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SUMMARY

We present asymptotic and finite-sample results on the use of stochastic blockmodels for the
analysis of network data. We show that the fraction of misclassified network nodes converges
in probability to zero under maximum likelihood fitting when the number of classes is allowed
to grow as the root of the network size and the average network degree grows at least poly-
logarithmically in this size. We also establish finite-sample confidence bounds on maximum-
likelihood blockmodel parameter estimates from data comprising independent Bernoulli random
variates; these results hold uniformly over class assignment. We provide simulations verifying
the conditions sufficient for our results, and conclude by fitting a logit parameterization of a
stochastic blockmodel with covariates to a network data example comprising self-reported school
friendships, resulting in block estimates that reveal residual structure.

Some key words: Likelihood-based inference; Social network analysis; Sparse random graph; Stochastic blockmodel.

1. INTRODUCTION

The global structure of social, biological, and information networks is sometimes envi-
sioned as the aggregate of many local interactions whose effects propagate in ways that are
not yet well understood. There is increasing opportunity to collect data on an appropriate
scale for such systems, but their analysis remains challenging (Goldenberg et al., 2009). Here
we analyse a statistical model for network data known as the single-membership stochas-
tic blockmodel. Its salient feature is that it partitions the N nodes of a network into K dis-
tinct classes whose members all interact similarly with the network. Blockmodels were first
associated with the deterministic concept of structural equivalence in social network analysis
(Lorrain & White, 1971), where two nodes were considered interchangeable if their connec-
tions were equivalent in a formal sense. This concept was adapted to stochastic settings and
gave rise to the stochastic blockmodel in the work by Holland et al. (1983) and Fienberg et al.
(1985). The model and extensions thereof have since been applied in a variety of disciplines
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(Airoldi et al., 2008; Hoff, 2008; Nowicki & Snijders, 2001; Girvan & Newman, 2002;
Handcock et al., 2007; Copic et al., 2009; Mariadassou et al., 2010; Karrer & Newman, 2011).

In this work we provide a finite-sample confidence bound that can be used when estimating
network structure from data modelled by independent Bernoulli random variates, and also show
that under maximum likelihood fitting of a correctly specified K -class blockmodel, the fraction
of misclassified network nodes converges in probability to zero even when the number of classes
K grows with N . As noted by Rohe et al. (2011) this is advantageous if we expect class sizes
to remain relatively constant even as N increases. Related results for fixed K have been shown
by Snijders & Nowicki (1997) for networks with a linearly increasing degree, and in a stronger
sense for sparse graphs with poly-logarithmically increasing degrees by Bickel & Chen (2009).

Our results can be related to those of Rohe et al. (2011), who use spectral methods to
bound the number of misclassified nodes in the stochastic blockmodel with increasing K ,
although with the more restrictive requirement of nearly linearly increasing degree. As noted
by those authors, this assumption may not hold in many practical settings. Our manner of proof
requires only poly-logarithmically increasing degree, and is more closely related to the fixed-
K proof of Bickel & Chen (2009), although we note that spectral clustering as suggested by
Rohe et al. (2011) provides a computationally appealing alternative to maximum likelihood fit-
ting in practice.

As discussed by Bickel & Chen (2009), one may assume exchangeability in lieu of a genera-
tive K -class blockmodel: an analogue to de Finetti’s theorem for exchangeable sequences states
that the probability distribution of an infinite exchangeable random graph is expressible as a
mixture of distributions whose components can be approximated by blockmodels (Kallenberg,
2005; Bickel & Chen, 2009). An observed network can then be viewed as a sample drawn from
this infinite conceptual population, and so in this case the fitted blockmodel describes one mix-
ture component thereof.

2. STATEMENT OF RESULTS

2·1. Problem formulation and definitions

We consider likelihood-based inference for independent Bernoulli data {Ai j } (i =
1, . . . , N ; j = i + 1, . . . , N ), both when no structure linking the success probabilities {Pi j } is
assumed, as well as the special case when a stochastic blockmodel of known order K is assumed
to apply. To this end, let A ∈ {0, 1}N×N denote the symmetric adjacency matrix of a simple, undi-
rected graph on N nodes whose entries {Ai j } for i < j are assumed independent Ber(Pi j ) random
variates, and whose main diagonal {Aii }N

i=1 is fixed to zero. The average degree of this graph is
2M/N , where M = ∑

i< j Pi j is its expected number of edges. Under a K -class stochastic block-
model, these edge probabilities are further restricted to satisfy

Pi j = θzi z j (i = 1, . . . , N ; j = i + 1, . . . , N ) (1)

for some symmetric matrix θ ∈ [0, 1]K×K and membership vector z ∈ {1, . . . , K }N . Thus the
probability of an edge between two nodes is assumed to depend only on the class of each node.

Let L(A; z, θ) denote the loglikelihood of observing data matrix A under a K -class block-
model with parameters (z, θ), and L̄ P(z, θ) its expectation:

L(A; z, θ) =
∑
i< j

{Ai j log θzi z j + (1 − Ai j ) log(1 − θzi z j )},

L̄ P(z, θ) =
∑
i< j

{Pi j log θzi z j + (1 − Pi j ) log(1 − θzi z j )}.
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For fixed class assignment z, let Na denote the number of nodes assigned to class a, and let nab

denote the maximum number of possible edges between classes a and b; i.e., nab = Na Nb if a |= b
and naa = Na!/{(Na − 2)!2!}. Further, let θ̂ (z) and θ̄ (z) be symmetric matrices in [0, 1]K×K , with

θ̂
(z)
ab = 1

nab

∑
i< j

Ai j 1(zi = a, z j = b),

θ̄
(z)
ab = 1

nab

∑
i< j

Pi j 1(zi = a, z j = b) (a = 1, . . . , K ; b = a, . . . , K )

defined whenever nab |= 0. Observe that θ̂ (z) comprises sample proportion estimators as a func-
tion of z, whereas θ̄ (z) is its expectation under the independent {Ber(Pi j )} model. Taken over all
class assignments z ∈ {1, . . . , K }N , the sets {θ̂ (z)} comprise a sufficient statistic for the family
of K -class stochastic blockmodels, and for each z, θ̂ (z) maximizes L(A; z, ·). Analogously, the
sets {θ̄ (z)} are functions of the model parameters {Pi j }i< j , and maximize L̄ P(z, ·). We write θ̂

and θ̄ when the choice of z is understood, and L(A; z) and L̄ P(z) to abbreviate supθ L(A; z, θ)

and supθ L̄ P(z, θ), respectively.
Finally, observe that when a blockmodel with parameters (z̄, θ̄ ) is in force, then Pi j = θ̄z̄i z̄ j in

accordance with (1), and consequently L̄ P is maximized by the true parameter values (z̄, θ̄ ):

L̄ P(z̄, θ̄ ) − L̄ P(z, θ) =
∑
i< j

D(Pi j || θzi z j ) �
∑
i< j

2(Pi j − θzi z j )
2 � 0,

where D(p || p′) denotes the Kullback–Leibler divergence of a Ber(p′) distribution from a
Ber(p) one.

2·2. Fitting a K -class stochastic blockmodel to independent Bernoulli trials

Fitting a K -class stochastic blockmodel to independent Ber(Pi j ) trials yields estimates θ̂ (z)

of averages θ̄ (z) of subsets of the parameter set {Pi j }, with each class assignment z inducing a
partition of that set. We begin with a basic lemma that expresses the difference L(A; z) − L̄ P(z)
in terms of θ̂ (z) and θ̄ (z), and follows directly from their respective maximizing properties.

LEMMA 1. Let {Ai j }i< j comprise independent Ber(Pi j ) trials. Then the difference
supθ L(A; z, θ) − supθ L̄ P(z, θ) can be expressed for X = ∑

i< j Ai j log{θ̄zi z j /(1 − θ̄zi z j )} as

L(A; z) − L̄ P(z) = ∑
a�b nab D(θ̂ab || θ̄ab) + X − E(X).

We first bound the former quantity in this expression, which provides a measure of the distance
between θ̂ and its estimand θ̄ under the setting of Lemma 1. The bound is used in subsequent
asymptotic results, and also yields a kind of confidence measure on θ̂ in the finite-sample regime.

THEOREM 1. Suppose that a K -class stochastic blockmodel is fitted to data {Ai j }i< j

comprising N !/{(N − 2)!2!} independent Ber(Pi j ) trials, where, for any class assignment z, esti-
mate θ̂ maximizes the blockmodel loglikelihood L(A; z, ·). Then with probability at least 1 − δ,

max
z

⎧⎨
⎩

∑
a�b

nab D(θ̂ab || θ̄ab)

⎫⎬
⎭ < N log K + (K 2 + K ) log

(
N

K
+ 1

)
− log δ. (2)
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Theorem 1 is proved in the Appendix via the method of types: for fixed z, the probability
of any realization of θ̂ is first bounded by exp{− ∑

a�b nab D(θ̂ab || θ̄ab)}. A counting argument

then yields a deviation result in terms of (N/K + 1)K 2+K , and finally a union bound is applied
so that the result holds uniformly over all K N possible choices of assignment vector z.

Our second result is asymptotic, and combines Theorem 1 with a Bernstein inequality for
bounded random variables, applied to the latter terms X − E(X) in Lemma 1. To ensure bound-
edness we assume minimal restrictions on each Pi j ; this Bernstein inequality, coupled with a
union bound to ensure that the result holds uniformly over all z, dictates growth restrictions on
K and M .

THEOREM 2. Assume the setting of Theorem 1, whereby a K -class blockmodel is fitted to
N !/{(N − 2)!2!} independent Ber(Pi j ) random variates {Ai j }i< j , and further assume that
1/N 2 � Pi j � 1 − 1/N 2 for all N and i < j . Then if K =O(N 1/2) and M = ω(N (log N )3+δ)

for some δ > 0,
max

z
|L(A; z) − L̄ P(z)| = oP(M). (3)

Thus whenever each Pi j is bounded away from 0 and 1 in the manner above, the maximized
loglikelihood function L(A; z) = supθ L(A; z, θ) is asymptotically well behaved in network size
N as long as the network’s average degree 2M/N grows faster than (log N )3+δ and the number
K of classes fitted to it grows no faster than N 1/2.

2·3. Fitting a correctly specified K -class stochastic blockmodel

The above results apply to the general case of independent Bernoulli data {Ai j }, with no addi-
tional structure assumed amongst the set of success probabilities {Pi j }; if we further assume
the data to be generated by a K -class stochastic blockmodel whose parameters (z̄, θ̄ ) are sub-
ject to suitable identifiability conditions, it is possible to characterize the behaviour of the
class assignment estimator ẑ under maximum likelihood fitting of a correctly specified K -class
blockmodel.

THEOREM 3. If (3) holds, and data are generated according to a K -class blockmodel with
membership vector z̄, then

L̄ P(z̄) − L̄ P(ẑ) = oP(M), (4)

with respect to the maximum-likelihood K -class blockmodel class assignment estimator ẑ.
Let Ne(ẑ) be the number of incorrect class assignments under ẑ, counted for every node whose

true class under z̄ is not in the majority within its estimated class under ẑ. If furthermore the
following identifiability conditions hold with respect to the model sequence:

(i) for all blockmodel classes a = 1, . . . , K , class size Na grows as mina(Na) = �(N/K );
(ii) the following holds over all distinct class pairs (a, b) and all classes c:

min
(a,b)

max
c

{
D

(
θ̄ac || θ̄ac + θ̄bc

2

)
+ D

(
θ̄bc || θ̄ac + θ̄bc

2

)}
= �

(
M K

N 2

)
,

then it follows from (4) that Ne(ẑ) = oP(N ).

Thus the conclusion of Theorem 3 is that under suitable conditions the fraction Ne/N of mis-
classified nodes goes to zero in N , yielding a convergence result for stochastic blockmodels with
a growing number of classes. Condition (i) stipulates that all class sizes grow at a rate that is even-
tually bounded below by a single constant times N/K , while condition (ii) ensures that any two
rows of θ differ in at least one entry by an amount that is eventually bounded by a single constant
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Stochastic blockmodels 277

time M K/N 2. Observe that if eventually K = N 1/2 and M = N (log N )4 so that conditions on K
and M sufficient for Theorem 2 are met, then since (log N )4 = o(N 1/2), it follows that M K/N 2

goes to zero in N .

3. NUMERICAL RESULTS

We now present results of a small simulation study undertaken to investigate the assumptions
and conditions of Theorems 1–3, in which K -class blockmodels were fitted to various networks
generated at random from models corresponding to each of the three theorems. Because exact
maximization in z of the blockmodel loglikelihood L(A; z, θ) is computationally intractable even
for moderate N , we instead employed Gibbs sampling to explore the function maxθ L(A; z, θ)

and recorded the best value of z visited by the sampler. As the results of Theorems 1 and 2 hold
uniformly in z, however, we expect θ̄ and L̄ P(z) to be close to their empirical estimates whenever
N is sufficiently large, regardless of the approach employed to select z. This fact also suggests
that a single-class blockmodel may come closest to achieving equality in Theorems 1 and 2, as
many class assignments are equally likely a priori to have high likelihood. By similar reasoning,
a weakly identifiable model should come closest to achieving the error bound in Theorem 3, such
as one with nearly identical within- and between-class edge probabilities. We describe each of
these cases empirically in the remainder of this section.

First, the tightness of the confidence bound of (2) from Theorem 1 was investigated by fit-
ting K -class blockmodels to Erdös–Rényi networks comprising N !/{(N − 2)!2!} independent
Ber(p) trials, with N = 500 nodes, p = 0·075 chosen to match the data analysis example in the
sequel, and K ∈ {5, 10, 20, 30, 40, 50}. For each K , the error terms

∑
a�b nab D(θ̂ab || θ̄ab) and

{∑a�b nab(θ̂ab − θ̄ab)
2}1/2 were recorded for each of 100 trials and compared with the respec-

tive 95% confidence bounds, δ = 0·05, derived from Theorem 1. The bounds overestimated the
respective errors by a factor of 3–7 on average, with small standard deviation. In this worst-case
scenario, the bound is loose, but not unusable; the errors never exceeded the 95% confidence
bounds in any of the trials.

To test whether the assumptions of Theorem 2 are necessary as well as sufficient to obtain
convergence of L(A; z)/M to L̄ P(z)/M , blockmodels were next fitted to Erdös–Rényi networks
of increasing size, for N in the range 50–1050. The corresponding normalized loglikelihood
error |L(A; z) − L̄ P(z)|/M for different rates of growth in the expected number of edges M
and the number of fitted classes K is shown in Fig. 1. Observe from Fig. 1(a) that when M =
N (log N )4 and K = N 1/2, as prescribed by the theorem, this error decreases in N . If the edge
density is reduced to M/N = (log N )2, we observe in Fig. 1(b) convergence when K = N 1/2 and
divergence when K = N 3/5. This suggests that the error as a function of K follows Theorem 2
closely, but that the network can be somewhat more sparse than it requires.

To test the conditions of Theorem 3, blockmodels with parameters (z̄, θ̄ ) and increasing class
size K were used to generate data, and corresponding node misclassification error rates Ne(z)/N
were recorded as a function of correctly specified K -class blockmodel fitting. Model parameter z̄
was chosen to yield equally sized blocks, so as to meet identifiability condition (i) of Theorem 3.
Parameter θ̄ = α I + β11T was chosen to yield within- and between-class success probabili-
ties with the property that for any class pair (a, b), the condition D(θaa || (θaa + θab)/2) =
M K γ /(20N 2) was satisfied, with γ ∈ {4/5, 9/10, 1}; identifiability condition (ii) was thus met
only in the γ = 1 case. Figure 1(c) shows the fraction Ne(z)/N of misclassified nodes when
M = N (log N )2 and K = N 1/2, corresponding to the setting in which convergence of L(A; z)/M
to L̄ P(z)/M was observed above; this fraction is seen to decay when γ = 1 or 9/10, but to
increase when γ = 4/5. This behaviour conforms with Theorem 3 and suggests that its iden-
tifiability conditions are close to being necessary as well as sufficient.
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Fig. 1. Simulation study results illustrating Theorems 1–3. (a) Likelihood error |L(A; z) − L̄ P (z)|/M as a function
of network size N , shown for M = N (log N )4 with K = N 1/2. (b) Same quantity for M = N (log N )2 with K =
N 3/5 (dotted) and K = N 1/2 (solid). (c) Error rate Ne(ẑ)/N for M = N (log N )2 with K = N 1/2 and γ = 4/5

(dotted), γ = 9/10 (dashed), γ = 1 (solid).
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Fig. 2. Social network dataset and its fitting statistics for a varying number of blockmodel classes K . (a) Adja-
cency data matrix with students ordered by school year. (b) Model order statistic for fitted logit blockmodels
as a function of K . (c) Out-of-sample prediction error using five-fold crossvalidation, as a function of K . Error

bars indicate standard deviation.

4. NETWORK DATA EXAMPLE

4·1. Adolescent health social network dataset

To illustrate the use of our results in the fitting of K -class stochastic blockmodels to network
data, we employed the Comm18 friendship network from the National Longitudinal Survey of
Adolescent Health, in which N = 284 students at a school in the United States were asked to list
up to five friends of each gender, yielding a network with 1189 edges signifying that one or both
of the students had listed the other as a friend. The students also supplied additional information
including their gender, school year and race. Further details of the study can be found in, e.g.,
Goodreau et al. (2009).

Of the three covariates, shared school year is reported by Goodreau et al. (2009) to be the
best predictor of community structure. This finding is borne out in Fig. 2(a), which shows the
adjacency structure under an ordering of students by school year and reveals strong community
divisions between years.

4·2. Logit blockmodel parameterization and fitting procedure

Here we build on the observation of school year clustering by taking covariate information
explicitly into account when fitting the dataset described above. Specifically, by assuming only
that links are independent Bernoulli variates and then employing confidence bounds to assess
fitted blocks by way of parameter θ̄ (z), we examine these data for residual community structure
beyond that well explained by the covariates themselves.
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Since the results of Theorems 1 and 2 hold uniformly over all choices of blockmodel mem-
bership vector z, we may select z in any manner, including those that depend on covariates. For
this example, we determined an approximate maximum likelihood estimate ẑ under a logit block-
model that allows the direct incorporation of covariates. The model is parameterized such that
the log-odds ratio of an edge occurrence between nodes i and j is given by

log
Pi j

1 − Pi j
= θ̃zi z j + x(i, j)Tβ (i = 1, . . . , N ; j = i + 1, . . . , N ), (5)

where x(i, j) a vector of covariates indicating shared group membership, and model parameters
(θ̃ , β, z) are estimated from the data. Three covariates were used, indicating shared gender, dif-
ference in school years, and a six-category covariate indicating the range of the observed degree
of each node; see Karrer & Newman (2011) for related discussion on this point. The matrix θ̃

is analogous to blockmodel parameter θ , the vector z specifies the blockmodel class assignment
and the vector β was implemented here with sum-to-zero identifiability constraints.

Because exact maximization of the loglikelihood function L(A; θ̃ , β, z) corresponding to (5)
is computationally intractable, we instead employed an approach that alternated between Markov
chain Monte Carlo exploration of z while holding (θ̃ , β) constant, and optimization of θ̃ and β

while holding z constant. We tested different initialization methods and observed that highest
likelihoods were consistently produced by first fitting the class assignment vector z. This fitting
procedure provides a means of estimating averages θ̄ (z) over subsets of the set {Pi j }i< j , under
the assumption that the network data comprise independent Ber(Pi j ) trials.

4·3. Data analysis

We fitted the logit blockmodel of (5) for values of K ranging from 1 to 25 using the stochastic
maximization procedure described in the preceding paragraph, and gauged model order by the
Bayesian information criterion and out-of-sample prediction shown, respectively, in Figs. 2(b)
and (c). The minimum of the Bayesian information criterion corresponds in location with the
knee of the out-of-sample prediction curve, suggesting a model order between 4 and 7. The cor-
responding 95% confidence bounds on the divergence of θ̂ (z) from θ̄ (z) provided by Theorem 1
also yield small values for K in this range also: for example, when K = 4, the normalized
sum of Kullback–Leibler divergences N !/{N − 2)!2!} ∑

a�b nab D(θ̂ab || θ̄ab) is bounded by
0·0120.

The top two rows of Fig. 3 depict approximate maximum likelihood estimates of z for K
in the range 4–7. Larger values of K also reveal block structure, but exhibit correspondingly
larger confidence bound evaluations; for example, when K = 10, the Kullback–Leibler diver-
gence bound of 0·026 no longer excludes an Erdos–Renyi random graph whose density matches
the observed network. Adjacency structures permuted to show block divisions under ẑ within
each school year are shown in the top row, with the corresponding values of μ̂ shown in the bot-
tom row. We note that the total number of visible communities shown in the top row appears to
exceed K , due to the interaction of school year and latent class effects.

As K is increased, the groups do not become isolated but rather continue to exhibit cross-
group friendships, suggesting fewer than four tightly demarcated communities per school year.
Within each school year, the K groups can be separated into two meta-groups whose mem-
bership remained roughly constant, with 234 students whose meta-group membership did not
change at all as K ranged from 4 to 7. The two meta-groups have similar school year and nodal
degree distributions, with a two-sample Kolmogorov–Smirnov test returning p-values of 0·63 and
0·08 for school year and degree, respectively. The bottom row of Fig. 3 shows differing racial
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Fig. 3. Results of logit blockmodel fitting to the data of Fig. 2 for each of K ∈ {4, 5, 6, 7} classes. Top row:
Adjacency structure of the data, permuted to show class year and block assignments for K ∈ {4, 5, 6, 7}. Second
row: Corresponding estimates θ̂ , with Kullback–Leibler divergence bounds 0·0057, 0·0067, 0·0077, and 0·0086.

Bottom row: Racial identity of students whose grouping remained constant over these four values of K .

compositions for the meta-groups, with race 2 concentrated almost exclusively in meta-group
2. However, membership was not determined solely by race; we note that race 1 students in the
second meta-group had a higher density of friendships with race 2 than did the race 1 students
in the first meta-group by a factor of ten, justifying their inclusion in the second meta-group.
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Supplementary material available at Biometrika online includes the dataset from § 4·1.

APPENDIX

Proof of Theorem 1. To begin, observe that for any fixed class assignment z, every θ̂ab is a
sum of nab independent Bernoulli random variables, with corresponding mean θ̄ab. A Chernoff
bound (Dubhashi & Panconesi, 2009) shows

pr(θ̂ab � θ̄ab + t) � e−nab D(θ̄ab+t ||θ̄ab), 0 < t � 1 − θ̄ab,

pr(θ̂ab � θ̄ab − t) � e−nab D(θ̄ab−t ||θ̄ab), 0 < t � θ̄ab.
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Since these bounds also hold, respectively, for pr(θ̂ab = θ̄ab ± t), we may bound the probability of any
given realization ϑ ∈ {0, 1/nab, . . . , 1} of θ̂ab in terms of the Kullback–Leibler divergence of θ̄ab from ϑ :

pr(θ̂ab = ϑ) � e−nab D(ϑ ||θ̄ab).

By independence of the {Ai j }i< j , this implies a corresponding bound on the probability of any θ̂ :

pr(θ̂) � exp

⎧⎨
⎩−

∑
a�b

nab D(θ̂ab || θ̄ab)

⎫⎬
⎭ . (A1)

Now, let 
̂ denote the range of θ̂ for fixed z, and observe that since each of the (K + 1)!/{(K − 1)!2!}
lower-diagonal entries {θ̂ab}a�b of θ̂ can independently take on nab + 1 distinct values, we have that |
̂| =∏

a�b(nab + 1). Subject to the constraint that
∑

a�b nab = N !/{(N − 2)!2!}, we see that this quantity is
maximized when nab = N !(K − 1)!/{(N − 2)!(K − 1)!} for all a � b, and hence

|
̂| �
{(

N

2

)
/

(
K + 1

2

)
+ 1

}(K+1
2 )

< (N 2/K 2 + 1)(K 2+K )/2 < (N/K + 1)K 2+K . (A2)

Now consider the event that
∑

a�b nab D(θ̂ab || θ̄ab) is at least as large as some ε > 0; the probability of

this event is given by pr(
̂ε) for


̂ε =
⎧⎨
⎩θ̂ ∈ 
̂ :

∑
a�b

nab D(θ̂ab || θ̄ab) � ε

⎫⎬
⎭ . (A3)

Since
∑

a�b nab D(θ̂ab || θ̄ab) � ε for all θ̂ ∈ 
̂ε , we have from (A1) and (A3) that

pr(
̂ε) =
∑
θ̂∈
̂ε

pr(θ̂) �
∑
θ̂∈
̂ε

e− ∑
a�b nab D(θ̂ab||θ̄ab) �

∑
θ̂∈
̂ε

e−ε = |
̂ε |e−ε,

and since |
̂ε | � |
̂|, we may use (A2) to obtain, for fixed class assignment z,

pr

⎧⎨
⎩

∑
a�b

nab D(θ̂ || θ̄ ) � ε

⎫⎬
⎭ < (N/K + 1)K 2+K e−ε . (A4)

Appealing to a union bound over all K N possible class assignments and setting ε = log{K N (N/K +
1)K 2+K /δ} then yields the claimed result. �

Proof of Theorem 2. By Lemma 1, the difference L(A; z) − L̄ P(z) can be expressed for any fixed class
assignment z as

∑
a�b nab D(θ̂ab || θ̄ab) + X − E(X), where the first term satisfies the deviation bound

of (A4), and X = ∑
i< j Ai j log{θ̄zi z j /(1 − θ̄zi z j )} comprises a weighted sum of independent Ber(Pi j ) ran-

dom variables.
To bound the quantity |X − E(X)|, observe that since by assumption N−2 � Pi j � 1 − N−2, the same

is true for each corresponding average θ̄zi z j . As a result, the random variables Xi j = Ai j log{θ̄zi z j /(1 −
θ̄zi z j )} comprising X are each bounded in magnitude by C = 2 log N . This allows us to apply a Bernstein
inequality for sums of bounded independent random variables due to Chung & Lu (2006, Theorems 2.8
and 2.9, p. 27), which states that for any ε > 0,

pr{|X − E(X)| � ε} � 2 exp

{
− ε2

2
∑

i< j E(X2
i j ) + (2/3)εC

}
. (A5)
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Finally, observe that since the event |L(A; z) − L̄ P(z)| > 2εM implies either the event∑
a�b nab D(θ̂ab || θ̄ab) � εM or the event |X − E(X)| � εM , we have for fixed assignment z that

pr{|L(A; z) − L̄ P(z) � 2εM} � pr

⎡
⎣

⎧⎨
⎩

∑
a�b

nab D(θ̂ab || θ̄ab) � εM

⎫⎬
⎭ ∪ {|X − E(X)| � εM

}⎤
⎦ .

Summing the right-hand sides of (A4) and (A5), and then over all K N possible assignments, yields

pr

{
max

z
|L(A; z) − L̄ P(z)| � 2εM

}
� exp{K log N + (K 2 + K ) log(N/K + 1) − εM}

+ 2 exp

{
K log N − ε2 M

8 log2 N + (4/3)ε log N

}
,

where we have used the fact that
∑

i< j E(X2
i j ) � 4M log2(N ) in (A5). It follows directly that if K =

O(N 1/2) and M = ω(N (log N )3+δ), then limN→∞ pr{maxz |L(A; z) − L̄ P(z)|/M � ε} = 0 for every fixed
ε > 0 as claimed. �

Proof of Theorem 3. To begin, note that Theorem 2 holds uniformly in z, and thus implies that

|L̄ P(z̄) − L(A; z̄)| + |L̄ P(ẑ) − L(A; ẑ)| = oP(M).

Since ẑ is the maximum-likelihood estimate of class assignment z̄, we know that L(A; ẑ) � L(A; z̄), imply-
ing that L(A; ẑ) = L(A; z̄) + δ for some δ � 0. Thus, by the triangle inequality,

|L̄ P(z̄) − L̄ P(ẑ) + δ| � |L̄ P(z̄) − L(A; z̄)| + |L̄ P(ẑ) − (L(A; z̄) + δ)| = oP(M),

and since L̄ P(z̄) � L̄ P(ẑ) under any blockmodel with parameter z̄, we have L̄ P(z̄) − L̄ P(ẑ) = oP(M).
Under conditions (i) and (ii) of Theorem 3, we will now show that also

L̄ P(z̄) − L̄ P(ẑ) = Ne(ẑ)

N
�(M), (A6)

holds for every realization of ẑ, thus implying that Ne(ẑ) = oP(N ) and proving the theorem.
To show (A6), first observe that any blockmodel class assignment vector z induces a corresponding

partition of the set {Pi j }i< j according to (i, j) �→ (zi , z j ). Formally, z partitions {Pi j }i< j into L subsets
(S1, . . . , SL) via the mapping

ζi j : (i = 1, . . . , N ; j = i + 1, . . . , N ) → (l = 1, . . . , L).

This partition is separable in the sense that there exists a bijection between {1, . . . , L} and the upper tri-
angular portion of blockmodel parameter θ , such that we write θζi j = θzi z j for membership vector z. More
generally, for any partition  of {Pi j }i< j , we may define θ̄l = |Sl |−1

∑
i< j Pi j 1{Pi j ∈ Sl} as the arithmetic

average over all Pi j in the subset Sl indexed by ζi j = l. Thus we may also define

L̄∗
P() =

∑
i< j

{Pi j log θ̄ζi j + (1 − Pi j ) log(1 − θ̄ζi j )},

so that L̄∗
P and L̄ P coincide on partitions corresponding to admissible blockmodel assignments z.

The establishment of (A6) proceeds in three steps: first, we construct and analyse a refinement of the
partition z induced by any blockmodel assignment vector z in terms of its error Ne(z); then, we show
that refinements increase L̄∗

P(·); finally, we apply these results to the maximum-likelihood estimate ẑ.

LEMMA A1. Consider a K -class stochastic blockmodel with membership vector z̄, and let z denote
the partition of its associated {Pi j }1�i< j�N induced by any z ∈ {1, . . . , K }N . For every z , there exists a
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partition ∗ that refines z and with the property that, if conditions (i) and (ii) of Theorem 3 hold,

L̄ P(z̄) − L̄∗
P(∗) = Ne(ẑ)

N
�(M), (A7)

where Ne(z) counts the number of nodes whose true class assignments under z̄ are not in the majority
within their respective class assignments under z.

LEMMA A2. Let ′ be a refinement of any partition  of the set {Pi j }i< j ; then L̄∗
P(′) � L̄∗

P().

Since Lemma A1 applies to any admissible blockmodel assignment vector z, it also applies to
the maximum-likelihood estimate ẑ for any realization of the data; each ẑ in turn induces a partition
ˆ of blockmodel edge probabilities {Pi j }i< j , and (A7) holds with respect to its refinement ∗. By
Lemma A2, L̄∗

P(ˆ) � L̄∗
P(∗). Finally, observe that L̄ P(ẑ) = L̄∗

P(ˆ) by the definition of L̄∗
P , and so

L̄ P(z̄) − L̄ P(ẑ) � L̄ P(z̄) − L̄∗
P(∗), thereby establishing (A6). �

Proof of Lemma A1. The construction of ∗ will take several steps. For a given membership class under
z, partition the corresponding set of nodes into subclasses according to the true class assignment z̄ of each
node. Then remove one node from each of the two largest subclasses so obtained, and group them together
as a pair; continue this pairing process until no more than one nonempty subclass remains, then terminate.
Observe that if we denote pairs by their node indices as (i, j), then by construction zi = z j but z̄i |= z̄ j .

Repeat the above procedure for each class under z, and let C1 denote the total number of pairs thus
formed. For each of the C1 pairs (i, j), find all other distinct indices k for which the following holds:

D

(
Pik || Pik + Pjk

2

)
+ D

(
Pjk || Pik + Pjk

2

)
� C

M K

N 2
, (A8)

where C is the constant from condition (ii) of Theorem 3, and indices ik and jk in (A8) are to be interpreted,
respectively, as ki whenever k < i , and k j whenever k < j . Let C2 denote the total number of distinct triples
that can be formed in this manner.

We are now ready to construct the partition ∗ of the probabilities {Pi j }1�i< j�N as follows: For each of
the C2 triples (i, j, k), remove Pik (or Pki if k < i) and Pjk (or Pk j ) from their previous subset assignment
under z , and place them both in a new, distinct two-element subset. We observe the following:

(i) the partition ∗ is a refinement of the partition z induced by z: Since nodes i and j have the
same class label under z in that zi = z j , it follows that for any k, Pik and Pjk are in the same subset
under z ;

(ii) since for each class at most one nonempty subclass remains after the pairing process, the number
of pairs is at least half the number of misclassifications in that class. Therefore, we conclude C1 �
Ne(z)/2;

(iii) condition (ii) of Theorem 3 implies that for every pair of classes (a, b), there exists at least one
class c for which (A8) holds eventually. Thus eventually, for any of the C1 pairs (i, j), we obtain a
number of triples at least as large as the cardinality of class c. Condition (i) in turn implies that the
cardinality of the smallest class grows as �(N/K ), and thus we may write C2 = C1�(N/K ).

We can now express the difference L̄ P(z̄) − L̄∗
P(∗) as a sum of nonnegative divergences D(Pi j || θ̄ζ ∗

i j
),

where ζ ∗
i j is the assignment mapping associated to ∗, and use (A8) to bound this difference below:

L̄ P(z̄) − L̄∗
P(∗) =

∑
i< j

D(Pi j || θ̄ζ ∗
i j
) = C2�

(
M K

N 2

)
= Ne(z)

2
�

(
M

N

)
.

�
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Proof of Lemma A2. Let ′ be a refinement of any partition  of the set {Pi j }i< j , and given a ∈
{1, . . . , L ′} indexing S′

a , let F(a) denote its index under . We show that L̄∗
P(′) � L̄∗

P() as follows:

L̄∗
P(′) =

L ′∑
a=1

|S′
a|{θ̄ ′

a log θ̄ ′
a + (1 − θ̄ ′

a) log(1 − θ̄ ′
a)}

�
L ′∑

a=1

|S′
a|{θ̄ ′

a log θ̄F(a) + (1 − θ̄ ′
a) log(1 − θ̄F(a))}

=
L∑

b=1

|Sb|{θ̄b log θ̄b + (1 − θ̄b) log(1 − θ̄b)} = L̄∗
P(),

where the first inequality holds by nonnegativity of Kullback–Leibler divergence, and the second equality
follows from the fact that ′ is a refinement of . �
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