory, Grote Rozenstraat 31, 9712

TG Groningen, the Netherlands.
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cal constraints etc., social networks typically contain some local social neigh-

borhoods, called settings by Pattison and Robins (2002). Settings may be

regarded as close-knit clusters corresponding to actors which are strongly

tied. Other terms commonly used in the literature are, e.g., groups, commu-

nities etc. The social science literature acknowledges that settings structures

in social networks can have remarkable influence on how well social, eco-

nomical, and political organizations can function. Classic and contemporary

sociology (see, e.g., Durkheim, 1984, Simmel, 1968, Tönnies, 1955, Homans,

1950) - as well as anthropology - deals nearly inevitably with settings, be it

only as an implicit restriction on social or economic action.

The sociological intuition about settings can be described by relatively small

and highly cohesive groups with little overlap. Furthermore, the interac-

tion within settings is expected to be stronger than the interaction between

settings. Some settings structures have the additional property that within

large settings smaller and even more cohesive settings can be distinguished,

meaning that settings structures can be hierarchically nested.

In the past, many attempts have been made to model settings. We are

doomed to be selective in citing work, since citing the whole body of work

on settings models would be beyond the scope of this paper (many basic

models are cited/sketched in Freeman, 1992, Wasserman and Faust, 1994).

Some examples are the Freeman/Winship model (Freeman, 1992) building

on Winship (1977), the Freeman/Granovetter model (Freeman, 1992) build-

ing on Granovetter (1973), LS sets (Seidman, 1983, Borgatti, Everett, and

Shirey, 1990), etc.

Some models succeed better than others in capturing the sociological intu-

ition about settings, but most of these models share one characteristic: they

regard observations as outcomes of deterministic forces. This frequently leads

to poor model fit and limits applicability, because often it appears to be

difficult to recover settings when settings are assumed to have arisen from

deterministic forces. Social network data typically exhibit - in addition to

some structural characteristics - some randomness, or structural character-
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istics which are not accounted for by the model. Hence stochastic models

appear to be more appropriate for modeling settings than deterministic mod-

els. Furthermore, deterministic models usually neglect model uncertainty by

doing as if there was a single true model, while typically there are many

models which can predict the observed network reasonably; in a probabilis-

tic framework - in particular in a Bayesian framework - model uncertainty

and model selection can be addressed. A probabilistic framework addition-

ally allows to study model parsimony, while deterministic models typically

fail to summarize the observations as much as possible without missing es-

sential information.

Some stochastic settings models have been proposed, such as the transitive

graph models by Frank (1978, 1980) and Frank and Harary (1982), but sta-

tistical inference for these models is very limited.

There have been recent advances in statistical network modeling, contained

in the models proposed by Pattison and Robins (2002), Hoff, Raftery, and

Handcock (2002), Snijders and Nowicki (1997), and Nowicki and Snijders

(2001). The Pattison and Robins (2002) models specify the dependence

graphs in the p∗ class of models in ways that incorporate substantive knowl-

edge about settings structures. Though these models are appealing, the

estimation procedures (pseudo maximum likelihood estimation) are suspect

(Snijders, 2002). The Hoff, Raftery, and Handcock (2002) models assume

that the actors can be represented in some latent space, which is assumed

to have a Euclidean or an arbitrary metric, and the probability to observe a

tie depends on the distance in this space. The block models by Snijders and

Nowicki (1997), Nowicki and Snijders (2001) do not intend to model settings,

but attempt instead to solve the related problem to model blocks containing

equivalent actors.

We propose in this paper a measurement model where the observed network is

assumed to reflect underlying latent settings structures, and the latent struc-

tures are specified such that the model captures the sociological intuition

about settings. The measurement model assumes that the latent settings are
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non-overlapping and cohesive, that the interaction within settings is stronger

than the interaction between settings, and that settings may be hierarchi-

cally nested. The observed network will in most cases not perfectly match

the latent settings structures, as expected by the model, since the complexity

of social reality implies that the model misses almost surely some structural

characteristics, and chance may additionally play a role in the evolution of

settings. This is expressed by the assumption that the observed network is

related to the latent settings structures by stochastic rather than determin-

istic processes.

The basic statistical framework is Bayesian (though maximum likelihood es-

timation is proposed as well), allowing to capture the uncertainty about the

settings structures. The model provides simple ways to deal with randomly

missing data, and can handle not only dichotomous data, but also discrete

ordered data as well as continuous data. The model, as implemented now,

can be applied to networks with hundreds of actors.

We introduce an ultrametric measurement model in Section 2. Statistical in-

ference is treated in Section 3 and 4. The model is applied to data in Section

6, and problems concerning the measurement model and its implementation,

as well as possible model extensions, are discussed in Section 7.

2. Measurement Model

We assume that one symmetric relation on some vertex set N = {1, 2, . . . , n}
has been observed. The network is represented as valued graph G(N,E) with

edge set E, where the edges eij ,

eij =

{
1 if the relation has been observed for (i, j) ∈ N

0 otherwise,

distinguish missing values from non-missing values. The values of the (ob-

served) edges between the vertices (i, j) are regarded as random variables Xij

with outcomes xij . The variables Xij may have dichotomous outcome spaces,

or discrete and ordered outcome spaces, or continuous outcome spaces. It
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is convenient to exclude self-loops by defining eii = 0. The outcomes xij

are usually stored in the below-diagonal half of an n × n adjacency matrix

x = (xij).

2.1. Latent Settings Structures

A simple model for settings structures is as follows. The observed graph

is assumed to have emerged from an unobserved, i.e. latent, graph with

adjacency matrix z = (zij) defined by

zij =

{
1 if there is an edge between i �= j,

0 otherwise.

We exclude self-loops by defining zii = 0 and assume that z is symmetric,

zij = zji. Two main characteristics of settings will be modeled.

Assumption 1 The latent graph exhibits a transitive structure, meaning

that

(zij = 1 and zjk = 1) implies zik = 1

for all i, j, k in N.

If zij = 1, then i and j are said to share the setting. Consider the relation

i ∼ j on N defined by {zij = 1 or i = j}. Since ∼ is reflexive, symmetric, and

transitive, ∼ is an equivalence relation. Thus the transitive graph partitions

N, meaning that each vertex is assigned to one setting and the settings do

not overlap.

Beginning with Rapoport (1953a,b), and continuing in the work of Davis,

Holland, and Leinhardt (see, e.g., Holland and Leinhardt, 1970, Davis, Hol-

land, and Leinhardt, 1971, Holland and Leinhardt, 1972, 1976, Davis, 1979,

Holland and Leinhardt, 1979), it has been claimed that transitivity is an

important structural characteristic of social groups. This claim, interpreted

in a non-deterministic way, has been confirmed by numerous studies, which

show that especially friendship networks exhibit strong tendencies towards

transitivity.
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Assumption 2 The latent transitive graph is partitioned such that the in-

teraction within settings is denser than between settings.

This claim has been made by Homans (1950, p. 84) in his classic work on

human groups, and underlies the definition of LS sets (Seidman, 1983, Bor-

gatti, Everett, and Shirey, 1990) in social network analysis.

While these two assumptions will not quite bring us into the position to

explain the entire social universe, they capture important structural charac-

teristics which have long been claimed to hold for human groups (see also

Freeman, 1992).

To model latent transitive structures in social networks, ultrametrics can

be used, as was first suggested by Freeman (1992), elaborating on Winship

(1977). Ultrametrics lead to multiple nested transitive structures, as will be

outlined below.

2.2. Ultrametrics

A metric in the set N is defined by a real valued distance function

d : N × N → [0,∞[ which satisfies the axioms

d(i, j) = 0 ⇔ i = j ∀ i, j ∈ N (reflexivity) (A1)

d(i, j) ≤ d(i, k) + d(j, k) ∀ i, j, k ∈ N (triangle inequality) (A2)

It can be proven (e.g., Hu, 1966) that if d : N2 → [0,∞[ is any metric in N,

then

d(i, j) = d(j, i) ∀ i, j ∈ N (symmetry) (A3)

d(i, j) ≥ 0 ∀ i, j ∈ N. (A4)

A metric is called an ultrametric iff in addition d : N2 → [0,∞[ satisfies the

ultrametric inequality

d(i, j) ≤ max [d(i, k), d(j, k)] ∀ i, j, k ∈ N. (A5)

The ultrametric inequality can be traced back to Hausdorff (1934). The ultra-

metric inequality constrains the distances more than the triangle inequality,
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since

max[d(i, k), d(j, k)] ≤ d(i, k) + d(j, k).

In the sequel, it is assumed that d is an ultrametric on N. It is convenient

to represent d by the below-diagonal half of a n × n distance matrix with

entries d(i, i) = 0 on the diagonal and entries d(i, j) > 0, j < i, below the

diagonal.

It can readily be proven that if d is an ultrametric on N and

d(i, j) = min [d(i, j), d(j, k), d(i, k)], then d(j, k) = d(i, k). Furthermore, it is

not a restriction to assume that the distances take integer values

h ∈ {0, 1, . . . , H}, since the ultrametric axioms are invariant under mono-
tonic transformations.

2.3. Relating Ultrametric Structures to Transitive Structures

Ultrametric structures imply transitive structures. This can be seen by defin-

ing settings as follows.

Definition A subset S ⊆ N can be defined as a setting if there exists a

positive number dS such that

{i ∈ S, d(i, j) ≤ dS} ⇔ j ∈ S.

Given level h of an ultrametric d, a transitive structure can be derived by

establishing

z
(h)
ij =

{
1 if d(i, j) ≤ h

0 otherwise.

✷

To each threshold value h ∈ {0, 1, . . . , H} corresponds a partition of N into

settings. This is the partition corresponding to the equivalence relation i ∼ j

on N defined by d(i, j) ≤ h. The fact that this indeed is an equivalence rela-

tion can be proven from the ultrametric inequality. In addition, it is trivial

to prove that that the partition at level h − 1 is finer than the partition at
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level h.

This has two implications. First, we made a transition from one latent tran-

sitive graph to H + 1 latent transitive graphs, corresponding to the levels

h ∈ {0, 1, . . . , H}. Second, the transitive graphs are hierarchically nested.
We illustrate this in Table 1 by an ultrametric d on N = {1, 2, 3, 4} with
levels h ∈ {0, 1, 2}. For the maximum distance 2, there is a single setting

Table 1: Ultrametric d on N = {1, 2, 3, 4} with levels {0, 1, 2} and

the corresponding transitive graphs

ultrametric d graph level 2 graph level 1 graph level 0

vertex 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 0 1 1 1

2 1 0 1 1 1 1 0 1

3 2 2 0 1 1 1 0 0 1 0 0 1

4 2 2 1 0 1 1 1 1 0 0 1 1 0 0 0 1

{1, 2, 3, 4}. Moving to level 1, we find two settings, {1, 2} and {3, 4}. We
observe that these settings do not overlap and are nested in the setting at

level 2. Decreasing the threshold value to 0, we obtain settings {1}, {2},
{3}, and {4}. We notice that the number of settings is non-decreasing when
moving from level 2 to level 0, and ranges from 1 to n = 4.

Settings as defined by ultrametric structures exist in an exact way in hi-

erarchical organizations, e.g., in political administration (address - housing

block - neighborhood - municipality - etc.) and in firms (working group -

department - branch). In an approximate way, such settings structures also

can be seen in many other social networks. Section 2.4 proposes how such

approximations could be modeled.

Ultrametric structures can be regarded as a mathematical expression of

Mazur (1971, p. 308)’s proposition that ”Friends are likely to agree, and

unlikely to disagree; close friends are very likely to agree, and very unlikely

to disagree”. Mazur (1971), Davis, Holland, and Leinhardt (1971), Holland
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and Leinhardt (1976) tested this proposition, and claimed empirical support

for it.

2.4. Probability Models

The measurement model defines how the probability distribution of the ob-

served adjacency matrix x depends on the unobserved, and hence latent,

ultrametric d. We assume that, given the distance d, the variables Xij for

i, j ∈ N, j < i, are independent identically distributed random variables

and the conditional distribution of Xij depends only on d(i, j). The outcome

spaces in applications will depend on how the relation on N has been mea-

sured, and can be dichotomous {0, 1}, discrete with ordered outcome space
{0, 1, 2, . . .}, or continuous. The relation between d and x is expressed as

E(Xij | d(i, j) = h) = θh.

The vector (θ1, . . . , θH)
′ is denoted by θ. The trivial level 0 of the ultrametric

is discarded.

For the three outcome spaces considered, the probability distributions con-

ditional on the distances d(i, j) are as follows:

• Bernoulli for dichotomous outcomes;

• Poisson for ordered discrete outcomes;

• normal with variance σ2 (independent of d(i, j)) for continuous out-

comes.

To model the sociological expectation that the interaction density within

settings is higher than between settings, we impose on θ the constraint

θ1 ≥ · · · ≥ θH . (1)

To illustrate, take level h of the ultrametric, and three distinct vertices

i, j, k ∈ N with

d(i, j) ≤ h and d(j, k) = d(i, k) > h.
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We observe that i and j share the same setting, given level h of the ultra-

metric, while k does not belong to this setting. Thus

E(Xij | d) ≥ E(Xjk | d) = E(Xik | d).

This expresses that interaction is denser within settings than between set-

tings. Though this expression is quite simple, it has an intuitive appeal, and

keeps the measurement model analytically tractable.

For dichotomous outcome spaces, this measurement model yields the proba-

bility function

P (x | d, θ) =
H∏

h=1

θsh
h (1− θh)

mh−sh, (2)

where Xij can take values 0, 1, the additional restriction

1 > θ1 ≥ · · · ≥ θH > 0,

with

mh =

n∑
i=2

i−1∑
j=1

I[d(i, j) = h] eij (3)

denoting the number of ordered pairs of vertices (i, j), j < i, with distance

h, and

sh = sh(x) =
n∑

i=2

i−1∑
j=1

I[d(i, j) = h] eij xij (4)

denoting the number of ordered pairs of vertices (i, j), j < i, with distance

h where Xij = xij was observed. Missing values, indicated by eij = 0, are

excluded from the calculation of mh and sh. The expression I[.] denotes

an indicator function, taking the value 1 when its argument is true, and

0 otherwise. For ordered discrete outcome spaces, the measurement model

yields the probability function

P (x | d, θ) =
H∏

h=1

ch exp [−mh θh] θ
sh
h (5)
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with Xij assuming nonnegative integer values, the additional restriction

θH > 0, mh and sh as defined above, and ch = ch(x) depending on the

observation x and level h but not on θ. For continuous outcome spaces, the

measurement model yields the probability density function

P (x | d, θ) = c
H∏

h=1

exp

[
−ah − 2shθh +mhθ

2
h

2σ2

]
(6)

where Xij can take any real values,

ah = ah(x) =
n∑

i=2

i−1∑
j=1

I[d(i, j) = h] eij x2
ij (7)

and c denoting a constant. Missing values are excluded from the calculation

of ah.

Ultrametrics have been used extensively in the social sciences to model prox-

imity data (Corter, 1996), but the ultrametric d was commonly regarded

as parameter in deterministic estimation procedures based on optimization

criteria, such as in De Soete (1986), which are stepwise maximizing pro-

cedures, easily trapped in local optima. Some references may be found in

Wedel and DeSarbo (1998). Statistical estimation of ultrametrics was rare

until recently, when Markov chain Monte Carlo (MCMC) (Gilks, Richardson,

and Spiegelhalter, 1996) started to find widespread application. Wedel and

DeSarbo (1998) proposed the EM-algorithm (Dempster, Laird, and Rubin,

1977) to estimate (constrained) ultrametrics, and in biology MCMC meth-

ods have been applied by Yang and Rannala (1997) to estimate (very small)

phylogenetic trees. Advanced MCMC methods for estimating phylogenetic

trees have been developped by Huelsenbeck and Ronquist (2001).1

We propose two distinct approaches to statistical inference, one Bayesian

approach and one maximum likelihood approach, implemented by MCMC

methods. These two approaches are treated in Section 3 and Section 4. The

1We must admit that we were not aware of this work when we elaborated and imple-

mented this model in 2002.
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proposed estimation techniques apply in analogous ways to the three proba-

bility models and can be discussed without referring to the probability model

in question.

3. Bayesian Approach

Bayesian statistics (see, e.g., Press, 1989) treats the entities d and θ as un-

observed random variables. Inference concerning d and θ is based on the

posterior distribution

P (d, θ | x) = P (x | d, θ) P (d, θ)
κ

where P (d, θ | x) is the posterior distribution, P (x | d, θ) denotes the like-
lihood function given here by Equation (2), Equation (5), or Equation (6),

P (d, θ) is the prior distribution, and κ = P (x) denotes a normalizing con-

stant, involving the sum over all states in the state space. Since the state

space is finite but very large, it is practically infeasible to calculate κ, and

we are left with

P (d, θ | x) ∝ P (x | d, θ) P (d, θ).

This implies that we can calculate the posterior distribution only up to a

multiplicative constant. This problem is solved by Markov chain Monte Carlo

(MCMC) methods (Gilks, Richardson, and Spiegelhalter, 1996), as described

in Section 3.3.

The prior distribution can be decomposed into

P (d, θ) = P (θ | d) P (d).

Since in most cases in advance we are completely uncertain about d, we

assume a uniform prior distribution for d. This gives

P (d) =

{
c if d is ultrametric,

0 otherwise,
(8)
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where the constant 1/c is the number of ultrametrics with values 0, 1, . . . , H .

A prior distribution P (θ | d) can be obtained by the uniform distribution on

the set

• Bernoulli:

{1 > θ1 ≥ · · · ≥ θH > 0} (9)

• Poisson:

{+∞ > θ1 ≥ . . . θH > 0} (10)

• normal:

{+∞ > θ1 ≥ . . . θH > −∞}. (11)

Prior (9) is proper, while the priors (10) and (11) are improper. The posterior

distributions are nonetheless proper if we demand, for the Poisson probabil-

ity model and the Gaussian probability model, that in (8) at least one dyad

must be placed at level 1. In other words, the prior is the uniform distribu-

tion on the class of ultrametric distances satisfying min{d(i, j) | i �= j} = 1.

For the Gaussian probability model, we additionally have to demand that at

least one vertex must be placed at level H . These restrictions are weak ones,

since the ultrametric axioms are invariant under monotonic transformations

anyway; of all dyads, one or more dyads must be closest, and one or more

dyads must be most distant.

When we summarize our knowledge about θ by uniform priors, then P (θ | d),
and hence P (d, θ), is constant. This implies that the posterior distribution

P (d, θ | x) ∝
{

P (x | d, θ) if d is ultrametric

0 otherwise
(12)

under the restriction θ1 ≥ · · · ≥ θH , is proportional to the likelihood function.

Taking the natural logarithm of the posterior distribution shows that the

nuisance parameter σ2 in the Gaussian model is a multiplicative constant;

this implies that σ2 needs not be estimated.
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3.1. Sampling d Conditional on θ

With the uniform prior for d, the conditional probability function of d given

θ and x is proportional to P (x | d, θ) on the space of all ultrametrics d as-

suming values in {0, 1, . . . , H}, but the proportionality constant is unknown.
As an algorithm that asymptotically generates random draws from this con-

ditional distribution, the Metropolis-Hastings algorithm (Metropolis, Rosen-

bluth, Rosenbluth, Teller, and Teller, 1953, Hastings, 1970) can be used.

The MH algorithm generates a sequence of ultrametrics, and the iterative

procedure for generating the next ultrametric is as follows. Some stochastic

mechanism is employed for proposing a new element in the sequence. We

denote the current ultrametric by d and the proposed ultrametric by d̃. The

iterative procedure either moves from d to d̃, or stays at d. According to

the Metropolis-Hastings algorithm, the probability that the algorithm moves

from state d to d̃ equals

α(d, d̃) = min

(
1,

P (x | d̃, θ) q(d | d̃)
P (x | d, θ) q(d̃ | d)

)
,

where q(d | d̃) and q(d̃ | d) denote the probability to move from d̃ to d and

from d to d̃, respectively, according to the proposal distribution. The pro-

posal distribution is presented in Appendix A.

To obtain the posterior distribution P (d, θ | x) as the limiting distribution
of this process, two regularity conditions must hold, irreducibility and ape-

riodicity. Irreducibility is proved in Appendix B. Aperiodicity is ensured by

irreducible Metropolis-Hastings kernels (Nummelin, 1984, Section 2.4).

The usual point estimate in Bayesian statistics, the posterior mean, is not

applicable to ultrametric distances, because the space of all ultrametric dis-

tances is not a linear space. To obtain Monte Carlo estimates of the dis-

tances d(i, j), we observe that neither the arithmetic means nor the medians

of the generated d(i, j) over the post-burn-in iterations necessarily defines

an ultrametric. In our experience, the matrix with the posterior medians

is often ultrametric, or nearly so, if the adjacency matrix shows a tendency
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to transitivity. Since the ultrametric axioms are invariant under monotonic

transformations, the posterior medians are a natural choice anyway. There-

fore, we use as Monte Carlo estimates of the distances the medians of the

generated d(i, j) over the post-burn-in iterations. One advantage is that do-

ing so may yield overlapping settings. Hence the posterior medians alleviate

the problem of assuming strict transitivity to some extent.

3.2. Sampling θ Conditional on d

For drawing θ = (θ1, . . . , θH)
′ from P (d, θ | x), note that the elements of

θ are strongly dependent because of the order restriction. They are drawn

successively from the posterior distribution. For each draw, since the cumula-

tive distribution function is not readily invertible, the Acceptance Rejection

method (Press, Flannery, Teukolsky, and Vetterling, 1986, Fishman, 1996) is

used. This method generates values for θ as follows from the posterior dis-

tribution. Beginning with θ1, from the uniform distribution on the interval

[θ2, K[ - whereK denotes the upper bound according to the prior distribution

- some candidate point θ∗1 is sampled and accepted with probability

g1(θ
∗
1) =

p(d, θ∗1, θ2, . . . , θH | x)
c

, (13)

where c is the supremum given by

c = sup
θ1

p(d, θ1, θ2, . . . , θH | x). (14)

This procedure is repeated until one candidate point is accepted. Thereafter,

some candidate θ∗2 is sampled from the uniform distribution on [θ3, θ1] and

accepted with probability g2(θ
∗
2). This procedure is applied in an analogous

manner to θ3, . . . , θH .

To obtain starting values for (θ1, . . . , θH)
′, the PAVA algorithm (Section 4.2)

is applied to the initial ultrametric.

A good Monte Carlo estimate of the posterior mean E(θh | x) is the average
of θh over the post-burn-in iterations. The standard deviation of the sampled

θ̂h can be regarded as an estimate of the posterior standard devation and may
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be considered to be an approximation of the standard error of estimation.

The matrix with the posterior means E(θd(i,j) | x) can be regarded as the
predictive posterior value of the edge between vertices i and j.

3.3. A Hybrid MCMC Algorithm

The approach used above to sample from the posterior distribution is a hy-

brid Markov Chain Monte Carlo approach. This stems from the fact that we

conditionally sample d, given x and θ, by using the Metropolis-Hastings al-

gorithm, and then we conditionally sample θ from the posterior distribution,

given x and d, using the Acceptance Rejection method. The corresponding

transition kernels give a cycle kernel which is itself a transition kernel. The

Markov chains defined by these transition kernels are irreducible and aperi-

odic, which was proved for the first kernel, and which is trivial to show for

the second one. Hence the kernel of the cycle is irreducible and aperiodic

as well (Tierney, 1994). According to Gamerman (1997, section 6.4.1), the

stationary distribution of the Markov chain defined by the cycle kernel is the

posterior distribution P (d, θ | x).

4. Maximum Likelihood Estimation

In the maximum likelihood framework, the entities d and θ are treated as

latent but fixed parameters. The profile likelihood can be maximized over

(d, θ) by the Simulated Annealing method.

4.1. Maximizing over d

The Simulated Annealing method (e.g., Press, Flannery, Teukolsky, and Vet-

terling, 1986, Pflug, 1996, Häggström, 2002) is well-suited to discrete op-

timization problems with complicated state spaces, as is the case with the

model introduced in Section 2. The Simulated Annealing method is based

on the work of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953)

and maximizes an objective function defined on a discrete state space. The
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state space is defined here as the set of all ultrametrics with values 0, 1, . . . , H .

This state space is finite but very large. It is intended to find the ultramet-

ric(s) d for which the profile likelihood

Lp(x | d) =


 max

θ
P (x | d, θ) if d is ultrametric

0 otherwise
(15)

is maximal, where the specific form of P (x | d, θ) is given by Equation (2),
Equation (5), or Equation (6), while the maximum over θ is taken, subject

to the constraint θ1 ≥ · · · ≥ θH .

The Simulated Annealing method exploits the fact that extrema are pre-

served under monotonic transformations. A Markov chain is constructed

with the so-called Boltzmann distribution with probability function

π(d) = κLp,T
Lp(x | d)

1

T

as unique stationary distribution, where T denotes the temperature, T −→ 0

as the estimation process approaches the stop criterion2, and κLp,T
denotes

the normalizing constant. The Boltzmann distribution can be simulated

by MCMC methods. The Metropolis algorithm (Metropolis, Rosenbluth,

Rosenbluth, Teller, and Teller, 1953) - the special case of the Metropolis-

Hastings algorithm which assumes that the probabilities q(d | d̃) and q(d̃ | d)
are equal - can be used, with the same proposal distribution as in Section

3.1. Using this proposal distribution implies that q(d | d̃) and q(d̃ | d) are
not necessarily equal, which means that the Metropolis-Hastings algorithm

is more appropriate; however, since we focus on the global mode of the likeli-

hood function rather than on the whole Boltzmann distribution, we can save

computation costs by using the (computationally less expensive) Metropolis

algorithm. For this algorithm, the normalizing constant κLp,T
- which is in

practice infeasible to calculate - cancels, since the acceptance probability is

the ratio of two Boltzmann distributions.

2The stop criterion is the number of iterations to be executed, and is determined

beforehand.
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The computational efficiency strongly depends on the annealing scheme,

which depends on how fast the temperature T is reduced. We discuss this

issue in Section 7 in more detail. The essential idea behind the annealing

scheme is that by sometimes taking proposed downhill steps the algorithm

is able to escape from local maxima.

The algorithm, when exploring the Boltzmann distribution, keeps track of

the up to now maximal value of the profile likelihood and the corresponding

d and θ.

4.2. Maximizing over θ

The profile likelihood is evaluated on each iteration. The maximum likelihood

estimate of θ under the order restriction θ1 ≥ · · · ≥ θH is needed to evaluate

the profile likelihood. Maximization over θ is easy in case there is no order

restriction and leads to θ̂h = sh(x)/mh, with mh and sh(x) defined as above

and computed on the basis of d̃ and x. However, when there is an order

restriction, then maximizing over θ is more complicated. The estimation of

θ under the order restriction θ1 ≥ · · · ≥ θH can be solved by using the Pool

Adjacent Violators Algorithm (PAVA) (Barlow, Bartholomew, Bremner, and

Brunk, 1972, Robertson, Wright, and Dykstra, 1988). This algorithm goes

back to Ayer, Brunk, Ewing, Reid, and Silverman (1955) and uses antitonic

regression to smooth the curve defined by θ1, . . . , θH . The algorithm starts

with the estimates θ̂h = sh(x)/mh. Each such estimate forms one so-called

solution block. Then the PAVA algorithm checks the order of the solution

blocks. If the order of the solution blocks is non-increasing, then the estimate

θ̂ is the maximum likelihood estimate of θ under the order restriction θ1 ≥
· · · ≥ θH , and the algorithm stops. Otherwise the PAVA algorithm starts at

the first solution block and proceeds down to the last solution block until

it encounters the first solution block which violates the order by θ̂h > θ̂h−1.

The estimates θ̂h−1, θ̂h are then pooled into one solution block by computing

θ̂h−1 = θ̂h =
sh−1 + sh

mh−1 +mh
.
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If the obtained order of the solution blocks is non-increasing, then the ob-

tained θ̂ is the final estimate and the algorithm halts. Otherwise the al-

gorithm continues to pool adjacent solution blocks until the order of the

solution blocks is no more violated.

The cited literature gives the proof that this algorithm maximizes the likeli-

hood as a function of θ under the restriction of a non-increasing ordering.

5. Implementation and Model Determination

In this section, Markov chain mixing, convergence, model checking, as well

as model selection are treated.

5.1. Mixing

It is important that the Markov chain constructed by the methods in Sections

3 and 4 mixes well. Heating the target distribution in the beginning can aid.

When simulating the Boltzmann distribution, the temperature should exceed

1 in the beginning. When simulating the posterior distribution, an analogoue

can be used by setting

α(d, d̃) = α(d, d̃) + u

where α(d, d̃) is the probability to move from d to d̃, and u = u(t) is a function

of the current iteration number t, equals 0.5 on iteration t = 0 and tends

to 0 as the end of the first half of the burn-in is approached. The rationale

behind this heating scheme is that support from the posterior distribution for

proposals is in the beginning less necessary than later. Heating the posterior

of d, given x and θ, can be considered as an analogue to starting with an

overdispersed distribution for the parameters of interest, which is advised by

Gelman and Rubin (1992).

5.2. Convergence

Convergence in the case of Simulated Annealing can be checked by running

multiple runs with starting points sampled from an overdispersed distribu-
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tion. In the Bayesian approach, it usually is assumed that the marginal

distribution of the Markov chain has converged to the posterior distribution

after a good number of initial burn-in iterations. A well-known method to

check convergence is to run multiple independent Markov chains with start-

ing points obtained from an overdispersed distribution (Gelman and Rubin,

1992). A simple way to obtain such startings points is to heat the target

distribution (see Section 5.1) and run the Markov chain some time. Given

multiple Markov chains, the so-called Estimated Potential Scale Reduction

(EPSR) (Gelman, 1996, Section 8.4) can be computed. This is, for a given

parameter of interest, the ratio of the between-chains variance to the within-

chains variance. Before the Markov chains converge to the stationary dis-

tribution, the between-chains variance is an overestimate of the posterior

standard deviation, while the within-chains variance is an underestimate of

the posterior standard deviation. When the Markov chains converged to

the stationary distribution, the two quantities should be approximately the

same. We compute the EPSR for each θh. The EPSR should be close to 1

for each θh. Times series of the θh can be used as an additional tool to detect

non-convergence.

5.3. Model Selection

The estimations will be carried out conditional on the number of ultrametric

levels H . Model selection with regard to H can be based on Bayes factors

(Kass and Raftery, 1995). To account for model uncertainty, we take one

baseline model MK with K ultrametric levels, where K is considered an

upper bound to the true number of levels, and compute Bayes factors

BKk =
P (x | MK)

P (x | Mk)
. (16)

The models Mk are models with k < K ultrametric levels, which are com-

pared to MK . The probabilities P (x | Mk) in Equation (16) can be approxi-
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mated by

P̂ (x | Mk) =

(
1

L

L∑
l=1

[
P (x | d(l), θ(l))

]−1

)−1

(17)

where L denotes the number of ultrametrics sampled from the posterior dis-

tribution (Newton and Raftery, 1994, Kass and Raftery, 1995). Then the

posterior probabilities of the models Mk can be calculated,

P (Mk | x) = BKk

S∑
s=1

BKs

(18)

where S is the number of models Mk compared to MK , and all prior odds

equal 1. Models with low posterior probabilities should be removed. The

remaining models can be regarded as plausible models.3

5.4. Model Checking

Since the Bayesian approach captures the uncertainty about d and θ, we focus

in this section on the Bayesian approach. To investigate the uncertainty

about d, the concept of entropy (Shannon, 1948) is suited par excellence.

The uncertainty about dyad (i, j), j < i, is expressed by

uij = uij(q
(1)
ij , . . . , q

(H)
ij ) = −

H∑
h=1

[
q
(h)
ij

2log q
(h)
ij

]
τ−1

where q
(h)
ij gives the relative frequency of {d(i, j) = h} among the ultrametrics

sampled from the posterior distribution, 2log is the logarithm to the base 2,

and τ = −2log 1/H is the normalizing constant (cf. Mathai and Rathie,

1975). The quantity uij takes values in the interval [0, 1]. The value 1

indicates maximum uncertainty, the value 0 indicates minimum uncertainty.

The uncertainty about the partition can be quantified by

−
(
n

2

)−1 n∑
i=2

i−1∑
j=1

uij,

3As Raftery (1995) and Kass and Raftery (1995) pointed out, model uncertainty is

neglected whenever one selects a single ’true’ model; it is more sensible to focus on a class

of reasonable models rather than on a single model.
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and vertices which contribute exceptionally much to this uncertainty can be

identified by

−1
n− 1

n∑
j=1, j �=i

uij.

We note that the entropies can in most cases, due to the restriction that d

is ultrametric, not attain the lower bound 0.

Alternative means to check the model are the matrix with the posterior

medians of the distances and the matrix with posterior means E(θd(i,j) | x).

6. Application

We analyze the data collected by Bernard, Killworth, and Sailer (1980).

Bernard, Killworth, and Sailer studied the interactions among 58 students

living in a fraternity at a West Virginia college for at least 3 months. The

intention was to study informant accuracy, which the research team did by

recording how many times any two students had conversation within five

days, and thereafter asking each student how much (s)he interacted with the

other students in the five days.

We apply the model to the recorded interaction frequencies. This relation is

symmetric. The network is given in Figure 1. Students are drawn as colored

points; the colors correspond to partitions obtained by the core-routine in

Pajek (Batagelj and Mrvar, 2003). The lines represent the number of conver-

sations between students; the number of dyadic conversations varies between

0 and 51. Thicker lines correspond to more conversations. For reasons of

clarity, a line is drawn only if the students had more than 2 conversations;

this resulted in a 60% reduction in lines.

Since the data can be considered as count data, the Poisson probability model

is the convenient choice. We begin by selecting the number of ultrametric lev-

els H . Using the Poisson probability model, we run multiple sequences with

k = 20 and with k = 10 ultrametric levels. Such high-dimensional spaces

can cause convergence problems, even in the Bayesian case. Though our con-

vergence checks gave no indication whatsoever to suspect non-convergence,
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Figure 1: Fraternity data: observed network
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convergence might still be doubted. Nevertheless we interpret the results,

since we will see below that models with less dimensions point into the same

direction. The posterior means E(θ(k) | x) for k ultrametric levels are shown
in Table 2. When comparing E(θ(20) | x) with E(θ(10) | x), it seems that the
levels 6 - 20 could be merged to 2 or 3 levels without losing essential infor-

mation. We therefore execute multiple sequences with k = 9, 8, 7, 6, 5, 4, 3, 2

ultrametric levels. Note that the model with H = 1 ultrametric level is triv-

ial. Comparing E(θ(k) | x) for k = 9, 8, 7, 6 ultrametric levels reveals that

in particular E(θ
(k)
1 | x) and E(θ

(k)
2 | x) point roughly into the same direc-

tion. Moving from M6 to M5, and subsequently to M4, changes the picture

slightly. But when moving from model M4 with k = 4 ultrametric levels to

the model M3 with k = 3 ultrametric levels, E(θ(k) | x) changes considerably.
The conditional probabilities − lnP (x | Mk) of the data conditional on the

models with k > 6 ultrametric levels appear to vary between 2,810 and 2,830,
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Table 2: Model selection: posterior means E(θ(k) | x)
model Mk M20 M10 M9 M8 M7 M6 M5 M4 M3 M2

E(θ1 | x) 24.22 24.34 24.22 24.31 24.22 23.82 23.80 22.18 13.93 6.54

E(θ2 | x) 7.31 7.78 7.31 7.67 7.31 6.23 6.21 5.50 3.48 1.15

E(θ3 | x) 3.52 4.42 3.52 4.27 3.53 2.52 2.37 1.68 .95

E(θ4 | x) 1.58 2.33 1.57 2.12 1.58 1.56 1.12 .49

E(θ5 | x) .74 1.47 .72 1.23 .74 .90 .30

E(θ6 | x) .28 .68 .22 .52 .22 .25

E(θ7 | x) .26 .21 .17 .17 .11

E(θ8 | x) .24 .16 .11 .09

E(θ9 | x) .22 .11 .06

E(θ10 | x) .20 .05

E(θ11 | x) .19

E(θ12 | x) .17

E(θ13 | x) .15

E(θ14 | x) .13

E(θ15 | x) .11

E(θ16 | x) .09

E(θ17 | x) .07

E(θ18 | x) .06

E(θ19 | x) .04

E(θ20 | x) .02

but even long runs do not agree about the exact values. Furthermore, the

probabilities − lnP (x | M7), . . . , − lnP (x | M10), − lnP (x | M20) must be

non-decreasing, but we encounter deviations. Part of the problem could be

that the estimator for − lnP (x | Mk) is unstable (Kass and Raftery, 1995).

We suspect additionally that the posterior distribution is not well behaved,

in the sense that for k > 6 ultrametric levels there is no single dominant

posterior mode. This was found by inspecting output from multiple (long)

runs for each possible number of ultrametric levels. We therefore seek an as

low-dimensional representation as possible, with as few ultrametric levels as

possible. According to the (natural) logarithmic scale in Kass and Raftery,

there is very strong evidence against the models with k ≤ 6 levels, as is

shown in Table 3. The model M6 with 6 levels has unit posterior probability

within this set, but the log Bayes factor (see the row 2 logB7k) indicates that

model M7 can predict the data considerably better than M6. On the basis of
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Table 3: Model selection: posterior modes P (d(k), θ(k) | x), posterior

probabilities P (Mk | x)

model Mk M6 M5 M4 M3 M2

− mod P (x | d, θ) 2,793.67 2,825.81 2,882.43 3,065.12 3,319.92

− log P̂ (x | Mk) 2,840.72 2,865.31 2,918.30 3,143.65 3,340.82

2 logB7k 37.02 86.20 192.18 642.88 1,037.22

P (Mk | x) 1.0000 .0000 .0000 .0000 .0000

this evidence, we decide that the models with less than 7 ultrametric levels

are clearly inappropriate.

We now focus on the model with k = 7 ultrametric levels to present infor-

mation on the settings structures, since this model seems to be reasonable

and is still estimable. Minus the logarithm of the posterior mode is 2,774.47,

and minus the mean of the log likelihoods equals 2,797.51. Minus the log-

arithm of the initial likelihood - obtained by ordinary hierarchical cluster

analysis (Johnson, 1967) - equals 4,394.87, demonstrating that the Bayesian

estimation procedure yields in this case much better results than the classi-

cal clustering heuristic. Table 4 compares the posterior mean of θ, given the

data, with the maximum likelihood estimate of θ. The posterior means are

quite close to the ML estimates. The ultrametric which corresponds to the

global maximum of the likelihood function is presented in Figure 2 by a Venn

diagram. This two-dimensional drawing can be interpreted as social topolog-

ical map: it shows a three-dimensional mountain drawn in two dimensions

with the levels being represented by colors; darker colors indicate higher lev-

els, with level 1 being the highest level, and level 7 being the lowest level.

The expected interaction frequencies which correspond to the levels are given

by the estimates θ̂1, . . . , θ̂7 in Table 4. The students are represented by the

integers 1 to 58. The settings can be derived as follows. Suppose the three-

dimensional mountain is cut horizontally at some level. The result would

be some mountain summits above the cut. Take any mountain summit and
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Table 4: MLE θ̂ and posterior mean E(θ(7) | x)

level h E(θh | x) posterior S.D. MLE θ̂h S.E.

level>1level>1 24.22 (1.44) 24.62 (1.38)

level>2level>2 7.31 (.33) 7.45 (.28)

level>3level>3 3.53 (.17) 3.52 (.13)

level>4level>4 1.58 (.06) 1.60 (.05)

level>5level>5 .74 (.05) .80 (.05)

level>6level>6 .22 (.04) .40 (.05)

level>7 .11 (.06) .16 (.03)

the students placed on it; the students on this mountain summit share the

setting. That is, the mountain summits correspond to settings, and there are

as many settings as mountain summits. Let us cut the mountain in Figure

2 at level 2. We obtain 8 settings, corresponding to the 8 subsets {3, 6, 7,
14, 15, 16, 17, 20, 27, 29, 30, 35, 54, 57}, {8, 31}, {4, 9}, {33, 53}, {11,
55, 56}, {19, 23, 41, 49}, {2, 13, 22}, and {5, 39, 45}. The expected num-
ber of conversations between students in the same setting at level 2 is 7.45

(according to Table 4). Now let us cut the mountain at level 1. We obtain

4 settings, corresponding to the 4 subsets {3, 6, 7, 20, 57}, {16, 17}, {29,
35}, and {5, 45}. The expected number of conversations between students
in the same setting at level 1 is 24.62. The expected number of conversations

between students in setting {3, 6, 7, 20, 57} and students in setting {16, 17}
is 7.45. This is much less than the expected number of conversations within

the settings at level 1, which is 24.62. Thus, there is much more interaction

within settings than between settings. The settings are, in addition, non-

overlapping and nested, as can readily be observed.

The matrix with the posterior medians of the distances (not shown) deviates

slightly from the ML ultrametric, and is, not surprisingly, not completely

ultrametric, but nearly so. While the posterior medians agree by and large
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with the ML ultrametric, they slightly disagree about the settings (accord-

ing to the ML ultrametric) {12, 50, 58} (level 3) and {18, 21, 32, 46} (level 4).
Students 50 and 46 are mainly responsible for the disagreement. Student 37

is moved to student 47 to share the setting with 47, given level 3. In addition,

the students 10, 26, 28, 43, 51 are moved one level upwards, to the contours

at level 5 and 6, implying that the setting {26, 52} (level 6) cancels and that
level 7 is redundant.

The uncertainty about the partition can be more explicitely measured by

the entropies. The mean entropy over all dyads equals .0590. Since in most

cases the entropy cannot - due to the ultrametric restrictions - attain the

lower bound 0, this low value is encouraging. The students whose position

in the ultrametric space is somewhat in question are the students 10, 46, 48,

50. This was already (partly) suggested by the deviations of the posterior

means from the ML distances.

7. Discussion

A class of statistical models was described which models settings in social net-

works by assuming that the observed network has been generated by latent

transitive structures, and the expected tie strength increases with decreasing

ultrametric distance.

This method is flexible in the sense that it can be applied to a variety of

data types (dichotomous, count, continuous) and that it easily accommo-

dates randomly missing data.

From applications to empirical data sets as well as (simple) artificial data

sets, it can be concluded that in particular the Bayesian approach performs

very well. When the observed network exhibits strong tendencies towards

transitivity, but some vertices are involved in more non-transitive triples

than could be expected on this basis, then the Bayesian analysis will identify

them. In such cases the Bayesian approach often hints that some settings

overlap. When the structure in the network shows no tendency towards tran-

sitivity, then the Bayesian model will communicate this very clearly.
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Figure 2: ML ultrametric for fraternity data
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We now sketch some shortcomings, and possible model extensions which ad-

dress these shortcomings. We begin by outlining two limitations concerning

the applicability.

One limitation concerns the fact that the Simulated Annealing algorithm

for ML estimation, applied to data sets with around 100 (or more) vertices,

shows in low-dimensional spaces (H < 4) sometimes, and in high-dimensional

spaces (H ≥ 4) most times, no convergence. The algorithm settles down

at local maxima. Running multiple sequences will yield multiple maxima,

and typically, none is the global maximum. The basic convergence problem
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stems from the combination of the annealing scheme, the proposal distri-

bution, and the multimodal shape of the log-likelihood as a function of the

ultrametric. According to certain statistical theorems (see, e.g., Geman and

Geman, 1984), the Simulated Annealing algorithm converges in probability

to the global maximizer when the annealing system meets certain regularity

conditions. Unfortunately, using such an annealing system is infeasible in

practice, since the number of iterations required is astronomically high, as

was also noticed by Häggström (2002). For this reason, the annealing system

must be built such that the algorithm converges within reasonable computa-

tion time, without meeting the regularity conditions. We have studied many

annealing schemes and implemented one which works reasonably over a wide

range of data sets. The temperature declines exponentially to zero. Even

with this scheme, however, the process, for n ≥ 100 or H ≥ 4, often does

not converge to the global optimum in practical amounts of computing time.

On the other hand, the log-likelihoods of local maxima produced by multi-

ple sequences are quite close together, suggesting that they are close to the

global maximum.

The second limitation is that ultrametrics assume symmetry. While this will

not affect the basic conclusions when edges tend to be reciprocated, which is

known to be the case in many social networks, and in particular in friendship

or collaboration networks, it may well affect the conclusions when reciprocity

is low. It might be possible, as a model for directed graphs, to develop an

ultrametric latent structure model that uses the dyads (Xij , Xji) as units

of analysis like in Nowicki and Snijders (2001). Other extensions are also

possible, e.g., with additional parameters for the degrees as in the p1 model

(Holland and Leinhardt, 1981) and for other structural effects and covariate

effects as in the p∗ model (Wasserman and Pattison, 1996).

Another interesting model extension is to model overlapping settings. That

can be done by assuming that the observed network was generated from two

or more ultrametrics, and assuming that the distribution of Xij depends on

the minimum ultrametric distance between i and j (Watts, Dodds, and New-
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man, 2002).

Concerning model selection, we proposed to estimate models conditional on

the number of ultrametric levels H , and base model selection with respect

to H on Bayesian information criteria. An elegant alternative is to esti-

mate the full Bayesian model with H being random, by employing a re-

versible jumb MCMC algorithm (Green, 1995), as proposed by Richardson

and Green (1997) for mixture models with unknown number of components.4

This involves taking Metropolis-Hastings steps between subspaces with vary-

ing numbers of levels H . Simulation output can then be used to select H .

Program This class of settings models is implemented in the program Ultras

version 1.2, which can be downloaded (incl. manual) free of charge from

http://stat.gamma.rug.nl/stocnet as part of the StOCNET program col-

lection (Boer, Huisman, Snijders, and Zeggelink, 2003). Ultras is rapid and

can handle missing data as well as huge data sets. The running time is in

general O(n2), but for most parts of the estimation process running time is

O(n) instead of O(n2). Giant networks (n ≥ 1, 000) can be analyzed with

the special version UltrasXL which reduces computation costs even more.

A. Proposal Distribution

Denote the current ultrametric on iteration t by d and the proposed ultra-

metric by d̃. Define m(i) = min
k
[d(i, k)] (k �= i) and

i ≺ j if m(i) = d(i, j) ∧ m(j) < d(i, j),

i � j if m(i) = d(i, j),

i ≈ j if m(i) = m(j) = d(i, j).

In Section 6 we interpreted ultrametric structures in terms of mountains on

which vertices are placed, like in Figure 2. Using this terminology, we can

4Kass and Raftery (1995) mention other possibilities to generate processes moving

through the model space, or through the parameter space and the model space simul-

tanously.
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illustrate the relations as follows. The entity m(i) gives the level at which

vertex i is placed on the mountain. The relation i ≺ j means that vertex i is

placed on the same mountain summit as vertex j, but that i is placed at a

lower level than j; relation i � j means that vertex i is placed on the same

mountain summit as vertex j, and that i is placed at a level which is not

higher than the level at which j is placed; relation i ≈ j means that vertices

i and j are placed on the same mountain summit at the same level.

The symbol p gives the probability of taking some action. The proposal gen-

erator is described in Table 5. It is used both in the Bayesian approach as

well as in the maximum likelihood approach. In the Bayesian case, however,

for the Poisson probability model and the Gaussian probability model, one

Boolean condition has to be added, which ensures that at least one dyad re-

mains at level 1. For the Bayesian case and the Gaussian probability model,

a second Boolean condition is necessary to ensure that at least one vertex is

placed at level H .

The proposal generator can be illustrated as follows. Two vertices are sam-

pled at random. Suppose the current ultrametric looks like the ultrametric in

Figure 2 which is displayed as mountain on a social topological map. Then

one of the two sampled vertices is moved one level downwards (steps 1.1 ,

1.2.1 , 2.1 , 3.2.1 , 3.2.2.1 ), or one of the two sampled vertices is moved one level

upwards (steps 2.2 , 3.2.2.2.1 ), or on the vertices’ current plateau a new plateau

is build on which the two vertices are placed (steps 1.2.2 , 1.3 , 3.2.2.2.2 ), or the

positions of the two vertices in the ultrametric space are interchanged (step

3.1 ). Only one of the possible steps is taken, and the resulting ultrametric

is stored in d̃.

The computation of the proposal distribution q(d̃ | d), given this proposal
generator, is straightforward, and involves only the basic rules of probability.

B. Proof of Irreducibility

This appendix uses the same notation as Appendix A. The proof below is

valid for both the Bayesian approach and the maximum likelihood approach,
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Table 5: Proposal Generator

Sample two vertices i �= j ∈ N at random; if j ≺ i, then interchange i and j.5

If i ≈ j, then transform d into d̃ as follows:

1.1 if d(i, j) = 1, then set d̃(i, k) = 2 ∀ k with k ≈ i, k �= i;

1.2 if 2 ≤ d(i, j) ≤ H − 1, then set

1.2.1 with p = .5 d̃(i, k) = d(i, k) + 1 ∀ k with i � k, k �= i;

1.2.2 with p = .5 d̃(i, j) = d(i, j)− 1;

1.3 if d(i, j) = H, then set d̃(i, j) = H − 1;

else if i ≺ j, then transform d into d̃ by setting

2.1 with p = .5 d̃(j, k) = d(j, k) + 1 ∀ k with j � k, k �= j;

2.2 with p = .5 d̃(i, k) = d(i, k)− 1 ∀ k with i ≺ k and d(j, k) < d(i, k);

else if not{i � j ∨ j � i}, then transform d into d̃ by setting

3.1 with p = .5 d̃(i, k) = d(j, k) ∀ k �= i, j and d̃(j, k) = d(i, k) ∀ k �= i, j;

3.2 with p = .5

3.2.1 with p = .5 d̃(i, k) = d(i, k) + 1 ∀ k with i � k, k �= i;

3.2.2 with p = .5

3.2.2.1 if m(i) = 1, then set d̃(i, k) = 2 ∀ k with k ≈ i, k �= i;

3.2.2.2 else check whether there exists some k such that i ≺ k;

3.2.2.2.1 if yes, then sample one such vertex k at random and

set d̃(i, l) = d(i, l)− 1 ∀ l with i ≺ l and d(k, l) < d(i, l);

3.2.2.2.2 if not, then sample one vertex k with k ≈ i, k �= i, and

set d̃(i, k) = d(i, k)− 1;

Set d̃(k, m) = d(k, m) ∀ k �= m ∈ N which are not updated yet.

This (possible) interchange is only needed for 2.1 and 2.2 .
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but in the maximum likelihood approach dmax denotes the ultrametric with

all entries equal to H , while in the Bayesian approach, for the Poisson prob-

ability model or the Gaussian model, dmax contains one entry equal to 1, and

the remaining entries are equal to H .

Proof of irreducibility of q(d̃ | d). Given any ultrametric d �= dmax on iteration

t, an ultrametric d̃ �= d might be proposed such that d̃(i, j) ≥ d(i, j) holds

for all i, j ∈ N. This is true since on any iteration t there exist two distinct

vertices i, j ∈ N such that d̃(i, k) = d(i, k) + 1 for all vertices k �= i with

i � k is proposed, whereby j may be interchanged with i. Since this is true

for any ultrametric d and any iteration t, there exists a positive probability

that the algorithm arrives within finitely many iterations at dmax. We no-

tice that there exists a positive probability that the two vertices (i, j), which

were sampled on iteration t, are sampled on iteration t + 1 again. Denote

the ultrametric on iteration t+1 by b. We observe that the probability that

on iteration t+1 an ultrametric d̃ with d̃(i, k) = b(i, k)− 1 for all k to which

d̃(i, k) = d(i, k) + 1 was applied on iteration t, is proposed, with d as the

result, is positive. Since this is true for any ultrametric d and any iteration t,

any step the algorithm has taken on the way from d to dmax is invertible. This

implies that there exists a positive probability that the algorithm goes back

from dmax to d within finitely many iterations. Hence there exists a positive

probability that the algorithm moves from an arbitrary ultrametric d to the

ultrametric dmax and back again within finitely many iterations. Since d is

arbitrarily chosen, this implies that there is a probabilistic path from any

ultrametric to any other ultrametric via the ultrametric dmax.✷

Irreducibility of q(d̃ | d) is necessary but not sufficient, since the (ir)reducibility
of the Metropolis-Hastings kernel depends on both q(d̃ | d) and P (x | d̃, θ).
For the Metropolis-Hastings kernel to be irreducible,

P (x | d̃, θ) > 0

must hold for all possible proposals d̃. This can readily be verified by observ-

ing that d enters P (x | d̃, θ) through θ, and that θ, restricted as in Section

2.4, necessarily leads to positive values of P (x | d̃, θ) for all d̃.
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