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Abstract

The paper presents several approaches to generalized blockmodeling of valued networks, where values
of the ties are assumed to be measured on at least interval scale. The first approach is a straightforward
generalization of the generalized blockmodeling of binary networks [Doreian, P., Batagelj, V., Ferligoj,
A., 2005. Generalized Blockmodeling. Cambridge University Press, New York.] to valued blockmodeling.
The second approach is homogeneity blockmodeling. The basic idea of homogeneity blockmodeling is that
the inconsistency of an empirical block with its ideal block can be measured by within block variability
of appropriate values. New ideal blocks appropriate for blockmodeling of valued networks are presented
together with definitions of their block inconsistencies.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The paper presents several approaches to generalized blockmodeling of valued networks.
All these approaches are implemented in an R package blockmodeling (Žiberna, 2006). Unless
explicitly stated, the term “valued networks” is used for valued networks where values of the ties
are assumed to be measured on at least interval scale. Valued networks not measured on at least
interval scale (for example categorical) are not covered by this paper.

“Blockmodeling tools were developed to partition network actors (units) into clusters, called
positions, and, at the same time, to partition the set of ties into blocks that are defined by the
positions (see Lorrain and White, 1971; Breiger et al., 1975; Burt, 1976 for the foundational
statements)” (Doreian et al., 2004). It could be said that blockmodeling seeks clusters of equivalent
units based on a selected definition of equivalence.
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Doreian et al. (2005) state that there are three main characteristics of generalized blockmodeling
(in comparison to what they call conventional blockmodeling):
• A direct approach is taken to optimization (the algorithm works directly with network data and

does not transform them into some other form).
• A much broader set of ideal blocks is used instead of a few equivalence types.
• The model can be pre-specified (not only the allowed ideal blocks, but also their locations

within a blockmodel).
In this paper several types of generalized blockmodeling are distinguished: binary (rela-

tional) blockmodeling,1 valued blockmodeling and homogeneity blockmodeling. In the case of
homogeneity blockmodeling, two types are defined: sum of squares blockmodeling and absolute
deviations blockmodeling. The aim of this paper is to discuss blockmodeling of valued networks.
Therefore, binary blockmodeling is considered only as a basis to develop appropriate approaches
to blockmodeling of valued networks. It is also used for comparison with proposed approaches.

The most important difference between the three main types of generalized blockmodeling
is an appropriate definition of the criterion function, which measures the inconsistencies of the
empirical blocks with the ideal ones. The criterion functions have to consider the fact that values
of the ties in a valued network are measured on at least interval scale. Therefore, ideal blocks
must also be redefined. This is discussed in Sections 4 and 5. Ideal blocks of different types of
generalized blockmodeling cannot be used together in the same blockmodel.

Binary blockmodeling analyzes only binary2 networks and its criterion function measures
block inconsistencies in principle with the number of errors. The other two main types of general-
ized blockmodeling analyze valued networks. The criterion function of the valued blockmodeling
measures block inconsistencies as the deviation of appropriate values from either 0 or the value
determined by the parameter m. The criterion functions of both types of homogeneity blockmod-
eling measure the block inconsistencies with the variability of appropriate values.

Other blockmodeling approaches can be also used for valued networks. For structural equiva-
lence these approaches include both indirect and direct approaches (e.g. see Batagelj et al., 1992b;
Breiger et al., 1975). Two direct approaches are appropriate: an approach suggested by Breiger
and Mohr (2004) based on log-linear models and an approach suggested by Borgatti and Everett
(1992b), which is similar to homogeneity blockmodeling. Doreian and Mrvar (1996, 160–162)
also presented an approach for the analysis of valued signed graphs.3 The part of their criterion
function that corresponds to the “positive error” is the same as inconsistency for null blocks in
valued blockmodeling.

For regular equivalence, only two4 versions of the REGE (White, 1985a,b) algorithm exist for
blockmodeling of valued networks. The comparison between the approaches presented in this
paper and REGE is discussed in Žiberna (2005). A number of other approaches exist. However
since they search for different types of equivalences than those implemented in the approaches
suggested in this paper, they are not mentioned here.

1 The term binary blockmodeling type is used for generalized blockmodeling of binary networks, which was thoroughly
presented by Doreian et al. (2005).

2 Batagelj (1997: 148) presented a set of averaging rules for assigning values to the ties in the blockmodel obtained by
(binary) generalized blockmodeling based on types of blocks and values of the ties. Therefore, this approach also takes
into account values of ties. However it does so only for assigning values to the ties in the blockmodel. The partition and
the blockmodel are based only on the binary (relational) data.

3 Signed graphs are not discussed in this paper.
4 There exists a third version of REGE, the CATREGE algorithm (Borgatti and Everett, 1993), which is however

designed for categorically valued networks. This type of valued networks is not covered by this paper.
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2. Equivalences

As stated previously, blockmodeling seeks clusters of equivalent units based on some notion
of equivalence. There are several types of well known equivalences in social network analysis,
all originally defined for binary networks. The first one is structural equivalence, where units
are structurally equivalent if they have identical ties to the rest of the network (and themselves)
(Lorrain and White, 1971). The other well known type of equivalence is regular equivalence.
Regular equivalence is an attempt to generalize structural equivalence and as such includes
structural equivalence as a special case. The units are regularly equivalent if they are con-
nected in the same way to equivalent others (White and Reitz, 1983). Doreian et al. (1994)
introduced the concept of generalized equivalence, which is defined by the set of allowed ideal
blocks.

Let us first define some notations:
• The network N = (U,R), where U is a set of all units U = (u1, u2, . . ., un) and R is the relation

between these units R ⊆ U × U.
• In generalized blockmodeling, a relation R is usually represented by a valued matrix R with

elements [rij], where rij indicates the value (or weight) of the arc from unit i to unit j; r: R → R,

rij =
{

r(i, j), (i, j) ∈ R

0, otherwise
.

• Ci is a cluster of units.

• C = {C1, C2, . . ., Cn} is a partition of the set U;
n⋃

i=1

Ci = U; Ci ∩ Ci = 0, i�=j.

• Φ is a set of all feasible partitions.
• A partition C also partitions the relation R into blocks; R(Ci,Cj) = R ∩ Ci × Cj. Each such block

consists of units belonging to clusters Ci and Cj and all arcs leading from cluster Ci to cluster
Cj. If i = j, a block R(Ci,Ci) is called a diagonal block.

• Let T(Ci,Cj) denote a set of all ideal blocks, corresponding to an empirical block R(Ci,Cj).
Ideal blocks are defined in Table 1 in Section 4.

• f is a function that assigns to a valued vector of length n a real value; f : Rn → R. For example,
this function can be mean, maximum, sum, . . ..
Borgatti and Everett (1992b, Definition 5) gave a formal definition of structural equivalence

for valued networks. However, this definition of structural equivalence has exactly the short-
comings that the authors (Borgatti and Everett, 1992a) criticize in the original definition of
structural equivalence given by Lorrain and White (1971). These shortcomings are shown in
the fact that by this definition in a network without loops, two units that are connected cannot
be structurally equivalent. A definition without these shortcomings was given by Batagelj et al.
(1992b) and this one is used in this paper. Although the definition was formulated for binary
networks, it can also be used for valued networks, as already noticed noted by Batagelj et al.
(2004).

Definition. Suppose that ≡ is an equivalence relation on U then ≡ is a structural equivalence if
and only if for all a,b ∈ U, a ≡ b implies:
1. rbi = rai for all i ∈ U\{a,b},
2. rib = ria for all i ∈ U\{a,b},
3. rbb = raa, and
4. rab = rba.
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Table 1
Characterizations of ideal blocks

Ideal block with “label” Description for binary
blockmodelinga

Description for valued
blockmodeling

Description for
homogeneity
blockmodeling

Null “null” All 0b All 0c All 0d

Complete “com” All 1e All values at least me All equalf

Row-dominant “rdo” There exists an all 1 rowe There exists a row where
all values are at least me

There exists a row where all
values are equald,g

Col-dominant “cdo” There exists an all 1
columne

There exists a column
where all values are at
least me

There exists a column where
all values are equald,g

Row(-f)-regular “rre” There exists at least one 1
in each row

The f over each row is at
least m

f over all rows equal

Column(-f)-regular “cre” There exists at least one 1
in each column

The f over each column is
at least m

f over all columns equal

(f-)Regular “reg” There exists at least one 1
in each row and each
column

The f over each row and
each column is at least m

f over all rows and all
columns separately equal

Row-functional “rfn” There exists exactly one 1
in each row

There exists exactly one
tie with value at least m in
each row, all other 0

Max over all rows equal, all
other values 0g

Column-functional “cfn” There exists exactly one 1
in each column

There exists exactly one
tie with value at least m in
each column, all other 0

Max over all rows equal, all
other values 0g

a Doreian et al. (2005: 223).
b An exception may be cells on the diagonal, where then all cells should have value 1.
c An exception may be cells on the diagonal, where then all cells should have value at least m.
d An exception may be cells on the diagonal, where then all values should be equal.
e An exception may be cells on the diagonal, where then all cells should have value 0.
f Cells on the diagonal may be treated separately—their values should all be equal, however can be different from the

values of the off-diagonal cells.
g These descriptions/definitions of ideal blocks may change in the future. There are presented here only as suggestions

and are not yet evaluated.

Borgatti and Everett (1992b, Definition 6) also provided a formal definition of regular equiv-
alence for valued networks. Alternative definitions of regular equivalence for valued networks
measured on at least interval scale can be formulated from:
• Two algorithms, REGGE and REGDI (White, 1985a,b), for measuring the similarities and

dissimilarities of units in terms of regular equivalence.
• Ideas for defining block inconsistencies (generalized blockmodeling approach) for valued net-

works presented by Batagelj and Ferligoj (2000) that can be also used for regular equivalence.
However, none of these definitions are used in this paper. For valued networks, another type

of equivalence could be useful. For now, let us call it f-regular (or function-regular) equivalence.
This equivalence is used in place of regular equivalence in the paper. This definition can be
formally best presented in matrix terms and is given below. The definition is given for single
relation networks; however, it can be generalized to multi-relational networks by demanding that
the definition holds for all relations.
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Definition. Suppose ≡ is an equivalence relation on U that induces (or corresponds to) partition
C. Then ≡ is an f-regular equivalence (where f is a selected function, like sum, maximum, mean,
. . .) if and only if for all a,b ∈ U and all X ∈ C, a ≡ b implies:

1. f
i ∈ X

(rai) = f
i ∈ X

(rbi) and

2. f
i ∈ X

(ria) = f
i ∈ X

(rib).

If the function f is maximum, we get the definition of the regular equivalence for valued networks
that can be defined based on ideas of Batagelj and Ferligoj (2000). However, other functions are
also appropriate, especially sum and mean. Sum-regular equivalence would, for binary networks,
correspond to exact coloration as presented by Everett and Borgatti (1994). The comparison with
the definitions that can be formulated based on two algorithms developed by White (1985a,b) can
be found in Žiberna (2005).

This could be considered as another alternative definition of the regular equivalence for valued
networks, or probably better, as a new type of equivalence. The definition is not meant to be a
strict generalization of the regular equivalence to valued networks. However, it tries to capture
the idea that it is not necessary for equivalent units to be equivalently connected to an individual
unit, but only to a group of equivalent units.

In order to find partitions that match (or almost match) a selected equivalence, the equivalence
must be operationalized (by an equivalence detector). Batagelj et al. (1992a,b) introduced the
criterion (fit) function that measures how the data fit an equivalence as a means of operationalizing
equivalences in direct approaches. In the context of generalized blockmodeling, operationalization
of a specific equivalence is done by specifying ideal blocks and measures of block inconsistencies
of empirical blocks with these ideal blocks. For binary networks, this was already done by Batagelj
et al. (1992b) for structural equivalence, by Batagelj et al. (1992a) for regular equivalence, and by
Doreian et al. (1994) for generalized equivalence. Batagelj and Ferligoj (2000) presented some
ideas for operationalizing these equivalences for valued networks. Ideal blocks and measures of
block inconsistencies of empirical blocks with these ideal blocks are presented in Section 4 for
valued blockmodeling and in Section 5 for homogeneity blockmodeling. Borgatti and Everett
(1992b) also operationalized structural equivalence for valued networks.

3. Criterion function

A common component of all types of generalized blockmodeling is a basic criterion function.
The only part of the criterion function that changes among different types of generalized block-
modeling is the part where inconsistencies with ideal blocks are computed. The rest of the criterion
function is the same as in generalized blockmodeling of binary networks (binary blockmodeling)
as presented by Doreian et al. (2005). Some properties of part of the criterion function common
to all types of generalized blockmodeling are discussed in this section.

δ(R(Ci,Cj),T) measures the deviation (the inconsistency) of the empirical block R(Ci,Ci) from
(with) the ideal block T ∈ T(Ci,Cj). This term can also be normalized to exclude the effect of block
size by dividing it by the number of cells in the block.

Block inconsistency p(Ci,Ci) is defined as p(Ci, Cj) = min
B ∈ B(Ci,Cj)

δ(R(Ci, Cj), T ).

The total inconsistency P(C) of a partition C can be expressed as sum of inconsistencies within
each block (block inconsistencies) across all blocks: P(C) = ∑

Ci,Cj ∈ Cp(Ci, Cj).
A criterion function is compatible with a definition of equivalence if P(C) = 0 if and only if C

induces that equivalence.
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These definitions hold for all types of generalized blockmodeling of valued networks. The
difference between different types of generalized blockmodeling is in the descriptions of ideal
bocks T(Ci,Cj) and in the definitions of block inconsistencies (δ(R(Ci,Ci),T). For valued and
homogeneity blockmodeling, these had to be adapted to valued networks. This is covered in
Sections 4 and 5.

4. Generalization of binary blockmodeling to valued blockmodeling

The approach presented in this section was inspired by the fact that in the past, when valued
networks were analyzed using generalized blockmodeling (binary blockmodeling), they were first
converted to binary networks. This was done by recoding values over (or equal to) a certain thresh-
old (often 1) into ones and the other into zeros (examples can be found in Doreian et al., 2005).
Analyzing a network in such a way causes the loss of a considerable amount of information. The
approach presented in this section (valued blockmodeling) reduces the amount of information lost,
although some loss usually still occurs. Information about the values of ties (or sometimes values
of function f over certain values) above m (a parameter that is defined later) is lost. If m is set to a
sufficiently high5 value, no information is lost. However, this might not be appropriate in many net-
works, since it might cause almost all or even all blocks to be declared null. It should be also noted
that both approaches mentioned above6 do not search for the structural or f-regular equivalence
for valued networks, defined in Section 2. The equivalences they search for are defined using ideal
blocks (presented in the following subsection). In the case of binary blockmodeling, the threshold
used in the transformation of a valued network into a binary network must also be considered.

In the remainder of this section, the ideal blocks for valued blockmodeling and the inconsisten-
cies of empirical blocks with these ideal blocks are defined. This is done by generalization of ideal
blocks for binary blockmodeling to valued networks. At the end of this section, the parameter m,
introduced in the generalization to valued networks, is discussed.

4.1. Ideal blocks

We first look at descriptions of ideal blocks for binary blockmodeling (for binary networks).
They are presented in Table 1 (for now, look at only the first two columns).

All ideal blocks can be described using only three types of conditions:
1. a certain cell must be (at least) 1,
2. a certain cell must be 0 and
3. at least 1 cell in each row (or column) must be 1 or, to put it differently, the f over each row (or

column) must be at least 1, where f is some function over a that has the property f(a) ≥ max(a),
and a is a valued vector.

At least one of these three conditions can be found in each ideal block (of binary blockmodel-
ing). The three of them together are enough to describe (with the correct specification of “certain
cell”) all ideal blocks presented in Table 1 and compute their inconsistencies. The block incon-

5 What is “sufficiently high value” depends on the considered ideal blocks. In case of null blocks, no information is lost.
For complete, row- and column-dominant and row and column-functional blocks, no information is lost if m is equal to or
larger than the maximum of values in considered empirical blocks. For f-regular, row- and columns-f-regular blocks, no
information is lost, if no value of function f over all rows (row-f-regular), columns (column-f-regular) or both (f-regular)
is larger than m.

6 Binary blockmodeling when used on valued networks and valued blockmodeling, if loss of information occurs.
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sistency is the weighted sum of the number of times each condition is broken (which applies to a
certain block).7 The term weighted sum is used, since sometimes the block inconsistency or part
of it is multiplied by the number of cells in a given row or column. If we could generalize these
three conditions to valued networks, we would generalize the ideal blocks to valued networks.

We only need to replace the ones (1) in the conditions with an appropriate parameter (denoted
by m) to generalize these three conditions to valued networks. The new conditions can then be
written as:

1. a certain cell must be (at least) m,
2. a certain cell must be 0, and
3. the f over each row (or column) must be at least m, where f is again some function over a that

has the property f(a) ≥ max(a), and a is a valued vector.

Based on the generalization of these conditions and descriptions of ideal blocks for binary
networks (presented in the second column of Table 1) the description of ideal blocks for valued
networks presented in the third column of Table 1 can be derived. The fourth column is discussed
later in Section 5. It should be noted that the ideal blocks for valued blockmodeling do not perfectly
match structural and f-regular equivalence as they were defined in Section 2. As a result, criterion
function for valued blockmodeling is not fully compatible with these definitions of structural
and f-regular equivalence. The criterion function is compatible with the equivalence defined by a
selection of allowed ideal blocks defined in the third column of Table 1.

On the basis of these descriptions, deviations (inconsistencies) of empirical blocks from (with)
ideal blocks can be defined. In Table 2 these definitions are presented.

One nice property of this generalization is that if we have a binary network and set m to 1, these
inconsistencies match those of binary blockmodeling. Therefore, binary blockmodeling can be
seen as a special case of valued blockmodeling. Actually, even functions that do not comply with
the property f(a) ≥ max(a) could be used as f. However, in that case regular, row- and column-
regular blocks are no longer compatible with complete blocks and binary blockmodeling is no
longer a special case of valued blockmodeling.

The block inconsistencies presented in Table 2 are very similar to those suggested by Batagelj
and Ferligoj (2000). There are three main differences:

1. Batagelj and Ferligoj do not use the parameter m. In their approach, the parameter m is replaced
by the maximum of the block analyzed. This makes their criterion function compatible with
structural and regular equivalence, defined in Section 2. However, this also makes their criterion
function strongly dependent on the block maximums.

2. In the approach by Batagelj and Ferligoj, f is fixed at maximum (for example in f-regular
blocks).

3. Their block inconsistencies are normalized to the values on the interval from 0 to 1.

4.2. The parameter m

The main problem is to determine an appropriate value of the parameter m. The parameter m
presents the minimal value that characterizes the tie between a unit and either a cluster (for f-
regular, row-f-regular and column-f-regular blocks) or another unit (for complete, row-dominant,
column-dominant, row-functional and column-functional blocks) in such a way that this tie sat-
isfies the condition of the block.

7 The exception is the regular block, where the weighted sum is corrected for the overlap of errors in rows and columns.
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Table 2
Block inconsistencies for binary and valued blockmodeling

Ideal block Block inconsistencies—δ(R(Ca,Cb),T) Position of the block

Binary blockmodelinga Valued blockmodeling

Null st

nr∑
i=1

nc∑
j=1

bij Off-diagonal

st + min(0,nr − 2sd)

nr∑
i=1

nc∑
j=1

bij + min
(

0,

∑
(m − diag(B))+ −

∑
diag(B)

)
Diagonal

Complete nrnc − st

nr∑
i=1

nc∑
j=1

(m − bij)+ Off-diagonal

nrnc − st + min(−nr + 2sd,0)

nr∑
i=1

nc∑
j=1

(m − bij)+ + min
(

−
∑

(m − diag(B))+ +
∑

diag(B), 0
)

Diagonal

Row-dominant (nc − mr)nr min((m − B)+1)nr Off-diagonal

[nc − mr − (1 − sd)+]nr min
(

(m − B)+1 +
(∑

diag(B) − (diag(m − B)+)
−))

nr Diagonal

Column-dominant (nr − mc)nc min(1′(m − B)+)nc Off-diagonal

[nr − mc − (1 − sd)+]nc min
(

1′(m − B)+ +
(∑

diag(B) − (diag(m − B)+)
−))

nc Diagonal

Row-f-regular (nr − pr)nc

nr∑
i=1

(m − f (B[i,]))
+nc

Column-f-regular (nc − pc)nr

nc∑
j=1

(m − f (B[,j]))
+nr
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f-regular (nc − pc)nr + (nr − pr)pc

nr∑
i=1

nc∑
j=1

max((m − f (B[i,]))
+, (m − f (B[,j]))

+)

Row-functional st − pr + (nr − pr)nc

nr∑
i=1

⎛
⎝(m − max(B[i,]))

+nc +
nr∑

j=1,j �=arg max bijj

bij

⎞
⎠

Column-functional st − pc + (nc − pc)nr

nc∑
j=1

⎛
⎝(m − max(B[,j]))

+nr +
nr∑

i=1, i�=arg max bijj

bij

⎞
⎠

st, total block sum = number of 1s in a block; sd, diagonal block sum = number of 1s on a diagonal; nr, number of rows in a block = card Ci; nc, number of columns in a block = card
Cj; pr, number of non-null rows in a block; pc, number of non-null columns in a block; mr, maximal row-sum; mc, maximal column-sum; B, the matrix of the block R(Ci,Cj);
B[i,], the ith row of the matrix B; B[,j], the jth column of the matrix B; bij, an element of matrix B defined by ith row and jth column; diag, extract the diagonal elements of the

matrix (x)+ =
{

x, x > 0

0, otherwise
, (x)− =

{
x, x < 0

0, otherwise
.

a Slightly adapted from Doreian et al. (2005: 224).
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For example, for a citation network and m equal to 5, an author is (strongly) linked to another
author, if (s)he has cited the author at least five times.

The best way for determining the parameter m is prior knowledge, which can tell us how strong
a tie should be to be considered strong or relevant. If such prior knowledge does not exist, the
following guidelines can be helpful.

A partition obtained with another approach can be used. Given a specified blockmodel, an
m is sought which approximately matches the partition. Such m is not the m that minimizes the
total inconsistency, since this would always be achieved by setting m (close) to 0. For example,
for complete blocks, the means of the complete blocks or the distribution of values in these
blocks could be examined. For regular blocks, the mean or distribution of values of the function
f over rows and columns in the regular blocks could be examined. This procedure should give an
(interval) estimate of possible m values, which should then be tested.

The parameter m can also be determined using the distribution of appropriate values. The
nature of these values depends on the ideal blocks in the desired blockmodel:
• For models without f-regular, row- and column-f-regular blocks (e.g. complete, dominant and

null blocks), the distribution of cell values must be examined.
• For models with f-regular, row- and column-f-regular blocks, the distribution of row or column

function f values (the values of function f computed over rows or columns) must be examined.
If a distribution (where the value 0 is excluded) is bimodal, the parameter m should be chosen

somewhere in between the both modes. If the distribution is unimodal, the parameter m could
be set around the mode. If the distribution of row or column function f values is considered and
the function f is influenced by the number of units over which it is computed (such as sum), the
expected number of f-regular or row- or column-f-regular blocks for at least some groups must
be taken into account.

An appropriate m should also be somewhere between the threshold (slicing parameter) used for
binarizing (slicing) the network and double that value. Both the slicing parameter and the parameter
m distinguish between relevant and irrelevant ties. However, there is also an important difference.
The slicing parameter makes the distinction between relevant and irrelevant ties in such a way that
a tie is relevant if it is higher or equal to the slicing parameter, and irrelevant otherwise. On the other
hand, a tie is considered relevant if it is closer to m than to 0. Therefore, m equal to double the slicing
parameter would classify the same values as relevant and irrelevant. If f-regular, row- and column-
f-regular blocks are used and the function f has a property f(a) > max(a), m can be even higher.

5. Homogeneity blockmodeling

Another approach to generalized blockmodeling of valued networks is to search for homogene-
ity within blocks. It searches for the partition where the sum of some measure of within block
variability over all blocks is minimal. The idea was presented by Borgatti and Everett (1992b).
The measure of variability measures the inconsistency of an empirical block with the ideal block.
Based on this definition of block inconsistency, ideal blocks for homogeneity blockmodeling can
be defined and incorporated into the framework presented previously (in the criterion function
presented in Section 3).

Two measures of variability can be defined: the “sum of square deviations from the mean” (sum
of squares) and the “sum of the absolute deviations from the median” (absolute deviations). The
measures of variability in a block can be defined in several ways. The measure of variability can
either be computed over all cell values in the block (for structural equivalence) or over values of the
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Table 3
Block inconsistencies for homogeneity blockmodeling

Ideal block Block inconsistencies—δ(R(Ca,Cb),T) Position of the block

Sum of squares Absolute deviations

Null
∑

i,j

b2
ij

∑
i,j

|bij | Off-diagonal

∑
i�=j

b2
ij + ss(diag(B))

∑
i�=j

|bij | + ad(diag(B)) Diagonal

Complete ss
i,j

(bij) ad
i,j

(bij) Off-diagonal

ss
i�=j

(bij) + ss(diag(B)) ad
i�=j

(bij) + ad(diag(B)) Diagonal

Row-f-regular ss
i

(f (B[i,]))nc ad
i

(f (B[i,]))nc

Column-f-regular ss
j

(f (B[,j]))nr ad
j

(f (B[,j]))nr

f-regular max(ss
i

(f (B[i,]))nc, ss
j

(f (B[,j]))nr) max(ad
i

(f (B[i,]))nc, ad
j

(f (B[,j]))nr)

B, matrix of block R(Ci,Cj); B[i,], the ith row of the matrix B; B[,j], the jth column of the matrix B; bij, an element
of matrix B defined by ith row and jth column; nr, number of rows in a block = card Ci; nc, number of columns in a
block = card Cj; diag(B), a vector of the diagonal elements of the matrix B; Me(x), median; x̄, arithmetic mean; ss(x),
sum of square deviations from the mean: ss(x) =

∑
i
(xi − x̄)2; ad(x), sum of absolute deviations from the median:

ad(x) =
∑

i
|xi − Me(x)|.

function f over rows, columns or both separately (for row-f-regular, column-f-regular and f-regular
blocks8). If the measure is computed over the values of the function f over rows or columns, the
result is then multiplied by the number of elements in each row or column, respectively.

The descriptions of ideal blocks for homogeneity blockmodeling are presented in the last
(fourth) column in Table 1. Here it can be seen that the null block (in homogeneity blockmodeling
approach) is only a special case of the complete block. As always in generalized blockmodeling,
the complete block is a special case of row-(f-)regular, column-(f-)regular and (f-)regular blocks.9

In homogeneity blockmodeling, the null block is therefore also a special case of these blocks.
Based on these descriptions and a selected measure of variability, block inconsistencies can be

defined. The block inconsistencies for both types of homogeneity blockmodeling are presented
in the Table 3.

Block inconsistencies for most of the ideal block presented in Table 3 follow quite naturally
from the descriptions of ideal blocks in the last column of Table 1. The only exception is the block
inconsistency for f-regular block.

Several possibilities were considered for the block inconsistency with the f-regular block (the
last row in Table 3). Namely, sum and mean have been considered instead of maximum. Although
the use of sum might seam the most logical, this might make the block inconsistency for f-regular
block too large. Similar approach was taken in valued blockmodeling, however there a special
care was taken in order to make sure that each cell can contribute only once to the f-regular block
inconsistency. This approach is not possible here.

8 For discussion if any of these functions result in regular equivalence see Section 3.
9 The complete block is also a special case of row- and column-dominant blocks. However these are for now not

discussed within homogeneity approach.
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Maximum was eventually chosen, since it preserves the inequalities of block inconsistencies
that hold in both binary and valued blockmodeling:

δ(R(Ca, Cb), reg) ≤ δ(R(Ca, Cb), cre) ≤ δ(R(Ca, Cb), com) and

δ(R(Ca, Cb), reg) ≤ δ(R(Ca, Cb), rre) ≤ δ(R(Ca, Cb), com).

Row (column)-mean-regular (f is set to mean) and complete blocks are compatible. The block
inconsistencies for “sum of squares complete block” and “sum of squares row (column)-mean-
regular block” match if and only if the rows (columns) are homogeneous, that is if each row
(column) has zero variance. Therefore, using mean for f is suggested always, when f-regular (,
row- and column-f-regular) and complete blocks are used in the same blockmodel. Functions
other than mean can be used for f; however, then the inconsistencies of f-regular (, row- and
column-f-regular) and complete blocks are not compatible. In this case, such ideal blocks cannot
be used in the same blockmodel. The block inconsistencies can be adjusted for pre-specified
blockmodeling by substituting mean (x̄) or median (Me(x)) (as a value from which deviations
are computed) by the pre-specified value. The block inconsistency for null block can be seen as
an example how the inconsistency for complete block can be adjusted for the pre-specifies value
of 0.

The main advantage of homogeneity blockmodeling over binary and valued blockmodeling is
that it does not require any additional parameters (such as parameter m in valued blockmodeling).
Therefore, solutions gained using homogeneity blockmodeling could be used as an initial solu-
tion for binary or valued blockmodeling. In addition, no information is lost using homogeneity
blockmodeling and negative values of the ties can be used directly.

A similar approach for structural equivalence was already suggested by Borgatti and Everett
(1992b). They used average variance within matrix blocks as a measure of fit. The disadvantage
of this measure compared with the sum of squares and absolute deviations measures proposed in
this paper is that the size of the block has a large effect on the contribution of an individual cell
(in the matrix) to the total block inconsistency.

Under the generalized blockmodeling approach presented by Doreian et al. (2005), block
inconsistencies can also be “normalized” by dividing them by the number of cells in a
block. In this case, the sum of squares approach (blockmodeling) changes into the variance
approach.

6. Example: notes borrowing between social-informatics students (line measurement)

The data in this example come from a survey conducted in May 1993 on 13 social-informatics
students (Hlebec, 1996). The network was constructed from answers10 to the question, “How
often did you borrow notes from this person?” for each of the fellow students. The results are
presented in Fig. 1.

The aim of the analysis is to discover groups of students that play similar roles. All types of
generalized blockmodeling discussed in the paper are considered and compared.

It seems unlikely that a student would borrow notes from each student in a given group.
Therefore, the model of (f-)regular equivalence is used. Several functions are used as f. These
functions are maximum and sum for valued blockmodeling and maximum and mean for homo-

10 The respondents indicated the frequency of borrowing by choosing (on a computer) a line of length 1–20, where 1
meant no borrowing. 1 was deducted from all answers, so that 0 now means no borrowing.
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Fig. 1. Valued network of notes borrowing between social-informatics students.

geneity blockmodeling. The use of maximum is based on the ideas of Batagelj and Ferligoj (2000)
and the REGGE algorithm (White, 1985a). There maximum is presented as a suitable function
for generalization of regular equivalence to valued networks. The function sum is used in valued
blockmodeling since it is assumed that students of a given group want to borrow a certain amount
of notes from students of another (or the same) group. The problem with this assumption is that the
values do not represent the amount of notes borrowed. The use of function mean in homogeneity
blockmodeling is equivalent to the use of function sum in valued blockmodeling.

It should be noted that the three main types of generalized blockmodeling use slightly different
definitions of (f-)regular blocks, even if the same f is used in f-regular blocks. For the use of
binary blockmodeling, a valued network must first be converted into a binary one. This is done
by recoding all values lower than the slicing parameter into zeros and the rest into ones. Then the
definition of a regular block is that the maximum of each row and each column must be at least the
slicing parameter. If the slicing parameter is replaced with m, the result is the definition of max-
regular blocks for valued blockmodeling. The definition of max-regular block in homogeneity
blockmodeling is slightly different. Here the maximums of all rows and all columns separately
must be equal. The definitions for other functions as f can be formulated based on Table 1.

By inspecting several partitions produced by different types of generalized blockmodeling,
allowed ideal blocks and with different numbers of clusters, it can be seen that a partition into
three clusters is the most appropriate. Therefore, only partitions into three clusters are presented.
The remainder of this section follows the procedure suggested in Section 7. There the rational for
such procedure is also explained.

6.1. Homogeneity blockmodeling

First homogeneity blockmodeling was applied to the network.
Optimal partition for sum of squares and absolute deviations blockmodeling11 with mean-

regular blocks is presented in Fig. 2.

11 In this case both types of homogeneity blockmodeling produce the same partition.
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Fig. 2. Optimal partitions for sum of squares and absolute deviations homogeneity blockmodeling with mean-regular
blocks.

Based on this partition, the appropriate m for valued blockmodeling with null and sum-regular
blocks would be around 5 or 10. This assumption is based on the following two matrices that
represent the mean row and columns sums in each block of that blockmodel.

Mean row sums: Mean column sums:

1 2 3 1 2 3

1 2.0 8.8 31.2 1 2.0 8.8 52.0
2 10.8 5.5 14.6 2 10.8 5.5 24.3
3 1.3 2.0 25.5 3 0.8 1.2 25.5

However instead of the function mean over rows and columns, maximum could be also
used, or to put it differently, instead of searching for mean-regular blocks, max-regular
blocks could be searched for. The optimal partitions for max-regular blocks are presented in
Fig. 3.

Here the sum of squares and absolute deviations partitions do not match. Subjective judgment
is needed to determine which partition is better. Absolute deviations partition seems better. It
induces blocks that seem “cleaner”. The upper and lower left blocks can be now more easily
interpreted as null blocs12 and the unit 8 fits quite nicely in the third group. Based on this
partition, the appropriate m for valued blockmodeling with null and max-regular blocks would
be around 5. This assumption is based on the following two matrices that represent the mean row
and columns maximums in each block of that blockmodel.

12 The procedure identifies these blocks as f-regular blocks. As noted in Section 5, null blocks are only a special case of
f-regular blocks, where the value of function f for all rows and all columns is exactly 0. This rarely happens. However,
when we are interpreting the result of the blockmodel, we can interpret f-regular blocks that are close to null blocks as
null blocks.
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Fig. 3. Optimal partitions for homogeneity blockmodeling with max-regular blocks.

Mean row maximums: Mean column maximums:

1 2 3 1 2 3

1 1.8 5.2 16.0 1 1.8 5.4 17.0
2 8.4 2.0 9.0 2 7.8 2.6 12.7
3 2.0 0.0 14.7 3 2.0 0.0 13.0

6.2. Valued blockmodeling

The best13 results for valued blockmodeling using null and sum-regular blocks were obtained
with one of the suggested m values −10. It produced the partition in Fig. 4 and the following
model (since it was already stated that sum-regular blocks were used; only “reg” is used to indicate
sum-regular blocks):

1 2 3

1 “null” “null” “reg”
2 “null” “reg” “reg”
3 “null” “null” “reg”

For valued blockmodeling with null and max-regular blocks, m equal to 5 performed better,
again as suggested by max-regular absolute deviations partition. This partition is identical to the
one obtained using sum-regular equivalence and therefore presented in Fig. 4. The model is also
the same as above (only that “reg” now indicates max-regular blocks). The same setting also
produced a second, very similar partition with the same model. The only difference is that unit
13 is moved from the first to the second group.

13 Again based on subjective judgment.
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Fig. 4. Optimal partition for valued blockmodeling obtained using null and max-regular blocks with m equal to 5 or using
null and sum-regular blocks with m equal to 10.

6.3. Binary blockmodeling

In this case binary blockmodeling does not produce as good results as the previous approaches.
It was explored on the matrix on Fig. 1 sliced at 1, 2, 3, 5, and 10 (values of ties equal or
grater to this values were recoded into ones). These values were suggested by the barplot on
Fig. 5.

Fig. 5. Histogram of cell values for the matrix on Fig. 1.
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Fig. 6. Optimal partitions for binary blockmodeling with regular equivalence with different slicing parameters.

All of the three cluster solutions contain obvious misclassifications.14 The best among them
are presented in Fig. 6. The first solution is based on the network sliced at 1. It is presented on
the first matrix in Fig. 6 as a binary network and on the second matrix as a valued network. The
biggest problem with this solution is that the unit 4 is not in the first group. This might not be
so evident if we would be looking at a binary network, but with additional data that the valued
network provides, it is obvious. The same setting (matrix on Fig. 1 sliced at 1) produced another
optimal solution, which is presented on the third matrix in Fig. 6. These two solutions (based on
network sliced at 1) have both the following image:

1 2 3

1 “null” “reg” “reg”
2 “reg” “reg” “reg”
3 “null” “null” “reg”

Partitions presented on the fourth and fifth matrices in Fig. 5 were obtained on the network
sliced at 2. The partition of the second solution is the same as the one of the second solution
obtained on network sliced at 1. The solutions obtained on network sliced at 2 are reasonably
good, although it is obvious that at least unit 8 in the first solution and unit 4 in the second solution
are misclassified. The accompanying images are:

14 The two cluster solution has other deficiencies.
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Solution 1 Solution 2

1 2 3 1 2 3

1 “null” “reg” “reg” 1 “null” “null” “reg”
2 “reg” “reg” “reg” 2 “reg” “reg” “reg”
3 “null” “null” “null” 3 “null” “null” “reg”

The partition on the sixth matrix in Fig. 6 is based on a network sliced at 3 and has the image:

1 2 3

1 “null” “null” “reg”
2 “null” “reg” “reg”
3 “null” “null” “null”

As in the previous partitions, at least one unit (unit 4) is misclassified. A search for three cluster
solution on network sliced at 5 did not produce satisfactory results. It produced 100 partitions
with minimum inconsistency.

6.4. Interpretation

It is hard to select the most appropriate partition out of the ones presented, since they were
obtained using different criteria functions and different definitions of ideal blocks. A researcher
can select a partition based on several criteria, some of which are:
• the suitability of the definition of ideal blocks,
• the possibility of logical interpretation of the partition and obtained blockmodel, and
• the “aesthetic” characteristics of the partition.

The partitions that seem the most suitable are both partition based on absolute deviations block-
modeling (with max- and mean-regular blocks) and the partition based on valued blockmodeling
(which was obtained with a model allowing null blocks and either max-regular blocks with m = 5
or sum-regular blocks with m = 10).

In all these partitions, a group exists from which everybody borrows notes and whose members
do not borrow notes from anybody outside their group. This group consists of units 4, 8, 9 and
sometimes unit 3. This is probably the group that makes good notes on a regular basis (presumably
good students).

The interpretation of the other two groups differs depending on which of the solutions we
interpret. Based on the partitions obtained using absolute deviations blockmodeling, the other
two groups exhibit similar behavior. They borrow notes from both remaining groups (besides
themselves) and lend notes to each other; however, they only seldom borrow (lend) notes within
their group. The main difference between these two groups is that one of them relies more heavily
on the first group (good students). This might be two groups of students that do not have much
contact with the members of their group.

The interpretation of the valued blockmodeling solution seems more logical. Again there are
two groups in addition to the good students group. Both of them borrow notes from the good
students group, while only one of them borrows within its group. They rarely borrow from each
other. One of them could be a group of students that do not have much contact with fellow students
and the other the “average” students.



A. Žiberna / Social Networks 29 (2007) 105–126 123

7. Suggested procedure for generalized blockmodeling of valued networks

Two main approaches or types of generalized blockmodeling of valued networks have been
suggested. In this section some suggestions are made about the selection of a type of general-
ized blockmodeling for a particular generalized blockmodeling problem. These suggestions were
already followed in the example in the previous section.

The main suggestion is that if it is possible, both valued and homogeneity blockmodeling
should be considered. Of course, this is a very general suggestion. More complete guidelines
have to take into account:
• the nature of data, the prior knowledge that exists about the studied network or specified

blockmodel,
• the type of equivalence or ideal blocks sought, and
• does a pre-specified model exist and if so, how is it specified.

Most of the suggestions presented in this section follow quite naturally from the advantages
and disadvantages described in the following section.

The selection of the appropriate approach is usually quite straightforward in the case of suffi-
cient prior knowledge and optional pre-specified models. Therefore this situation is not covered
in this section. Also the selection of the approach is meaningless when only one approach is
appropriate for either the data or selected ideal blocks. For example, at least for now, valued
blockmodeling cannot handle negative values of the ties.15 On the other hand, the inconsistencies
for row- and column-dominant and row- and column-functional blocks are currently not defined
for homogeneity blockmodeling.

What is described here is a suggested procedure for generalized blockmodeling of valued
networks when:
• both approaches are feasible (meaning especially only nonnegative values of the ties and ideal

blocks supported by homogeneity blockmodeling) and
• no, or at least insufficient, prior knowledge is available.

In this case, homogeneity approach should be applied first with appropriately selected ideal
blocks. Both types of homogeneity blockmodeling can be tested. Then valued blockmodeling can
be used to check if any improvement is possible, especially if more complex models are desired
than supported by homogeneity blockmodeling.

For valued blockmodeling, the parameter m is required. Since a partition is already avail-
able, this information can be used to select an appropriate m. For example, for complete
blocks, the means of the complete blocks or the distribution of values in these blocks
should be examined. For regular blocks, the mean or distribution of values of the function
f over rows and columns in the regular blocks should be examined. This procedure should
give an (interval) estimate of possible m values, which should then be tested using valued
blockmodeling.

8. Advantages and disadvantages of proposed approaches

First, the advantages and disadvantages that are common to both proposed approaches to
generalized blockmodeling of valued networks (valued and homogeneity blockmodeling) are

15 The valued blockmodeling could be easily adapted to allow negative values of ties. Even without adaptations it is
sometimes possible to convert a network so that all values are nonnegative and then apply valued blockmodeling.
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listed and described. Then, the advantages and disadvantages specific to only one of the types of
generalized blockmodeling are discussed.

8.1. Advantages and disadvantages of generalized blockmodeling of valued networks

The main advantage of the blockmodeling of valued networks compared to binary blockmod-
eling is that more information is used16. This is actually the source of the other advantage.

The second advantage is that there are fewer partitions having identical values of the criterion
function. It could be said that approaches for generalized blockmodeling of valued networks mea-
sure the inconsistencies more precisely. Only one optimal partition is usually found for generalized
blockmodeling of valued networks, especially for homogeneity blockmodeling. This can be also
seen in the example in Section 6. More then one optimal partition occurred on several occasions
when using binary blockmodeling and never while using valued or homogeneity blockmodeling.

A requirement of the proposed approaches is that the network should be measured on at least
interval scale. This may (or may not) be a disadvantage.

8.2. Advantages and disadvantages of valued blockmodeling

The need for the parameter m is a disadvantage of valued blockmodeling, but only with respect
to homogeneity blockmodeling. It is not a disadvantage with respect to binary blockmodeling, as
a slicing parameter is used in binary blockmodeling for binarization of the valued networks. The
valued blockmodeling is less sensitive to the selection of the parameter m than binary blockmod-
eling to the selection of the slicing parameter. In valued blockmodeling, in e.g. complete blocks,
values of ties just under m have only a small inconsistency, while in binary blockmodeling all
values of ties under the slicing parameter have equal inconsistencies. This is even more true in
the case of sum-regular blocks, since values in a row or column in a block that are too small to be
significant by themselves, can sum up to a significant relation between an individual and a group.

Valued and binary blockmodeling have one advantage compared to homogeneity blockmod-
eling. This advantage is the richness of possible ideal blocks that they allow. Homogeneity
blockmodeling, at least for now, has a very limited set of allowed ideal blocks.17 However, this
might change in the future, since other ideal blocks could probably be adapted for homogeneity
blockmodeling as well. Even within this limited set of ideal blocks, all are not necessary com-
patible. Actually, in homogeneity blockmodeling, f-regular, row- and column-f-regular blocks
are only compatible with complete blocks, if the f (the function used in f-regular, row-, and
column-f-regular blocks) is mean.

Another disadvantage of valued blockmodeling is the way block inconsistencies are computed.
The null blocks have a handicap in the presence of large values. While for complete blocks each
cell can contribute to a block inconsistency at maximum m, in null blocks this contribution is
not limited. The problem with this is that a large enough value can cause an otherwise null block
to be declared complete. This problem could be overcome by censoring18 the network at some

16 Using these approaches, no information or only a little is lost (see Section 4 for discussion where information is lost
or discarded).
17 See Table 3.
18 By censoring is meant recoding values over some threshold to this value. The threshold could be m or higher. By

selecting threshold m, the maximum contribution of a cell to block inconsistency would be m for both null and complete
blocks. This threshold should not be lower than m, since this would make complete blocks with inconsistency 0 impossible.
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value and thus limiting the contribution of each cell to block inconsistency for null block to this
value.

Although valued blockmodeling uses substantially more information than binary blockmodel-
ing, it usually still discards some information. For example, when computing inconsistencies for
complete blocks, it discards information about cell values above m. Homogeneity blockmodeling,
on the other hand, does not discard any information. This also means that valued blockmodeling
(or its criterion function) is not fully compatible with the definitions of structural and f-regular
equivalences defined in Section 2.

8.3. Advantages and disadvantages of homogeneity blockmodeling

The main advantage of homogeneity blockmodeling is that no additional parameters need to
be set in advance and its main disadvantage is that it can consider fewer possible ideal blocks
than both binary and valued blockmodeling. In addition, only homogeneity blockmodeling uses
all available information. As noted above, homogeneity blockmodeling (or its criterion function)
is also fully compatible with the definitions of structural and f-regular equivalences defined in
Section 2.

9. Conclusions

In the paper, two new approaches to generalized blockmodeling of valued networks have been
presented. Several types of generalized blockmodeling are distinguished: binary blockmodeling,
valued blockmodeling and homogeneity blockmodeling. The term binary blockmodeling is used
for generalized blockmodeling of binary networks, presented by Doreian et al. (2005).

The two new approaches use more information (values of ties, not only on existence of a tie)
about the network than binary blockmodeling. As a result, they produce fewer partitions with
identical values of the criterion function. The requirement of the proposed approaches is that the
network ties should be measured on at least interval scale.

Valued blockmodeling is a straightforward generalization of binary blockmodeling, with binary
blockmodeling a special case of valued blockmodeling. Valued blockmodeling is less influenced
by the initial parameters than binary blockmodeling (the parameter m versus the slicing parame-
ter) for valued data. Valued blockmodeling can also consider more ideal blocks than homogeneity
blockmodeling and has fewer problems with compatibility of ideal blocks. These are the advan-
tages of valued blockmodeling. There are also disadvantages. The parameter m must be set in
advance while homogeneity blockmodeling requires no additional parameters. Valued blockmod-
eling (and binary blockmodeling) usually does (do) not use all available information on values
of ties. In addition, values of ties considerably larger than the parameter m can severely penalize
null blocks. This can distort a solution. However, this disadvantage can be overcome by censoring
large values.

The second approach presented is homogeneity blockmodeling. The basic idea of homogeneity
blockmodeling is that the inconsistency of an empirical block with its ideal block can be measured
by within block variability of appropriate values.19 It addresses one of the main problems of valued
and binary blockmodeling when applied to valued networks. When using valued blockmodeling,
the parameter m must be set. This parameter tells us how strong a tie must be to be treated as

19 What the appropriate values are is determined by the ideal block to which inconsistencies for a selected empirical
block are computed. These values are always based on values of the ties in the selected empirical block.
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relevant. A similar parameter must also be set when using the binary blockmodeling, although
it is sometimes implicitly set to the minimum positive value (all ties with values higher than 0
are treated as relevant). Homogeneity blockmodeling requires no such parameters. In addition,
only homogeneity blockmodeling uses all available information. However, it lacks the richness
of possible ideal blocks that the valued and binary blockmodeling possess.

The definition of regular equivalence for valued networks was also discussed. This is one of the
areas that needs further attention. The other would be a comparison of these approaches with an
approach for generalized blockmodeling of valued networks suggested by Batagelj and Ferligoj
(2000), and other approaches to blockmodeling of valued networks. The comparison with two
versions of REGE algorithm (White, 1985a,b) is discussed in Žiberna (2005).
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