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Quantitative methods for analyzing social networks have primarily focused on either single network
statistical models, e.g., Airoldi et al. (2008); Hoff et al. (2002); Wasserman and Pattison (1996), or
summarizing multiple networks with descriptive statistics (e.g. Frank et al., 2013, 2004; Moolenaar
et al., 2010). Many experimental interventions and observational studies however involve several if
not many networks.

To model such samples of independent networks, we use the Hierarchical Network Models
framework (Sweet et al., 2013, HNM) to introduce hierarchical mixed membership stochastic
blockmodels (HMMSBM) which extend single-network mixed membership stochastic blockmod-
els (Airoldi et al., 2008, MMSBM) for use with multiple networks and network-level experimental
data. We also introduce how covariates can be incorporated into these models.

The HMMSBM is quite flexible in that it can be used on both intervention and observational
data. Models can be specified to estimate a variety of treatment effects related to subgroup member-
ship and well as covariates and additional hierarchical parameters. Using simulated data, we present
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428 Handbook of Mixed Membership Models

several empirical examples involving network ensemble data to illustrate model fit feasibility and
parameter recovery.

21.1 Introduction
A social network represents the relationships among a group of individuals or entities and is com-
monly illustrated by a graph. The nodes or vertices represent individuals or actors and the edges
between them the ties or relationships between two individuals. These edges may be directed, sug-
gesting a sender and receiver of the interaction, or undirected, suggesting reciprocity between the
two nodes; a network depicting collaboration is likely to be an undirected graph whereas a net-
work depicting advice-seeking would be a directed graph. Figure 21.1 shows advice-seeking ties
among teachers regarding two different subjects. Network ties are part of a larger class of obser-
vations termed relational data, since these data reflect pairwise relationships, such as the presence
and direction of pairwise ties. Since relationships are pervasive, it is unsurprising that relational
data methodology has applications in a wide variety of fields, including biology (Airoldi et al.,
2005), international relations (Hoff and Ward, 2004), education (Weinbaum et al., 2008), sociol-
ogy (Goodreau et al., 2009), and organizational theory (Krackhardt and Handcock, 2007).

RWLA Advice Math Advice

FIGURE 21.1
Two social networks, depicting asymmetric advice-seeking behavior among two groups of teachers,
from Pitts and Spillane (2009). Vertices, or nodes, represent individual teachers. Arrows, or directed
edges, point from advice seeking teachers to advice providing teachers.

Two prominent quantitative methods for analyzing social networks are descriptive network
statistics and statistical modeling. Descriptive network statistics are useful for exploring, sum-
marizing, and identifying certain features of networks, which are then used as covariates in other
statistical models. Common statistics include density, the total number of ties; degree, the number of
ties for any one node; betweenness, the extent that a node connects other nodes; and other observed
structural elements such as triangles. Kolaczyk (2009) provides a comprehensive list. Descriptive
statistics are inherently aggregate, so using them to represent a network or to compare networks is
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problematic. For example, Figure 21.1 show two networks with similar density (22 ties among 27
nodes and 19 ties among 28 nodes); however, the structure of the networks is quite different.

Alternatively, a statistical social network model formalizes the probability of observing the en-
tire network and its various structural features. Current methods generally fall into one of three
categories, exponential random graph models (ERGM), latent space models (LSM), and mixed
membership stochastic blockmodels (MMSB); see Goldenberg et al. (2009) for a comprehensive
review. An exponential random graph model(Wasserman and Pattison, 1996) represents the proba-
bility of observing a particular network as a function of network statistics. The latent space model
(Hoff et al., 2002) assumes each node occupies a position in a latent social space. The probability
of a tie between two individuals is modeled as a function of the pairwise distance in this space.
Stochastic blockmodels cluster nodes to one of a fixed number of finite groups, and the probability
of a tie between two nodes is determined by the group membership of each node. The mixed mem-
bership stochastic blockmodel (Airoldi et al., 2008) allows nodes to belong to multiple groups so
that group membership may vary by node interaction.

Most modeling methodology for social networks focuses on modeling a single network, but
in many applications more than one network may be of interest. The study of multiple networks
can be divided into three classes: studying multiple types of ties among nodes of one network
(e.g., friendship ties and collaboration ties), studying one network over time, and studying a single
measure on multiple isolated networks. There has been a fair amount of work done for the first two
cases. Fienberg et al. (1985) showed how loglinear models can be used to model multiple measures
on a single network and Pattison and Wasserman (1999) extended this work for the logit forms of p∗

models. Longitudinal methods to model a single network over time have been extensively studied.
The three categories of models each have known longitudinal extensions: Hanneke et al. (2010)
introduced temporal ERGMs which are based on a discrete Markov process; Westveld and Hoff

(2011) embedded an auto-regressive structure in LSMs; and Xing et al. (2010) added a state-space
model to the MMSBM.

Modeling a sample of isolated networks has only recently attracted sustained attention. Moti-
vated by social networks of teachers in education research, Sweet et al. (2013) introduced hierarchi-
cal network models (HNM), a class of models for modeling ensembles of networks. The purpose
of this paper is to use the HNM framework to formally introduce hierarchical mixed membership
stochastic blockmodels (HMMSBM) which extend the MMSBM for use with relational data from
multiple isolated networks.

In the next section, we formally define the MMSBM for a single network, present a covariate
version of a MMSBM, and introduce an MCMC algorithm for estimation. In Section 21.3, we
present the HNM framework and formally define the HMMSBM. Extending our MCMC algorithm
for a single network, we present an algorithm for fitting the HMMSBM that we illustrate with two
examples. We conduct a simple simulation study for sensitivity analysis and conclude with some
remarks regarding estimation and utility of these models.

21.2 Modeling a Single Network
A single social network Y among n individuals can be represented by an adjacency matrix of di-
mension n× n,

Y =

 Y11 Y12 · · · Y1n

...
...

. . .
...

Yn1 Yn2 · · · Ynn

 , (21.1)



430 Handbook of Mixed Membership Models

where Yij is the value of the tie from i to j. These ties might be binary, indicating the presence or
absence of a tie, or an integer or real number, indicating the frequency of interaction or strength of
a tie. For the purposes of this paper, we restrict ourselves to binary ties.

In many contexts, individuals in the network belong to certain subgroups. In a school faculty
network, for example, teachers belong to departments. However, these group memberships are
often not directly observed and can only be inferred through the network structure. Figure 21.2
(left) shows an adjacency matrix for networks generated from a stochastic blockmodel in which
individuals belong to one of four groups. A black square indicates the presence of a tie between
two individuals. Ties within groups are much more likely than ties across groups. Blockmodels
are most appropriate for relational data with this structure and a variety of blockmodels have been
studied (see Anderson and Wasserman, 1992).

Stochastic blockmodels assign each individual membership to a block or group, and assignment
may either be observed or latent. Tie probabilities are then determined through group member-
ship; usually within-group tie probabilities are modeled to be much larger than between-group tie
probabilities, resulting in the block structure shown in Figure 21.2.

(a) (b)

FIGURE 21.2
A network generated from a stochastic blockmodel where group membership is not mixed (a). Each
node is assigned a group membership which determines the probability of ties. A network generated
from a MMSBM (b). Node membership may vary with each pairwise interaction. Note, the n × n
sociomatrix displays a black box for each tie and white otherwise.

Mixed membership stochastic blockmodels (MMSBM) instead allow block membership to be
defined for each interaction with a new partner. Rather than assuming individual i is a member of
block k for all interactions, the block membership is determined anew for each interaction. Indi-
vidual i might belong to block k when interacting with individual j but belong to block k′ when
interacting with individual j′.

We define the MMSBM as a hierarchical Bayesian model (Airoldi et al., 2008),

Yij ∼ Bernoulli(SijTBRji)

Sij ∼ Multinomial(1, θi)

Rji ∼ Multinomial(1, θj)

θi ∼ Dirichlet(λ)
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B`m ∼ Beta(a`m, b`m) , (21.2)

where the group membership probability vector for individual i is θi, and specific group member-
ships are determined through a multinomial distribution. Sij is the group membership indicator
vector of i when initiating interaction with j, and Rji is the group membership indicator vector of
j when acting in response to i. Notice the stochastic nature of Sij and Rji; each is sampled for
every interaction from i to j, allowing individual group memberships to vary. The value of Yij is
determined based on a block dependent probability matrix B, where B`m is the probability of a tie
from an individual in group ` to an individual in group m.

The hyperparameter λ may be fixed and known or estimated as a parameter. The dimension
of λ identifies the number of groups (g) and the value of λ determines the shape of the Dirichlet
distribution on the g-simplex. The hyperparameters (a`, bm) are generally elicited so that within-
group tie probabilities are higher than across-group tie probabilties.

21.2.1 Single Network Model Estimation
We developed a Markov chain Monte Carlo (MCMC; Gelman et al., 2004) algorithm to fit the
MMSBM. The joint likelihood of the model can be written as the following product:

P (Y |S,R, θ, λ,B)P (S|θ)P (R|θ)P (θ|λ)P (B)P (λ)

=
∏
i 6=j

P (Yij |Sij , Rji, θi, θj , λ, B)
∏
i 6=j

P (Sij |θi)P (Rji|θj)
∏
i

P (θi|λ)
∏
`,m

P (B)P (λ) . (21.3)

The complete conditionals for θ,R, S,B can be written in a closed form, so we use Gibbs
updates for each. Full conditional posterior probability distributions are listed below. Define . . . to
represent all other parameters and data in the model, and let `? represent the group indicated by Rji
and m? represent the group indicated by Sij .

P (θi| . . . ) ∝ Dirichlet (λ+
∑
j

Sij +
∑
j

Rij)

P (Sij | . . . ) ∝ Multinomial (p)

pk = θikBk`?
Yij (1−Bk`?)(1−Yij)

P (Rji| . . . ) ∝ Multinomial (q)

qk = θikBm?k
Yij (1−Bm?k)(1−Yij)

P (B`m| . . . ) ∝ Beta (a` +
∑
(ij)?

Yij , bm +
∑
(ij)?

Yij , (21.4)

where (ij)? is an (`,m)-specific subset of i = 1, .., n and j = 1, .., n such that Sij = ` and
Rji = m. In addition, we incorporate a sparsity parameter ρ (Airoldi et al., 2008). The absence of
ties can be attributed to either rarity of interaction across groups or lack of interest in making across-
group ties. For example, teachers in departments in schools may have few collaborative ties outside
of their department because they interact less often with teachers outside their department but also
because they would rather interact with those who teach the same subjects. The sparsity parameter
helps to account for sparsity in the adjacency matrix due to lack of interaction. The probability of
ties from group ` to m is therefore modeled as ρB`m.

If λ is estimated, we use a common parameterization and let λ = γξ where γ =
∑g
k=1 λ

and
∑g
k=1 ξ = 1 (Erosheva, 2003). We can think of γ as a measure of how extreme the Dirichlet

distribution is, i.e., small values of γ imply greater mass in the corners of the g−simplex. Since
ξ sums to 1, it is an indirect measure of the probability of belonging to each group. Equal values
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of ξ suggest equal sized groups. As defined, γ and ξ are independent and we update each using
Metropolis steps.

To update γ, we use a gamma proposal distribution with shape parameter νγ and rate parameter
selected so that the proposal distribution has a mean at the current value of γ. The value of νγ is
then tuned to ensure an appropriate acceptance rate. Then the proposed value of γs+1 is accepted
with probability min{1, R} where R = P (γ(s+1)|... )

P (γ(s)|... )
P (γ(s)|γ(s+1))
P (γ(s+1)|γ(s))

.
To update ξ, we use a uniform Dirichlet proposal distribution centered at the current value of

ξ. Thus, ξ(s+1) ∼ Dirichlet(νξgξ(s)) where νξ is the appropriate tuning parameter. The proposed

value of ξ(s+1) is accepted with probability min{1, R} where now, R = P (ξ(s+1)|... )
P (ξ(s)|... )

P (ξ(s)|ξ(s+1))
P (ξ(s+1)|ξ(s))

.

21.2.2 Empirical Example

To illustrate fitting a single network MMSBM, we use the Monk data of Sampson (1968). While
staying with a group of monks as a graduate student, Sampson recorded relational data among the
monks at different time periods during his year-long stay. Toward the end of his stay, there was a
political crisis which resulted in several monks being expelled and several others leaving.

We use relational data from three time periods prior to the crisis. For each time period, we
have nominations for the three monks they like best. These data have been aggregated into a single
adjacency matrix, where Yij = 1 if monk i nominated j as one of his top three choices during any
of the three time periods. Yii is undefined.

Based on past work suggesting three subgroups of Monks (Breiger et al., 1975), we fit the
following MMSBM:

Yij ∼ Bernoulli(STijBRji)

Sij ∼ Multinomial(1, θi)

Rji ∼ Multinomial(1, θj)

θi ∼ Dirichlet(γ)ξ

B`` ∼ Beta(3, 1)

B`m ∼ Beta(1, 10) , ` 6= m

γ ∼ Gamma(1, 5)

ξ ∼ Dirichlet(1, 1, 1) , (21.5)

where 1− ρ = 1−
∑
ij Yij

N(N−1) , and N = 18, the number of monks.
We sample MCMC chains of length 15,000, keeping the last 10,000, and retaining 1 out of every

25 steps for a posterior approximation of 401 samples. To assess our fit, we compare the original
sociomatrix shown on the left in Figure 21.3 to our fitted model. Using posterior means for each
parameter, we illustrate the probability of a tie between two monks by color, with low probabilities
in shades of blue and high probabilities in red, orange, and yellow ((c), Figure 21.3).

21.2.3 Incorporating Covariates into a MMSBM

While the MMSBM captures block structure, network ties may also form based on other individual
similarities independent of or unrelated to the existing block structure. While teachers in schools
may belong to departments, they may also belong to groups based on unobserved characteristics.
But some ties might also form based on proximity in the school building, teaching the same group
of students, or attending new teacher seminars together, independently of the overarching grouping
mechanism.

We present a simple extension for the MMSBM to include covariates as
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FIGURE 21.3
The original sociomatrix (a) versus the probability of a tie as determined by our model using pos-
terior means (b). In general, estimated tie probabilities mirror the true tie structure. The legend
shows increments of 0.1, with all values except 0 being the upper endpoint of the continuous class
of colors (c).

Yij ∼ Bernoulli(pij)

pij =
exp{logit (Sij

T logit (B)Rji) + αXij}
1 + exp{logit (Sij

TBRji) + αXij}
Sij ∼ Multinomial(1, θi)

Rji ∼ Multinomial(1, θj)

θi ∼ Dirichlet(λ)

B`m ∼ Beta(a`m, b`m) , (21.6)

where Xij is a covariate and α is the coefficient for that covariate.
Model (21.6) can be fit using a MCMC algorithm similar to (21.4), with a more complicated

sampling distribution. We use the same Gibbs update for θ, and the same Metropolis updates for γ
and ξ, as presented in our standard MMSBM (21.4). We use the following Gibbs updates for Sij
and Rji,

P (Sij | . . . ) ∝ Multinomial (p)

pk = θik
exp{logit (B)k`? + αXij}Yij

1 + exp{logit (B)k`? + αXij}
P (Rji| . . . ) ∝ Multinomial (q)

qk = θik
exp{logit (B)m?k + αXij}Yij

1 + exp{logit (B)m?k + αXij}
, (21.7)

where again ` is the group indicated by Rji and m is the group indicated by Sij . We reparameterize
B and use logit (B) throughout our MCMC algorithm. The entries in B no longer have a direct
sampling and we instead use Metropolis–Hastings updates.

To take advantage of random walk updates we reparameterize B as logit (B), and having an
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unbounded support for our proposal distributions allows us to update the diagonal and off-diagonal
elements using the same proposal distribution. Note that SijT logit (B)Rji and logit (Sij

TBRji)
are equivalent.

Thus, to update an entry of logit (B), logit (B)s`m, we propose a new entry, logit (B)s+1
`m , using a

normal random walk with mean logit (B)s`m where variance is determined by a tuning parameter to
ensure appropriate acceptance rates. The probably of accepting this new entry is min{1, R}, where

R =
P (logit (B)s+1

`m |... )
P (logit (B)s`m|... )

. We illustrate this algorithm in Section 21.3.4.

21.3 Modeling an Ensemble of Networks
21.3.1 The Hierarchical Network Framework

Consider a collection of K networks Y = (Y1, . . . , Yk) where Yk = (Y11k, . . . , Ynknkk). The
hierarchical network framework for this collection Y is given as

P (Y |X,Θ) =

K∏
k=1

P (Yk|Xk,Θk = (θ1k, .., θpk))

(Θ1, . . . ,ΘK) ∼ F (Θ1, . . . ,ΘK |W1, . . . ,WK , ψ) , (21.8)

where P (Yk|Xk,Θk = (θ1k, .., θpk)) is a probability model for network k with covariates Xk.
Notice that this model structure specifies that networks may be independent of each other de-

pending on choice of W , but need not be. Additional hierarchical structure can be specified by
including additional parameters ψ. Notice also that we purposely omit any within-network depen-
dence assumptions. Thus, this framework allows for a variety of dependence assumptions both
across and within networks but is also flexible in that any social network model can be used. For
example, Sweet et al. (2013) uses this framework to introduce hierarchical latent space models, a
latent space modeling approach for multiple isolated networks.

21.3.2 The Hierarchical Mixed Membership Stochastic Blockmodel

Let Yijk be a binary tie from node i to node j in network k. The hierarchical mixed membership
stochastic blockmodel is specified as

P (Y |S,R,B, θ, γ)

=

K∏
k=1

∏
i 6=j

P (Yijk|Sijk, Rjik, Bk, θk, γk)P (Sijk|θik)P (Rjik|θjk)
∏
i

P (θik|λk), (21.9)

where Sijk is the group membership indicator vector for person i when sending a tie to person j
in network k, and Rjik is the group membership indicator vector for j when receiving a tie from
i in network k; Bk is the network specific group-group tie probability matrix, and θik is the group
membership probability vector for node i in network k.

This is easily presented as a hierarchical Bayesian model:

Yijk ∼ Bernoulli(SijkTBkRjik)

Sjik ∼ Multinomial(θik, 1)

Rjik ∼ Multinomial(θjk, 1)

θik ∼ Dirichlet(λk)
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B`mk ∼ Beta(a`mk, b`mk) . (21.10)

We impose our hierarchical structure by requiring that the parameters come from some common
distribution, and in fact, this framework becomes particularly interesting in cases where parameters
are shared across networks. We present several examples in the next section.

Examples of HMMSBMs

The hierarchical structure of the HMMSBM naturally lends itself to pooling information across
networks and we present several extensions of (21.10).

A simple extension is an HMMSBM for experimental data in which the treatment is hypothe-
sized to affect a single parameter. The networks in the treatment condition would be generated from
the same model and the control condition networks would be generated from a different model. For
example, suppose we examine teacher collaboration networks in high schools. Typically we would
expect to see teachers collaborating within their own departments and these departments operating
mostly in isolation. But we could imagine an intervention whose aim is to increase collaboration
across departments. In contrast, teachers in treatment schools are more likely to have across depart-
ment ties than teachers in control schools. Such a model is given as

Yijk ∼ Bernoulli(SijkTBkRjik)

Sijk ∼ Multinomial(θik, 1)

Rjik ∼ Multinomial(θjk, 1)

θik ∼ Dirichlet(λk), where λk = λ0 + Tk(1− λ0)(1− α)

B`mk ∼ Beta(a`mk, b`mk)

α ∼ Uniform(0, 1) , (21.11)

where Tk is the indicator for being in the treatment group, 1 is the vector (1, .., 1) with length g,
and g is the number of groups. The treatment effect α is a proportion of how similar the group
membership profiles are to the control group as compared to a uniform distribution on the simplex.

Rather than constraining each network to have a constant network level parameter, e.g., λ0,
we might instead model network parameters generated from a single distribution, introducing an
additional level to the hierarchy. Suppose we are interested in how variable the membership proba-
bilities vectors are across networks, for example we expect teacher collaboration networks to vary
depending on the organizational structure in the schools. Then we could estimate the distributional
hyperparameters that generate these membership probabilities (θ).

An example of such a model is

Yijk ∼ Bernoulli(SijkTBkRjik)

Sijk ∼ Multinomial(θik, 1)

Rjik ∼ Multinomial(θjk, 1)

θik ∼ Dirichlet(γkξk)

B`mk ∼ Beta(a`mk, b`mk)

γk ∼ Gamma(τ, β)

ξk ∼ Dirichlet (c)

τ ∼ Gamma(aτ , bτ )

β ∼ Gamma(aβ , bβ) . (21.12)
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Thus we allow γk to vary by network and then estimate an overall mean and variance as determined
by (τ, β).

Finally, we introduce a covariate MMSBM in Section 21.2.3 , which we can easily extend
for multiple networks. Consider again our networks of teacher collaboration. A tie-level variable
indicating whether two teachers serve on the same committee may be a covariate of interest, such as
Xijk = 1 if teacher i and j in school k serve on the same committee, and we may want to estimate
this effect across all networks. A simple model in which the covariate effect is the same across
networks is given as

Yijk ∼ Bernoulli(pijk)

pijk =
exp{logit (Sijk

T logit (Bk)Rjik) + αXijk}
1 + exp{logit (Sijk

TBkRjik)}
Sijk ∼ Multinomial(θik, 1)

Rjik ∼ Multinomial(θjk, 1)

θik ∼ Dirichlet(γkξk)

B`mk ∼ Beta(a`mk, b`mk) . (21.13)

These are merely a few models from the myriad of possibilities. Network-level experiments can
affect other parameters in the model; indeed we can include additional hierarchical structure when
modeling experimental data. Moreover, observational data may not need the full structure specified
above and covariates can be incorporated in other ways as well.

21.3.3 Model Estimation

We use an MCMC algorithm for fitting HMMSMs that is similar to the one used for fitting the single
network MMSBM. We first present MCMC steps for fitting the model given in (21.10), and then we
discuss how these steps need to be augmented for models (21.11)–(21.13).

For each network k, we use Gibbs updates for θk, Sk, Rk, Bk. The complete conditionals for
our Gibbs updates are given as:

P (θik| . . . ) ∝ Dirichlet (γkξk +
∑
j

Sijk +
∑
j

Rijk)

P (Sijk| . . . ) ∝ Multinomial (p)

ph = θikhBh`?
Yijk(1−Bh`?)(1−Yijk)

P (Rji| . . . ) ∝ Multinomial (q)

qh = θikhBm?h
Yijk(1−Bm?h)(1−Yijk)

B`mk ∝ Beta (a`k +
∑

(ijk)?

Yijk, bmk +
∑

(ijk)?

Yijk),

(21.14)

where `?k is the group membership indicated by Rjik and m?
k is the group membership indicated

by Sijk. Again, let (ijk)? be a specific subset of i = 1, .., nk and j = 1, .., nk such that Sijk = `
and Rjik = m. Again, we incorporate a sparsity parameter ρ to account for the absence of ties due
to lack of interaction.

For the intervention and covariate examples (21.11) and (21.13), respectively, the additional
parameter α uses Metropolis or Metropolis-Hastings updates. For example, if we use a random
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walk method for proposing new values of α, we accept αs+1 with probability min{1, R} where

R = P (α(s+1)|... )
P (α(s)|... ) . Note that R is a function of all K networks.

For models with additional levels of hierarchy we can update additional parameters using
Metropolis within Gibbs steps. For example, in (21.12), β is updated using Gibbs steps,

β ∝ Gamma (Kτ + aβ ,

K∑
k=1

γk + bβ) ,

and we use Metropolis updates for γk, ξk, and τ . We update each γk using an analogous Metropolis
step as for the single network. We use a network-specific tuning parameter νγ,k which is also the
shape parameter and rate parameter of νγ,k

γk(s) , ensuring the proposal distribution has mean at the
current value of γk. Each ξk is updated in the same way using a Dirichlet proposal distribution.

To update τ we use a Gamma proposal distribution not unlike those used for γk with shape
parameter as the tuning parameter ντ and rate parameter such that the proposal distribution has
mean of the current value of τ . Then the proposed value of τs+1 is accepted with probability
min{1, R} where R = P (τ(s+1)|... )

P (τ(s)|... )
P (τ(s)|τ(s+1))
P (τ(s+1)|τ(s))

.

21.3.4 Empirical Examples

We present two examples to illustrate fitting HMMSBMs and use two simulated datasets, with and
without a covariate.

In the first example we demonstrate fitting an HMMSBM similar to the example given in (21.12)
where each network has a network-specific Dirichlet hyperparameter, λk, used to generate the mem-
bership probability vectors. Our goal is to assess parameter recovery on three levels: the hyperpa-
rameters of the distribution that generates λk, the λk themselves, and the lower-level parameters,
R,S, and B that determine the probability of a tie.

We simulate data from 20 networks, each with 20 nodes and 4 groups using the following model
to generate our first set of data:

Yijk ∼ Bernoulli(SijkTBkRjik)

Sijk ∼ Multinomial(θik, 1)

Rjik ∼ Multinomial(θjk, 1)

θik ∼ Dirichlet(γkξ)

γk ∼ Gamma(10, 50) , (21.15)

where ξ = (0.25, 0.25, 0.25, 0.25). The group-group tie probability matrix is defined as

B =


0.9 0.05 0.05 0.05
0.05 0.8 0.05 0.05
0.05 0.05 0.7 0.05
0.05 0.05 0.05 0.6

 .

We constrain B to be the same for each network and select the hyperparameters with which to
generate γk to ensure small enough values for block structure with low variability. Figure 21.4
shows adjacency matrices for these 20 networks.

We fit the following HMMSBM to these data using the MCMC algorithm described in Sec-
tion 21.3.3. We let ξ = (0.25, 0.25, 0.25, 0.25) and use a sparsity parameter equal to

∑
ijk Yijk

KN(N−1) for
all K networks. The model is given as

Yijk ∼ Bernoulli(SijkTBkRjik)
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FIGURE 21.4
Networks with 20 nodes generated from a HMMSBM with group membership probabilities from a
network-specific Dirichlet parameter γk ∼ Gamma(50, 10).
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FIGURE 21.5
Posterior density for τ and β, the hyperparameters for the distribution of γk for each network. The
vertical lines mark the value used to simulate the data, and the 95% equal-tailed credible intervals
are indicated with gray. Densities show good recovery of the true value of each parameter.
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Sijk ∼ Multinomial(θik, 1)

Rjik ∼ Multinomial(θjk, 1)

θik ∼ Dirichlet(γkξk)

B``k ∼ Beta(3, 1)

B`mk ∼ Beta(1, 10) , ` 6= m

λk ∼ Gamma(τ, β)

τ ∼ Gamma(50, 1)

β ∼ Gamma(10, 1) . (21.16)

We fit the model using our MCMC algorithm and run chains of length 30,000. We remove the
first 5000 steps and retain every 25th iteration for a posterior sample of size 1001. The posterior
samples for τ and β are illustrated as densities in Figure 21.5. The vertical lines show the true value
for each parameter and the gray region indicates the 95% credible interval, suggesting accurate
parameter recovery for τ and β. Similar plots for γk (see Figure 21.6) for each network k depict the
variability in both the true value of γk as well as the accuracy of recovery.
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FIGURE 21.6
Posterior densities for γk where k = 1, .., 20. The 95% equal-tailed credible intervals contain the
true value of γk for all but one of the simulated networks, suggesting good recovery.
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FIGURE 21.7
Tie probability matrix as estimated by posterior means. Visual comparisons to Figure 21.4 suggests
accurate estimation of tie probability.
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We use predicted probability tie matrices to assess recovery of lower-level parameters (Fig-
ure 21.7). Ties with high probability are shown as shades of red, orange, and yellow, and ties with
low probability are shown as shades of blue and purple. Visual comparisons to Figure 21.4 reveal
that the estimated tie probabilities align with the simulated data; between-pairwise ties are reflected
as having higher probability in the fitted model than non-ties. We do note, however, that ties that
exist across groups (those shown outside of the block structure) tend to have smaller estimated
probabilities than ties within groups.

The second simulation serves two purposes: to illustrate fitting a MMSBM with covariates and
to provide a second example of fitting HMMSBMs. We generate data for 10 networks, each with
15 nodes and 3 groups. We use a single edge-level indicator covariate Xijk, such that Xijk = 1
implies that individual i in network k and individual j in network k have the same characteristic and
Xijk = 0 otherwise. In the context of teacher relationships in school k, for example, Xijk might
represent teaching the same grade, serving on the same committee, having classrooms in the same
wing of the building, etc. For these data, we randomly assigned each node to one of 5 groups, and
Xijk = 1 if nodes belong to the same group. The formal model used to generate these data is:

Yijk ∼ Bernoulli(pijk)

pijk =
exp{logit (Sijk

T logit (Bk)Rjik) + 4Xijk}
1 + exp{logit (Sijk

TBkRjik)}
Sijk ∼ Multinomial(θik, 1)

Rjik ∼ Multinomial(θjk, 1)

θik ∼ Dirichlet(γkξk)

B``k ∼ Beta(12, 4)

B`mk ∼ Beta(3, 30) ` 6= m

γk ∼ Gamma(10, 60) , (21.17)

where ξ = ( 1
3 ,

1
3 ,

1
3 ). Priors for γk were selected to ensure small enough values for block structure

with low variability. We use different priors for the diagonal entries of Bk than the off-diagonal
entries to model higher within-group tie probabilities. Hyperparameters of these priors were chosen
to yield high and low probabilities for the diagonal and off-diagonal entries, respectively, without
extreme values of almost 0 or 1.

The adjacency matrices for each of the 10 simulated networks are shown in Figure 21.8. We
expect to see more variability in the block structure in these networks as compared to the first sim-
ulation study for two reasons. Foremost, we have included a covariate with a strong effect so that
there are now many more across-group ties. In addition, we have varied the group-group tie proba-
bility matrix Bk by allowing these entries to both differ across networks and be generated (instead
of deliberately chosen). As a result, the block structure that we do see varies across networks as the
values of the diagonal entries of Bk vary.

We fit the following model on these simulated data:

Yijk ∼ Bernoulli(pijk) (21.18)

pijk =
exp{logit (Sijk

T logit (Bk)Rjik) + αXijk}
1 + exp{logit (Sijk

TBkRjik)}
Sijk ∼ Multinomial(θik, 1)

Rjik ∼ Multinomial(θjk, 1)

θik ∼ Dirichlet(γkξk)

B``k ∼ Beta(12, 4)
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FIGURE 21.8
Networks generated from a single covariate HMMSBM with group membership probabilities from
a network-specific Dirichlet parameter γk ∼ Gamma(60, 10). Despite a strong block structure
specified by small values of γk, the networks have many across-group ties due to the high value of
the regression coefficient of Xijk.

B`mk ∼ Beta(3, 30) ` 6= m

γk ∼ Gamma(τ, β)

τ ∼ Gamma(1, 0.1)

β ∼ Gamma(6, 0.1)

α ∼ Normal(0, 100) ,

where ξ = ( 1
3 ,

1
3 ,

1
3 ).

We run MCMC chains of length 30,000, remove the first 5000 iterations, and keep every 25th

step. With a posterior sample size of 1001, we assess parameter recovery. We begin with our
high-level parameters. Figure 21.9 and Figure 21.10 show the posterior densities for α and τ and
β, respectively. The true value of each parameter is indicated by a vertical line and 95% credible
interval regions are shown in gray.

The estimation of α is accurate, but the estimates for τ and β are much less precise. The
posterior distribution for τ is centered at a higher value than the value of τ = 10 used to generate
the data. The distribution for β is centered at a value slightly lower than the true value β = 60.
Similarly, the distributions for each γk are skewed toward higher values. As shown in Figure 21.11,
only 3 of the 10 posterior samples for γk contain the true value in their 95% credible interval. We
suspect the lack of block structure contributes to these biases even though the covariate was the
primary influence for across-group ties in the data generation process.
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FIGURE 21.9
Posterior density for α, the regression coefficient in Equation (21.13). The true value of α is 4 and
is displayed as the vertical line. The 95% equal-tailed credible interval is implied by the gray region
and suggests good recovery.
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FIGURE 21.10
Posterior density for τ (a) and β (b) with the true values shown as vertical lines. The 95% equal-
tailed credible intervals are implied by the gray region. Much of the posterior distribution for τ falls
to the right of the true value used to generate the data.
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FIGURE 21.11
Posterior densities for γk where k = 1, .., 10. The 95% equal-tailed credible intervals contain the
true value of γk for only one of the networks and overestimating the value of γk.
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FIGURE 21.12
Tie probability matrix as estimated by posterior means. Ties with high probability are shown as
shades of red, orange, and yellow and ties with low probability are shown as shades of blue and
purple. Pairwise probabilities align well with the original adjacency matrices (Figure 21.8).

We plot the pairwise probability of a tie in each network in Figure 21.12. Due to the lack of
block structure, visually comparing the predicted tie probabilities to the original dataset may seem
inconclusive, but in fact predicted probabilities align well with the data.

21.3.5 HMMSBM Extension: Sensitivity Analysis

Given the small number of networks used in our simulations, we are interested in the extent to
which our prior specification dominates our model fit. Recall from (21.15), we generated data with
τ = 10 and β = 50 and in the model fit illustrated in Section 21.3.4, we used the following prior
distributions:

τ ∼ Gamma(10, 1)

β ∼ Gamma(50, 1) .

We repeat model estimation twice using a less strong prior and a weak prior, such that both are
centered at the true values. The moderate and weak priors used are given as
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τ ∼ Gamma(1, 0.1)

β ∼ Gamma(5, 0.1),

τ ∼ Gamma(0.1, 0.01)

β ∼ Gamma(0.5, 0.01) .

We first compare the posterior distributions for τ and β. While the posterior distribution for
τ and β contain the true values for each fit, the variance of the posterior sample increases as the
variance of prior distribution increases (Figure 21.13). We do note that the scale of the increase is
less than the 10-fold increase of the prior distribution variance (50, 500, and 500 for β and 10, 100,
and 100 for τ ). The posterior mean for τ varies little as the prior changes: 8.5, 8.2, and 10.5 under
a strong, less strong, and weak prior, respectively. The posterior mean for β is much less accurate
when the weak prior is used. The respective means are 51.1, 51.8, and 120.3.

To assess the prior distributions, we compare the 95% credible regions posterior distribution for
γk , k = 1, .., 20 with the true values (Figure 21.14). We notice the following patterns: if a 95%
credible interval γk does not cover the true value when the prior distribution is strong, it fails to
cover the true value when the prior is moderate or weak. There is little difference in parameter
recovery between the strong prior and the less strong prior. The weak prior fit recovers few of the
γk well, and is strongly biased toward smaller values of γk.

Finally, we are interested in how these differences translate to tie probabilities. Figure 21.15
shows the adjacency matrix and posterior mean of the pairwise probability of a tie determined for
each model fit. We also include a measure of variability, the width of the 95% credible interval for
each pairwise tie probability. For brevity, we only show the first five networks from the data. The
posterior pairwise tie probability varies little across each fit and what is even more surprising is that
the 95% credible interval widths also vary little.

Based on this simple sensitivity analysis, we offer several conclusions. The prior specification of
the high-level parameters τ and β have moderate influence of mid-level parameters γk and very little
influence on low-level parameters R,S, and B, even with poor recovery of mid-level parameters.
Furthermore, using a prior with much larger variance does not necessarily increase the variability in
the low-level parameter estimates.
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FIGURE 21.13
A comparison of posterior distributions for τ and β given three different prior gamma distribu-
tions. Hyperparameters are (10,1), (1,0.1), (0.1, 0.01) and (50,1), (5,0.1), (0.5, 0.01) for τ and β,
respectively, and plots are shown top to bottom.
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FIGURE 21.14
For each choice of prior specification, strong (a), less strong (b), and weak (c), 95% credible inter-
vals for γk are shown in black and the true value of γk is shown in green. Parameter recovery is
good when the strong or less strong priors are used but is poor when the weak prior is used.
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FIGURE 21.15
The adjacency matrix (a) can be compared to the posterior tie probabilities for three model fits that
vary by prior distribution specification for τ and β. Priors for each parameter have the same mean
but increase in variance by a factor of 10. The width of the 95% credible interval serves as a measure
of variability.
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21.4 Discussion
We have presented the hierarchical network models (HNM) framework for modeling ensembles of
networks and introduced the hierarchical mixed membership stochastic blockmodel (HMMSBM)
as an example of an HNM for networks with subgroup structure. This fills a substantial method-
ological void: while both single and mixed membership stochastic blockmodels have been used to
incorporate grouping structure into models for relational data, very little prior work has focused on
jointly modeling an ensemble of networks, and none of that work has focused on blockmodels. In
addition we have presented a method for incorporating tie covariates into these models, addressing
another void in the literature.

We presented several examples of HMMSBMs to demonstrate both the generality and wide
utility of these models. We used two simulated datasets, one with a covariate and one without a co-
variate, to illustrate model fitting using our MCMC algorithm. Posterior tie probabilities from our
fits align well with simulated true ties and non-ties, and in most cases parameters were recovered
well. High-level parameters, those furthest away from the data, were recovered with less consis-
tency in the simulation study involving tie covariates. Finally, we investigated the effects of prior
specification and found that, as expected, high-level parameters were most affected by choice of
prior but that priors had little influence on predicted tie probabilities.

With respect to the class of HMMSBMs and model fitting, our work reveals several areas for
future work. Ties perhaps can form independently of subgroup structure due to common attributes;
including covariates to account for this should produce preferable models. An important area for
future research is understanding how the covariate effects and block effects interact with each other.
Finally, high-level parameter estimates seem to depend strongly on hyperpriors, suggesting that es-
timation of these parameters is not yet data-dominated. Understanding how this situation improves
as more networks (and perhaps larger networks) are added to the ensemble is also clearly important.
On the other hand, it appears that priors have little effect on the low-level tie probabilities.

We have illustrated a proof of concept for HMMSBMs and the HNM framework in general.
HMMSBMs are appropriate models for ensembles of networks with block structure and can be fit
using relatively simple methods. The HNM framework is larger than HMMSBMs alone since most
single network statistical models can be extended to model an ensemble of networks. Sweet et al.
(2013) introduced hierarchical latent space models as a class of HNM models, and the authors are
currently working on extending work done by Zijlstra, van Duijn and Snijders (2006) and Tem-
plin, Ho, Anderson and Wasserman (2003) for hierarchical exponential random graph models, and
relating it to the general HNM framework.
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