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The literature devoted to the construction of stochastic blockmodels is relatively rare 

compared to that of the deterministic variety. In this paper, a general definition of a stochastic 

blockmodel is given and a number of techniques for building such blockmodels are presented. In 

the statistical approach, the likelihood ratio statistic provides a natural index to evaluate the fit 

of the model to the data. The model itself consists of a set of actors partitioned into positions 

with respect to a definition of equivalence, and a representation based on estimated probabili- 

ties. The specific statistical model that is used to illustrate the techniques is p,, which was first 

introduced as a method for stochastic blockmodeling by Fienberg and Wasserman (19811, and 

developed by Holland et al. (1983) and Wasserman and Anderson (1987). 

1. Introduction 

Blockmodels are used to analyze and describe the structure of a group 
and the positions of individual actors in a group. These tasks, which 
are standard components of a positional analysis, are achieved through 
the simplified representations of the patterns in complex social net- 
works that are produced by blockmodels. A blockmodel consists of a 
mapping of approximately equivalent actors into blocks or positions 
and a statement regarding the relations between the positions. The 
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data studied by a relational analysis consist of R relational variables 
measured on g actors where 

xijr = c if actor i relates to actor j at level c on variable r, i #j 

0 otherwise. 

These variables are collected into R sets of (g x g) matrices, X,, 

X2,..., X,, referred to as sociomatrices. 
The standard approach to blockmodeling seeks to simultaneously 

permute the rows and columns of sociomatrices to reveal patterns 
with respect to the entries. Partitions of the g actors into I3 positions 
are sought such that actors who are “approximately equivalent” (i.e., 
actors who exhibit the same patterns of entries in the corresponding 
rows and columns of the sociomatrices) are assigned to the same 
position. This approach is deterministic and relies on algorithms to 
find optimal partitions of actors (e.g. White et al. 1976; Boorman and 
White 1976; Heil and White 1976; and many others). The literature 
abounds with papers describing this deterministic approach to the 
construction of blockmodels. 

Relative to the standard approach, statistical blockmodels are less 
well known tools for performing positional analyses. As opposed to 
deterministic blockmodels, statistical or stochastic ones have the addi- 
tional advantages of an explicit theoretical model for the relations 
between actors, a proposed stochastic mechanism, and a natural 
means of testing the goodness-of-fit of the model to the data. The 
main purpose of this paper is to illustrate a general approach to 
building and evaluating blockmodels based on statistical models and 
theory. The technique will be presented using a specific family of 
models designed to analyze social network data. Following the work of 
Holland et al. (1983) and Wasserman and Anderson (19871, we 
employ the specific network model p1 (Holland and Leinhardt 1981; 
Fienberg and Wasserman 1981). Various techniques for finding parti- 
tions of actors based on the relational data will be described. 

In Section 2, additional notation is introduced and a general 
definition of a stochastic blockmodel is given. To construct a stochas- 
tic blockmodel for an observed network, a particular probability 
distribution and a mapping function need to be designated. Ways of 
specifying these two basic components are presented in Sections 3 and 
4, respectively, along with procedures designed to examine the ade- 
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quacy of each of them. In Section 5, stochastic blockmodel representa- 
tion of networks are described. The concepts and techniques reviewed 
in Sections 2-5 are illustrated in detail in Section 6, where they are 
used to analyze a network data set. 

2. De~nition of a stochastic bloc~odel 

The sociomatrices X,, X,, . . . , X, are matrices of ra&om variables. 
The matrix X represents the entire set of the R random matrices and 
is referred to as a super-sociomatrix of the “adjacency matrix for a 
multigraph”. The probability distribution for X, p(X) = Pr(X = x>, 
gives the probability that various relational linkages between actors 
across all relations are equal to the specified values in x. Random 
vectors Xii associated with actors i and j are defined as the set of R 
relational ties from actor i to actor j: Xii = (Xijl, Xijz, . . . , XijR). The 
basic modeling unit in statistical models for social network data is the 
dyad. Since the sets of random variables Xjj and Xii contain all the 
relational data for the dyad consisting of actors i and j, dyadic 
random vectors Djj are defined as Dij = (Xi,, Xji), i <j. 

A stochastic blockmodel is based on the probability distribution for 
X, as well as the mapping function that assigns the g actors to the 
positions {BJ, where s = 1, 2,. . . , B. The assumption of a probability 
distribution for all the relational ties is the major difference between a 
stochastic blockmodel and a deterministic one. Specifically, 

~e~~~~~~~ 1. Let a(x) be the probability function for a stochastic 
multigraph, which is represented by the super-sociomatrix X. Further, 
suppose that 99 = (9,, &Yz,. . . , ~47~) is a partition of the g actors into 
the B positions, as specified by a mapping function #B. With respect to 
99, p(x) is a stochastic blockmodel if the following two conditions are 
satisfied: 
1. The random dyadic variables Dzi are all statistically independent of 

each other. 
2. For any actors i #j and i’ + j, if i and k’ belong to the same 

position, then the random dyadic vectors Dij and Difj have the 
same probability distribution. 
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This definition states that a stochastic blockmodel consists of a 
probability distribution and a mapping of actors to positions. If the 
blockmodel is stochastic, then the relational linkages are assumed to 
be random variables, and the two stated conditions must be met. 

The first condition, which states that the dyads must be indepen- 
dent of each other, places the focus on the dyad, rather than on the 
individual relational ties Xij. As a result, Holland et al. (1983) refer to 
such stochastic blockmodels as pair-dependent stochastic ~Zock~~de~. 
An advantage of modeling dyads is the ability to analyze structural 
tendencies that occur at the level of the dyad, such as reciprocity. 
Such tendancies cannot be studied if the sets of random variables Xii 
and X,, are assumed to be independent of each other. If actor 
independence is assumed, then the focus is on the individual rela- 
tional ties or “choices” Xii. The resulting stochastic blockmodel would 
be analogous to standard blockmodels where actors are implicitly 
assumed to be independent entities who do not take into account the 
choices made of them when deciding which choices to make. In many 
instances, actor independence is an unrealistic assumption, unlike the 
assumption of dyadic independence. 

The second condition states that if two actors are in the same 
position, then the choices that they “make” and “receive” are gov- 
erned by the same probability distribution. This implies that the 
calculated probabilities using p(x) are not changed by interchanging 
actors belonging to the same position. This fact leads to a definition of 
“stochastic equivalence”. Two actors i and i’ are said to be stochasti- 
tally equivalent if the probability of i relating to and being related to 
by every other actor in the group is the same as the probability for 
actor i’. Formally, 

~e~~itio~ 2. Given a stochastic multigraph, represented by the set of 
random matrices X, actors i and i’ are stochastically equivalent if and 
only if the probability of any event concerning X is unchanged by 
interchanging actors i and i’. 

Stochastic equivalence is a generalization of structural equivalence, 
a central and important concept in standard blockmodel analyses. 
Two actors i and i’ are structurally equivalent if and only if i relates 
to and is related to by all the other actors in exactly the same way that 
i’ relates to and is related to by all the other actors. Structural 
equivalence implies stochastic equivalence, but not vice versa. Empiri- 
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tally, actors rarely exhibit perfect structural equivalence, and re- 
searchers usually need to assume some form of approximate structural 
equivalence or an alternative equivalence definition (such as regular 
or automorphic equivalence) to partition actors into positions. With 
stochastic equivalence, the relational linkages need not be identical 
for actors to be equivalent. 

3. Specific statistical models 

The specific probability distribution that is assumed in the paper is p, 

(Fienberg and Wasserman 1981; Holland and Leinhardt 1981; Wasser- 
man and Faust 1993). The bloc~odels described here are con- 
structed by constraining the parameters associated with individual 
actors to be equal for all actors within positions (Fienberg and 
Wasserman 1981; Holland et al. 1983; Wasserman and Anderson 
1987). In Section 3.1, the basic blockmodel for one binary variable 
(i.e., R = 1 and Xjj, =Xjj = 0, 1) is described in detail, and is followed 
in Section 3.2 by a review of some alternatives and extensions. In 
Section 3.3, the likelihood ratio statistic is proposed as an index for 
measuring the goodness-of-fit of stochastic blockmodels. 

Since dyads are the basic units modeled by pl, it is convenient to 
define a matrix of indicator variables Y as follows: 

J&l= 
i 

1 if Xii = k and Xji = I for k , I= 0, 1 

0 otherwise. 

Given Y, p, can be fit using standard loglinear modeling procedures 
(Fienberg and Wasserman 1981; Wasserman and Faust 1993, Ch. 15). 

Assuming pI, the probabiIi~ distribution for the dyad consisting of 
actors i and j is 

Pr( qjkl = 1) = exp{Aij + kaj + kfij + lai + lpi + (k + l)O + klp} (1) 



where hi, ensures that C,C,qi:;ikl = 1, and Ciai = Cjpj = 0. The param- 
eters ai and cyj represent the sending or expansiuencss effects of 
actors i and j, respectively, and the parameters p, and pj represent 
the receiving or popularity effects of actors i and j, respectively. The 
parameter 8 is an overall choice effect, and the last parameter, p, 

reflects the tendency of relationships in the network to be reciprocal. 
Dyads are assumed to be statistically independent, which is one of the 
conditions for a stochastic blockmodel. The full probability distribu- 
tion p(x) is found by multiplying Equation (1) over all ($1 dyads. 

Assume for now that a function l;b exists that maps the g actors 
onto the B positions Bi, BZ,. . . , ~27~. (Techniques for obtaining such 
a function are described in Section 4.) When the ~Y’S and p’s, which 
depend only on the individual actors, are equivalent for actors within 
positions, the second condition for a stochastic blockmodel is met. In 
other words, for actors i and i’ within position LB~, 

a; = a!;, = a 
[Sl 

P, = Pi, = P[,]. 

The index s in the bracketed subscripts indicates positions. Inter- 
changing actors i and i’ does not change the probabili~ distribution. 
When the equality condition in (2) is imposed, the number of indepen- 
dent parameters to be estimated is reduced by Z(g - B). The parame- 
ters N and /3 are now associated with positions, rather than individual 
actors. 

The model, pI with condition (2) imposed, is fit by aggregating the 
observed yijkr values within positions and fitting the appropriate 
loglinear model to the aggregated data. The aggregated data consist of 
a w-array where w,~,~, = CiE,,& Cjcrr_,,~, yi,x-l. Any one of a number of 
statistical packages that fit stanhard loglinear models or programs that 
use a generalized iterative scaling algorithm will perform this task and 
yield the maximum likeiihood fitted values gtjkf. For details, see 
Fienberg et al. (1985); Iacobucci and Wasserman (1987); Wang and 
Wong (1987); Wasserman and Faust (1993). The maximum likelihood 
estimates of the model parameters can be computed from the fitted 
values. The next version of UCINET, version 4, will contain programs 
to fit p, and compute parameter estimates. 

Since log gijkr is a linear function of the model parameters, the 
parameters can be estimated by setting up an appropriate design 
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matrix and using least squares linear regression. The only technical 
problem that can arise occurs when the sociomatrix has rows and/or 
columns that contain all zeros or all ones. In this instance, the 
associated parameter estimates are ---co or +a, respectively, and 
should not be used when centering the remaining parameter estimates 
to sum to zero. The y^ijkl’s associated with such rows and/or columns 
should be deleted from the vector of fitted values and the design 
matrix adjusted accordingly before estimating the remaining parame- 
ters. Additional technical discussion is given by Wasserman and Faust 
(1993). 

3.2. Modifications, extensions and genera&a tions 

Stochastic blockmodels can be based on variations of the basic model 
given in Equation (1). For example, some combination of the parame- 
ters p, {cu,], and {pi) could be set equal to zero to yield simpler 
models. Alternatively, if p1 does not adequately capture the relational 
ties among individual actors, more complex models can be generated 
by introducing additional parameters, such as reciprocity parameters 
that depend on individual actors (i.e., (pi}, as was proposed by 
Fienberg and Wasserman (1981) and Wasserman and Galaskiewicz 
(19841. If either a simpler or more complex model is chosen to 
represent the relational ties, a stochastic blockmodel can be con- 
structed based on this chosen model by imposing constraints analo- 
gous to (2); namely, the parameters that depend on individuals are 
forced to be equivalent for actors within positions. These variations of 
pt can be fit using programs that fit loglinear models by deleting from 
or including in the model statement the appropriate margins of the 
y-array (if fitting the model for individual actors) or the w-array (if 
fitting the blockmodel). For details, see Chapters 15 and 16 of 
Wasserman and Faust (1993). 

Rather than constraining the parameters associated with individual 
actors to be equivalent for actors within positions, Wang and Wong 
(1987) proposed an extension of p, in which special blockmodel 
parameters are added to Equation (1). Their model retains the param- 
eters for individual actors. The class of stochastic models proposed by 
Wang and Wong (19871 cannot be fit by standard statistical packages 
and requires a special algorithm. 



Other extensions and generalizations of p, involve relaxing the 
restriction of R = 1 binary variable. Such generalizations of pi consist 
of those for multirelational data (Fienberg et al. 1985; Wasserman 
and Galaskiewicz 1984; Wasserman and Faust 1993, Ch. 15) and 
extensions to more than two response levels (Wasserman and Ia- 
cobucci 1986). 

3.3 Goodness-of-fit measures for stochastic blockmodels 

When a particular distribution is assumed for p(x), such as p,, the 
likelihood ratio statistic G2 provides a natural solution to the problem 
of measuring the adequacy of a blockmodel’s representation of the 
observed data. Let j;$, be the predicted value of yijk, based on the 
stochastic blockmodel with the partition J% of B positions. The 
likelihood ratio statistic Gi is 

The degrees of freedom for Gg equal the difference between the 
number of independent cells in y and the number of independent 
estimated parameters in p(x). Determining the exact degrees of 
freedom is not simple (see Fienberg and Wasserman 1981; Haberman 
1981; Wong and Yi 1989; Iacobucci and Wasserman 1990; Wasserman 
and Faust 1993). 

When statistical packages such as SPSS, BMDP or SYSTAT are 
used to fit p1 to individual actors (i.e., to y-array), Gg = Gi = G’/2, 
where G2 is the likelihood ratio statistic given in the output. This 
adjustment is needed because each dyad is included in G* twice, 
rather than just once as in Equation (3) (Fienberg and Wasserman 
1981). When a stochastic blockmodel is fit (i.e., a w-array), the 
correction is more complex, but the goodness-of-fit index (3) is easy to 
compute given the data and fitted values. 

When B = g, the likelihood ratio statistic Gi = Gj depends on the 
size of the table (i.e., on g, the number of actors). In this case, the 
exact distribution of Gi is not known, but is should be close to a 
chi-squared distribution. However, when B <g, Gi depends on B, 
the number of positions, and its asymptotic distribution is chi-squared. 
Caution is still warranted when comparing Gi to the chi-squared 
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distribution, because for relatively large B, the w-array may still be 
large and relatively sparse, in which case, asymptotic theory does not 
apply. An advantage of the likelihood ratio statistic is that differences 
between them, say AC* = G$ - Gi, where model ~23’~ is a special case 
of &Y2, are conditional likelihood ratio statistics, and they are asymp- 
totically distributed as chi-squared random variables. 

The lack of fit of a stochastic blockmodel as measured by Gi is 
decomposable into two parts; namely, 

= Glk,, + CR’ (4) 

where )3$, are the fitted values from pl. The quantity Gj reflects the 
lack of fit of p1 to the observed relations among individuat actors, and 
the quantity G,,$gI reflects the lack of fit due to the assignment of 
actors to positions. The latter qu~nti~ is particularly useful for assess- 
ing how closely actors adhere to the definition of stochastic equiv- 
alence. 

In sum, Gg is a useful and natural index for assessing the goodness- 
of-fit of stochastic blockmodels, and is especially useful for examining 
the difference in fit between models. The likelihood ratio statistic has 
all of the desirable characteristics that Carringtion, Heil and Berkowitz 
(1979) list for a goodness-of-fit index: it uses all of the information 
imposed by a given blocking without sacrificing parsimony, it is sensi- 
tive to the nature of the data, and it has a relatively high degree of 
known precision. 

4. Mapping functions 

The other major component of a blockmodel is the function (b that 
assigns actors to positions. A number of strategies exist for generating 
partitions of actors. Recall that actors assigned to the same position 
should be stochastically equivalent. After presenting specific strategies 
for generating potential mapping functions, the evaluation of these 
functions is discussed. The conditional likelihood ratio statistic Gf&, 
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is proposed as an index that measures how closely actors adhere to 
the definition of stochastic equivalence for a given partition. 

4.1. Generating partitions 

The assignment of actors to positions can be based on exogenous 
attribute information about the actors or on the relational data. 
Examples of exogenous characteristics are age, gender and income. 
This approach is straightforward and has been used by many (for 
examples, see Wasserman and Faust 1993). As an alternative to a 
priori classifications, Wasserman and Anderson (1987) explored ways 
of discovering a posteriori partitions based on the relational data, a 
characteristic of deterministic blockmodeling procedures. The discov- 
ery of partitions based on relational data is more difficult task than 
generating partitions based on attribute data. Techniques for identify- 
ing partitions a posteriori are reviewed here. 

One possible strategy is to examine all possible partitions. Even 
with increases in computing power, such an approach is not practical, 
and certainly not efficient. For fixed B, the number of possible 
partitions for even moderately sized groups is extremely large. Fur- 
thermore, researchers will typically want to examine partitions for 
different values of B. 

Another approach is to seek a spatial representation of the actors 
that reflects the relational ties between them. In such a representa- 
tion, actors who are (approximately) stochastically equivalent should 
be close to each other, and those who are not equivalent should be far 
apart. When p(x) =p,, actors who are stochastically equivalent have 
the same a’s and p’s, and the task of finding equivalent actors 
reduces to that of finding subgroups of actors with (approximately) 
equivalent parameters. For the simple case of one binary relational 
variable, Wasserman and Anderson (1987) found that examining plots 
of fii versus 6; from fitting p1 to the y-array were extremely useful. A 
set of potential partitions for different numbers of positions can be 
suggested by visually examining such plots. 

Among other possible graphical approaches is one explored by 
Wasserman and Anderson (19871, and discussed by Wasserman et al. 
(1990) and Wasserman and Faust (1989). These researchers plot row 
versus column scores from the correspondence analysis of a socioma- 
trix. Correspondence analysis is a technique that seeks to simultane- 
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ously scale the rows and columns of a table such that rows that are 
similar have similar scores, and columns that are similar have similar 
scores (Greenacre 1984). Other possibilities not considered were 
biplots (Gabriel 1982; Gabriel and Zamir 1979) and the K-associa- 
tion model (Goodman 1985, 19861, both of which are related to 
correspondence analysis and also yield row and column scores. All of 
these methods can be applied to sociomatrices. The application, 
potential usefulness and limitations of these methods will not be 
explored further in this paper. 

Another approach, which is complementary to graphical methods 
for discovering equivalent actors, is cluster analysis. Since stochastic 
equivalence among actors is operationally defined as equivalence of 
p1 parameters, estimated parameters can be used in cluster analytic 
methods to try to find “optimal” partitions of actors. While cluster 
analysis can be used in addition to parameter plots, clustering tech- 
niques can also be used in more complex cases where the examination 
of parameter plots is difficult. For example, if there are more than two 
sets of parameters corresponding to individuals, as might be the case 
with multiple relations, the dimensionality of the parameter space 
equals the number of different sets of parameters. At most, three sets 
of parameters can be visually examined at any one time. Cluster 
analysis is not so limited. Advantages and the complementary nature 
of cluster analysis and the visual inspection of parameter plots are 
demonstrated in the example in Section 6. 

Numerous cluster analytic methods exist that are potentially useful, 
but only two are mentioned here to illustrate how cluster analysis can 
be employed to help identify possible mapping functions for stochastic 
blockmodels. A promising method is Hartigan’s (197.5) K-means tech- 
nique, which seeks to split objects into a fixed number of sets by 
maximizing the variation between sets relative to the variation within 
sets. This method requires an objects by variables matrix, which for 
our purposes corresponds to the actors by estimated parameters 
matrix. The parameters do not need to be re-scaled or standardized. 
For different numbers of positions, the K-means technique will not 
necessarily yield nested sets of partitions. 

If a nested set of partitions is desired, then an hierarchical cluster 
analysis method could be used. These methods successively join to- 
gether objects and subgroups until there is only one large cluster. The 
various methods differ with respect to the criterion used to join 
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individuals/ subgroups at each stage. These methods operate on square 
symmetric matrices of (disjsimilarities, so for our purposes, (disjsimi- 
larities between actors in the parameter space need to be computed. 
A logical choice for dissimilarities is the Euclidean distance between 
actor i and .j, 

which corresponds to the distances that are examined in parameter 
plots. Hierarchical methods may not be as useful as K-means cluster 
analysis, because the goal of a K-means analysis more closely resem- 
bles that of finding subgroups of actors with equivalent parameters. 

4.2. Measures of stochastic equivalence 

Regardless of whether a mapping function is based on exogenous 
characteristics of the actors or on the relational data, an index that 
measures the degree to which actors adhere to the definition of 
stochastic equivalence is needed. When partitions are based on exoge- 
nous information, an assessment is needed of whether actors within 
positions are actually (or approximately) stochastically equivalent. 
When partitions are based on the relational data, a means of identify- 
ing “optimal” or “good” mappings is needed. “Optimal” and “good” 
are defined in terms of stochastic equivalence. 

As mentioned in Section 3.3, the conditional likelihood ratio statis- 

tic Gl$,&.) is a natural index to evaluate the degree to which actors 
within positions adhere to the definition of stochastic equivalence. As 
was seen from the decomposition in (4), G&Kj reflects the lack of fit 
due to the assignment of actors to positions. Since G& gj is a differ- 
ence between likelihood ratio statistics, it is an asymptotic chi-squared 
random variable and can be used to statistically test whether actors 
assigned to positions by a particular mapping function are consistent 
with the definition of stochastic equivalence. If actors can be assigned 
to blocks without “significantly” reducing the fit of the model, then 
actors and the relation(s) are consistent with the definition of stochas- 
tic equivalence. 

The statistic GtB,nj can also be used to assess which of a number of 
different mapping functions for various numbers of blocks is the best 
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in terms of producing partitions of actors who more closely adhere to 
the definition of stochastic equivalence. Remember that G:B,Rj re- 
flects lack-of-fit. For fixed B, the mapping function that yields the 
smallest G,$Rj is the “best” one. For fixed B, the difference between 

the G&& ‘s from two different partitions is not a chi-squared random 
variable, because one model is not a special case of the other. 
However, the difference does indicate which partition is better and 
reflects the degree to which the actors within positions in one model 
are “more” stochastically equivalent than those in the other model. 

For different numbers of blocks, mapping functions can be com- 
pared by computing the differences between GtB,Rj’~. When one 
partition is nested within the other, these differences are asymptotic 
chi-squared random variables with degrees of freedom equal to the 
difference between in the number of estimated blockmodel parame- 
ters. When one partition is not a special case of the other, the 
difference GtB,gj ‘s can still be examined with respect to the difference 
in degrees of freedom. In this case, the difference between G:,,,,‘s is 
not distributed as a chi-squared random variable and cannot be used 
to test whether the difference is statistically significant. 

5. Stochastic blockmodel representations 

Given a probability distribution p(x) and a mapping function 4(a) for 
a stochastic blockmodel, the positions and relational ties between 
positions need to be represented. These representations are used to 
substantively interpret the model, which is an important but relatively 
neglected aspect of blockmodeling (Faust and Wasserman 1992). In 
deterministic blockmodel analyses, density tables, image matrices, and 
reduced graphs are three common ways in which the relations be- 
tween positions are represented. Density tables and reduced graphs 
are useful in stochastic blockmodel analyses, but image matrices are 
irrelevant and not necessary. 

Of substantive interest are the probabilities that actors relate to 
and are related to by other actors when actors are in the same or 
different positions. A density table (or matrix) contains these observed 
probabilities. Each row and column of the table corresponds to a 



position. The observed probab~~~t~es equal 

(5) 

where c#J(~‘) = s and 4,(j) = t. The counts g, and g, are the number of 
actors in positions BS and LZ?~, respectively, w,,~~~ is the frequency of 
actors in position ~29~ who relate to but are not related to by the actors 
in position S$, and ~?,,rr is the frequency of actors in a3 who relate to 
and are related to by those in ~3~~ Whereas the diagonal entries of the 
suciomatrix Xii = 0, this is not the case for positions, Refational ties 
between a position and itseff can exist, and Pr(xjj = 1) is the probabil- 
ity that actors in s relate to each other. 

Rather than an observed density matrix, a matrix of expected or 
predicted probabilities can be computed based on the stochastic 
blockmodel. The predicted probabilities are computed by replacing 
the observed frequencies in Equation (5) by the predicted frequences 
from the stochastic blockmodel. The predicted frequencies, bi;,,lo and 

%**I7 are the fitted values computed from fitting the appropriate 
loglinear model to the w-array. Since the predicted probabilities for 
actors in the same position are equal, these predictions can also be 
computed as follows 

where i Ijc, j; actors i and j are in positions ~23~ and ~23~, respectively; 
Pr(Y^ijr/ = 1) =~~,lr/(g,g,) for 1 = 0, 1 and s f t; and Pr(y”ijIl = 1) -z: 
~G~;,,,~/(g~(g, - 1))) for I = 0, 1 and s = t. Alternatively, Pr( Eijk( = 1) 
can be computed from Equation (1); that is, 

While the predicted and observed density matrices can be com- 
pared to see how closely the model is reproducing the observed 
probabilities, the predicted probabilities should be used in substantive 
interpretations of the model. The predicted density table contains the 



C.J. Anderson et al. / Building stochastic blockmodels 151 

stochastic blockmodel based probabilities of relational ties between 
actors in the same and different positions. 

In deterministic blockmodels, image matrices are often used to 
represent the relational ties between positions. Similar to density 
tables, image matrices have rows and columns that correspond to 
positions and the entries carry information regarding relational ties 
between positions. The entries in an image matrix are ones and zeros 
and indicate whether or not a relational tie exists. In a stochastic 
blockmodel, relational ties between actors exist with certain probabili- 
ties, which can be anywhere in the range of zero to one; therefore, an 
image matrix is not useful for representing the relations between 
positions in a stochastic blockmodel analysis. 

A third way of representing relational ties between the positions of 
a blockmodel is a reduced graph. Reduced graphs consist of nodes 
that correspond to positions, and arrows are drawn between nodes 
such that they point away from the sending position and towards the 
receiving position. In a deterministic blockmodel, arrows represent 
the existence of a relational tie. Reduced graphs for deterministic 
blockmodels are pictorial representations of image matrices. In a 
stochastic blockmodel, a reduced graph is based on the predicted 
density table. In this case, arrows are only drawn for the relational ties 
with large probabilities, and the predicted probabilities are written on 
or next to the arrows to convey the probabilistic information. Reduced 
graphs based on predicted density tables are pictorial summaries of 
the information in the corresponding density tables. The tables con- 
tain more information, but the reduced graphs provide a visual sum- 
mary of the information in the tables. 

6. Example: World systems data 

The data analyzed in this example are from Wasserman and Faust 
(1993), and Faust and Wasserman (1991, 1992). The actors in this 
network are 24 countries that are geographically, economically and 
politically diverse. They represent a range of interesting features and 
span the categories of existing world system/ development topologies. 
The relation examined here is whether a country exported basic 
manufactured goods in 1984 to other countries in the network. The 
data are given in Table 1 in the form of a sociomatrix. The (i, j)th 
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Table 1 

Sociomatrix: Trade of basic manufactured goods 

Nation 111111111122222 

123456789012345678901234 

1 Alg Algeria 000110000000100000000001 

2 Arg Argentina 101101001011100011101010 

3 Bra Brazil 110111101111110111111111 

4 Chi China 111010111110111111111111 

5 Cze Czechoslovakia 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 

6 Ecu Ecuador 001000000000000000000010 

7 Egy Egypt 000010011000100001100111 

8 Eth Ethiopia 000000000000000001000100 

9 Fin Finland 111111110111100111111111 

10 Hon Honduras 000000000000000000000010 

11 Ind Indonesia 100110101000100111101111 

12 Isr Israel 010000011000100101101111 

13 Jap Japan 111111111111011111111111 

14 Lib Liberia 000000000000000000000000 

15 Mad Madagascar 000000000000000000000010 

lh NZ New Zealand 100100100010100011001111 

17 Pak Pakistan 000110001010110101111110 

18 Spa Spain 111111101111111110111111 

19 Swi Switzerland 111111111111111111011111 

20 Syr Syria 000000000000000000000000 
21 Tai Thailand 001100001011100111110111 

22 UK UnitedKingdom 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 

23 US United States 111111111111111111111101 

24 Yug Yugoslavia 110110111011100111111110 

entry equals one if country i exported basic manufactured goods to 
country j and equals zero otherwise. This matrix was generated based 
on data from the United Nations Commodity Trade Statistics (1984). 
For further details, see Faust and Wasserman (1991a). 

The p1 model for binary relations given in Equation (1) was fit to 
the data, using iterative proportional fitting as discussed by Fienberg 
and Wasserman (1981). We used several FORTRAN programs spe- 
cially written for this purpose. The models and fit statistics are 
reported in Table 2. The first column lists the parameters included in 
the model, and the second column lists the margins (i.e., the loglinear 
model) of the y-array that were fit for each of the models. The first 
model, model (i), is the “full” p, model, and models (ii)- are 
special cases of it. The special cases were fit to see if a simpler model 
could be used to represent the relational ties among the countries. 
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Table 2 

Fit statistics for p, and special cases: AC2 equals the difference between G2 associated with 

models (ii)-(iv) and model (i), and Adf equals the difference between the associated degrees of 

freedom 

Model Margins fit G2 AC2 Adf 

(i) 0, ((u,), @,I, P 12 13 14 23 24 34 245.18 
(ii) 0, (a,), @,I 12 13 14 23 24 252.56 7.38 1 

(iii) 0, k,I> P 12 13 24 34 298.35 53.17 23 

(iv) 0, @,I, P 12142334 667.20 422.02 23 

While the G*‘s associated with models (i)-(iv) are not asymptotic 
chi-squared random variables. Since the AG*‘s for models (ii>- are 
all large, the reciprocity parameter p (deleted in model (ii)), the set of 
“popularity” parameters {pi} (deleted in model (iii>>, and the set of 
“expansiveness” parameters {ai) (deleted in model (iv)) should all be 
included in the model. Therefore, all of the stochastic blockmodels fit 
will assume p(x) = model (i) =pl. The G2 for model (i> corresponds 
to Gj, which was discussed in Section 3.3, and will be the lower bound 
for the fit of all the stochastic blockmodels (i.e., all blockmodels will 
have Gi 2 Gi). 

Assume that actors exhibit stochastic equivalence. The next step in 
constructing a stochastic blockmodel is to choose a mapping function. 
Since the methods described in Section 4 for generating mapping 
functions involve estimated model parameters, the maximum likeli- 
hood estimates of the parameters of p1 were computed from the 
fitted values jijk( (as mentioned, these programs are available from 
the authors). The estimated 8 equals -0.668 and the reciprocity 
parameter p^ equals 2.03. The latter indicates that trade between 
countries tends to be reciprocated. 

The estimated (Y’S and p’s are plotted in Figure 1. The points 
represent countries (ignore the open circles for now). Since Syria and 
Liberia did not export manufactured goods to any other country in the 
network and the United States, Japan and Switzerland exported goods 
to all of the other countries, the ~5~‘s for these nations equal --co and 
+a, respectively. To represent the countries with ki = fw, these 
countries were placed at the extreme ends of the horizontal axis. 
Overall, the countries show more variation with respect to their 
exporting bfhavior (c?;) than they do with respect to their importing 
behavior (PI, even when disregarding the five nations with si = kc13. 



Fig. 1. Plot of gE, versus p^,. The points are p, parameter estimates (Gi, p”,), i = 1,2,. ,24, and 
the circles are stochastic blockmodel parameter estimates (&,,,, ,i ) s=l,? ,.._, 5. tJl , 

Figure 1 greatly facilitates the search for equivalent countries. 
Nations that have similar import and export patterns (have similar 6’s 
and 6’s. For example, Spain and the United Kingdom as well as 
China and Finland) have nearly identical rows and columns in Table 
1, and their model parameters are approximately equal. The points 
corresponding to Spain and the UK, as well as those for China and 
Finland, are indistinguishable, which indicates that the nations in each 
of these two pairs are clearly stochasticaly equivalent. To close prox- 
imity of Ethiopia, Ecuador and Honduras suggests that these coun- 
tries can be placed in the same position without significantly decreas- 
ing the goodness-of-fit of the stochastic blockmodel. Various possible 
mappings of countries to blocks for different values of I3 were 



C.J. Anderson et al. / Building stochastic blockmodels 155 

Table 3 

Fit statistics for p, stochastic blockmodels 

Partitions from visual inspection 
(Jap, Swi, US) (Bra, Cze} (Chi, Fin, Yug) [Spa, UK) (Arg, Isr) 

(Alg} (Egy, Ind, NZ, Pak, Tail (Ecu, Eth, Han) (Mad) (Lib, Syr) 10 19.02 28 

(Jap, Swi, US) (Bra, Cze) (Chi, Fin, Yug) (Spa, UK} (Arg, Isr) 

(Alg} (Egy, Ind, NZ, Pak, Tai) (Ecu, Eth, Hon, Mad) (Lib, Syr) 9 23.45 30 

(Jap, Swi, US] (Bra, Cze) (Chi, Fin, Yug) (Spa, UK) (Arg, Isr} 

(Alg, Egy, Ind, NZ, Pak, Tai) (Ecu, Eth, Hon, Mad) (Lib, Syr) 8 39.89 32 

(Jap, Swi, US) (Bra, Cze) (Chi, Fin, Spa, UK) (Arg, Isr) 

(Alg, Egy, Ind, NZ, Pak, Tai, Yug) (Ecu, Eth, Hon, Mad} 

(Lib, Syr} 7 52.48 34 

(Jap, Swi, US) (Bra, Chi, Cze, Fin, Spa, UK] (Arg, Egy, Isr) 

(Alg, Ind. NZ, Pak, Tai, Yug) (Ecu, Eth, Hon, Mad) (Lib, Syr) 6 62.02 36 

Partitions from K-means cluster analysis 
(Jap, Swi, US} (Bra, Cze) (Chi, Fin, Spa, UK) (Arg, Isr) (Alg) 

(Egy, Ind, NZ, Pak, Tail (Yug) (Ecu, Eth, Han) (Mad) (Lib, Syr) 10 19.16 28 

(Jap, Swi, US) (Bra, Cze} (Chi, Fin, Spa, UK) (Arg, Isr) (Alg) 

(Egy, Ind, NZ, Pak, Tail (Yug) (Ecu, Eth, Hon, Mad) (Lib, Syr} 9 23.68 30 

(Jap, Swi, US} (Bra, Cze) (Chi, Fin, Spa, UK) (Arg, Isr} (Alg} 

(Egy, Ind, NZ, Pak, Tai, Yug) (Ecu, Eth, Hon, Mad} (Lib, Syr) 8 32.39 32 

(Jap, Swi, US) (Bra, Cze) (Chi, Fin, Spa, UK) (Alg) (Lib, Syr) 

(Arg, Isr, Egy, Ind, NZ, Pak, Tai, Yug} (Ecu, Eth, Hon, Mad) 7 44.65 34 

(Jap, Swi, US) (Bra, Cze) (Chi, Fin, Spa, UK) (Lib, Syr} 

(Arg, Isr, Egy, NZ, Pak, Tai, Yug) (Alg, Ecu, Eth, Hon, Mad) 6 53.68 36 

(Jap, Swi, US) (Bra, Cze, Chi, Fin, Spa, UK) (Lib, Syr) 
(Arg, Isr, Egy, Ind, NZ, Pak, Tai, Yug) 

(Alg, Ecu, Eth, Hon, Mad) S 64.09 38 

(Jap, Swi, US) (Alg, Ecu, Eth, Hon, Mad) (Lib, Syr) 
(Bra, Cze. Chi, Fin, Spa, UK, Arg, Isr, Egy, Ind, NZ, Pak, 
Tai, Yug) 4 135.68 40 

(Jap, Swi, US) (Alg, Ecu, Eth, Hon, Mad, Lib, Syr} 

(Bra, Cze, Chi, Fin, Spa, UK, Arg, Isr, Egy, Ind, NZ, Pak, 
Tai, Yug) 3 143.88 42 

(Bra, Cze, Chi, Fin, Spa, UK, Arg, Isr, Egy, Ind, NZ, Pak, 

Tai, yug, Jap, Swi, US) (Alg, Ecu, Eth, Hon. Mad, Lib, Syr) 2 191.35 44 

4.43 

16.44 

4.52 

8.71 

12.26 

8.03 

10.41 

71.59 

8.20 

47.47 

generated by visually examining Figure 1. Some of these mappings are 
reported in the top half of Table 3. 

Other mappings for 2-10 positions were generated by Performing 
K-means cluster analyses of the countries using & and p. (A large 
number, 9, was substituted in for w.> The clusters, which are listed in 
the lower half of Table 3, are nested. The cluster analyses confirmed 
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many of the aspects seen in Figure 1. The partitions for B = 5, 6, and 
8 from the cluster analyses were also identified as possible partitions 
from the visual examination of Figure 1. The duplicate partitions are 
reported only once in Table 3, under the K-means section. The major 
differences between the partitions generated from the figure and 
those from the cluster analyses involve Yugoslavia. Based on Figure 1, 
Yugoslavia was generally assigned to the same position as Spain and 
UK, but in the cluster analyses, it was assigned to the cluster contain- 
ing Indonesia, New Zealand, Pakistan, and Thailand. 

Fit statistics for the various stochastic blockmodels are also given in 
Table 3. The first column shows the actual mapping of actors onto 
positions and the second indicates the number of positions. The third 
and fourth columns contain the conditional likelihood ratio statistics 
G:B,n) and their degrees of freedom df(,,,,, respectively. These quanti- 
ties are used to assess the degree to which actors within positions 
adhere to the definition of stochastic equivalence. The last column 
contains the conditional likelihood ratio statistics GfB B_ ,) for nested 
models in which the more restrictive model has one less position. 
There are two degrees of freedom associated with each G:B,B_ ,), 

When the number of positions is fixed at either 8, 9, or 10, the 
models in the upper and lower halves of Table 3 have approximately 
the same fit statistics; however, when B = 6 or 7, the models in the 
lower half fit noticeably better than those in the upper half. The 
K-means cluster analyses produced partitions at least as good as those 
generated from Figure 1. Since the partitions in the lower half of 
Table 3 tend to have better fit statistics, are all nested, and cover a 
larger range of models for different numbers of blocks, the models in 
the top half were eliminated from further consideration. 

When the stastistic GfB g) for different numbers of positions are 
compared with the appropriate chi-squared distributions, the statistics 
for B a 7 are not statistically “large” (p-values > 0.10). The statistic 

= 0.029 is marginally “large’ (p-value = 0.0291, and the statistic 
$;; = 0.005 is statistically “large” (p-value = 0.005). These fit statis- 
tics’suggest that the 7 and possibly the 6 position blockmodels are the 
simplest ones that provide an adequate fit. Since the applicability of 
asymptotic theory in this example is questionable, other criteria must 
also be considered. 

The fit statistics G:B,B _ ,) indicate the decrease in fit from reducing 
the number of positions from B to (B - 1) where two positions from 



C.J. Anderson et al. / Building stochastic blockmodels 157 

the more general model are combined into one position in the more 
restrictive model. For models with 5-9 positions, the values for these 
statistics are relatively constant and range form 4.52 to 12.26. A large 
decrease in the fit occurs at B = 4 where G&, = 71.59. Given this 
fact, models with B < 4 were eliminated from further consideration. 

Since the 7 position model contains a position with just one country 
(i.e., Algeria) and the 6 position model provides a reasonably good fit 
to the data, the 7 position model was also eliminated. The 5 and 6 
position blockmodels differ in that Brazil and Czechoslovakia form a 
separate position in the 6 position model, but they are included in the 
cluster with China, Finland, Spain, and the United Kingdom in the 5 
position blockmodel. The representations of each of these models was 
examined. The 5 position model was chosen, because the basic sub- 
stantive interpretation is the same as the 6 position model, except for 
one minor difference, which will be noted later. Based on a balance of 
parsimony and goodness-of-fit, our favorite solution is the 5 position 
blockmodel from the K-means cluster analysis. A substantive interpre- 
tation of this model follows. 

The nations were mapped onto positions as follows: 
l 9,: Japan, Switzerland, United States 
l 9,: Brazil, China, Czechoslovakia, Finland, Spain, United Kingdom 
l s3: Argentina, Egypt, Indonesia, Israel, New Zealand, Pakistan, 

Thailand, Yugoslavia 
l s4: Algeria, Ecuador, Ethiopia, Honduras, Madagascar 
l B5: Liberia, Syria 

The estimated values for the overall choice effect and the reciprocity 
parameter are -0.803 and 2.133, respectively, which are similar to 
those from p,. The estimated values for ats, and p,,l correspond to 
the open circles labeled g1-B5 in Figure 1. The positions differ 
mostly with respect to exports (&;,,l>, but show some slight differences 
with respect to imports (PI,,>, To explictly represent and substantively 
interpret the relations between the positions, the predicted density 
matrix was computed and a reduced graph based on this matrix was 
drawn. 

The predicted probabilities are given in Table 4. The countries in 
B1 exported goods to all of the other countries (i.e., the entries in the 
first row of Table 4 all equal 1.001, and the countries in Bs did not 
export any goods to any of the other countries (i.e., the entries in the 
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Table 4 
Predicted density matrix: Entries equal the predicted probability that a country in a row 

(column) position exports (imports) manufactured goods to (from) a country in a column (row) 

position 

.- 

AZ? 1 92 9 3 93 4 3s 
g1y, 1 .ooo 1 .ooo 1.000 1.000 1.000 

&B 

SB; 

0.994 0.983 0.9% 0.804 0.868 

0.904 0.770 0.576 0.192 0.276 

$d 0.295 0.119 0.041 0.010 0.017 

‘5Ss ~.~O 0.0~ 0.000 0.000 ~,O~)(~ 

last row all equal 0.00). The relational ties exhibit a “center-periphery” 
pattern; that is, the larger probabilities are in the upper left triangle, 
while the smaller probabilities are in the lower right triangle. Coun- 
tries in the positions 99i, sS*, &Y3 have large probabilities of exporting 
and importing goods from each other. The nations in positions ~3’~ 
and ~23~ export goods to countries in ~3~ and ~3~ with large probabil- 
ities, but the nations in z%‘~ export to ~29~ and Ss with small probabil- 
ities. 

As noted earlier, the predicted density matrices for both the 5 and 
6 position blockmodels were examined. The basic difference between 
the 5 and 6 position blockmodels was that in the B = 6 model, the 
predicted probability that countries in the cluster {China, Finland, 
Spain, United Kingdom) imported goods from ~3~ was 0.88, while the 
same probability for the countries in the cluster {Brazil, Czechoslo- 
vakia} was only 0.51. In the 5 position model, the corresponding 

Fig. 2. Reduced graph based on predicted probabilities > 0.30. 
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predicted probability is 0.77, which is intermediate between these two 
values. 

Figure 2 is a the reduced graph based on Table 4. It is pictorial 
representation of the probabilities that goods are exported/ imported 
between countries in the five positions. The nodes (positions) are 
labeled L%‘~-L%?~, and arrows are draw from one position to another 
positions for probabilities greater than 0.30. The central-periphrey 
pattern is well illustrated in this figure. The positions L%‘, and ~8~ 
export to countries in all of the other positions, but differ with respect 
to probabilities. Nations in ~8~ and ~8~ appear quite similar with 
respect to importing, but referring to Table 4, we see that the nations 
in LZ?~ export goods to countries in other positions with small probabil- 
ities, while those in B5 do not export to any of the other countries. 

7. Summary 

Stochastic blockmodels consist of a probability distribution for data 
and a function that maps stochastically equivalent actors onto posi- 
tions. In this paper, the specific model assumed for p(x) was the 
model pl. Two complementary techniques were described for generat- 
ing mapping functions: examining plots of the estimated parameters 
(Y~ and pi, and cluster analyses of these parameters. Both of these 
techniques depend on the data and the stochastic blockmodel. In a 
detailed example, a stochastic blockmodel analysis was performed on 
a network consisting of 24 countries and the relation of whether 
countries exported/ imported basic manufactured goods from each 
other. 

Faust and Wasserman (1992) state four basic tasks that must be 
performed in a complete positional analysis. These are 

1. define “equivalence” among actors, 
2. measure how closely the actors adhere to this definition, 
3. represent the equivalences of the actors, and 
4. measure the adequacy of this representation. 

Each of these component tasks were fulfilled in the stochastic block- 
modeling approach presented in this paper. Equivalence was defined 
as stochastic equivalence; that is, actors are equivalent if they have the 
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same probability distributions. The likelihood ratio statistic Gi was 
shown to be a natural index for measuring the fit of the blockmodel to 
the data, and the conditional likelihood ratio statistic GFB nj was 
shown to be an index for measuring how closely the actors adhere to 
the definition of stochastic equivalence. Predicted density tables and 
reduced graphs were used to represent the relational ties between 
actors within positions and interpret the results of stochastic block- 
model analyses. 
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