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Abstract

We present a unified approach to modelling dyadic relational data, namely that seen in
social, biological and technological networks, without restriction to the binary format. The
approach involves three principles: considering the marginal specification of any edge as the
fundamental unit, embedding as much dependence as possible in latent structural forms,
and using distributional forms that favour high-throughput computational methods for their
solution. We show that this approach allows for an extremely flexible and generalizable
way of describing the structural properties of relational systems; namely, we offer alternate
explanations for two approaches popular in the networks literature, the “small-world” and
“scale-free” mechanisms, and demonstrate the ability of marginal hierarchical modelling to
expand beyond them.

1 Networks and Relational Data

A network, defined as a collection of individuals (or “nodes”) who are connected in a pairwise
fashion (with undirected “edges” or directed “arcs”), is a powerful tool for describing many types
of complex systems across many fields of science, nature, technology and society. Because of
the relative ease in perceiving this type of system, network constructions have been used both
to describe systems that literally meet these criteria: computer networks have members that are
individual machines (literally known as nodes), connected by wire or wirelessly to each other in
pairwise fashion, often through hubs with high connectivity. As a result, solutions for the most
economical configuration of nodes and connections for the circumstance is, without exaggeration,
a multi-billion-dollar industry.

For other systems, a network model is often imposed onto the ensemble of individual compo-
nents and their interactions. In correlational models, two individuals that have a high correlation
in their outcomes are said to be connected — say, two people have breakfast at the same restaurant
over a weeklong period — and a network is formed by considering all correlations between pairs

of nodes. In this case, the network model may be a poor approximation if there is substantial
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interaction at a level higher than pairwise; one person invites two friends to breakfast, and the
three eat together, but the friends are unconnected except for their common acquaintance.

This work considers all classes of valued, directed networks under the heading of relational data:
n individual units (or nodes) are connected pairwise by a maximum of n(n — 1) directed edges (or
relations). When assigned value, the edges combine with the nodes into the ensemble configuration
of a network. It is the specification of these edges, including their values and uncertainties, that
form the basis of the investigation that follows.

Whether the network has a physical basis, or is simply an approximation for the entire system

of interaction, the same categories of scientific and statistical interest apply:

e Statistical Description. In a single instance of a network, there are of order n? quantities in
terms of nodes and edges. Is there a set of sufficient statistics that parsimoniously summarizes

the construction of the network in a parametric family?

e Generative Inference and Prediction. This applies to both the story of how the network
comes to be, both in terms of the time evolution of nodes up until the time of observation
(the single observation case) and how networks from the same family would evolve (the
super-population case). What does “asymptotic behaviour” mean in the case of networks
— a single network growing in size with the same generative properties, a single network
whose properties scale in some way with increasing size, or a growing series of networks with

identical properties?

e Nodal behaviour. One of the over-arching goals of modelling a network is to show how it
impacts the individuals within it. Therefore, any network constructed must ultimately be
connected back to nodal properties and outcomes in order to have meaning. Modelling un-

certainty in network ties therefore has a directly measurable impact on the nodes themselves.

Additional background on these modelling questions can be found in Goldenberg et al. [2009]
and Kolaczyk [2009].

We begin by reviewing the development of stochastic network modelling from the perspective
of statistics and sociology, from the Erdés-Rényi-Gilbert model to the Exponential Random Graph
model, and introduce other mechanisms that have been designed to account for unexplained con-
nections between individuals such as latent spaces and membership models. We then introduce
the piecewise development of the general approach we prescribe, in terms of each of the three
levels of assembly: general, node-specific and edge-specific quantities. This is then followed by the
application of the method to binary networks produced by the “small-world” method of Watts and
Strogatz [1998] and the preferential attachment mechanism of Barabasi and Albert [1999] as well

as the assortative mixing measure of Newman [2002].
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2 Edge-Specific Binary Network Models

2.1 Erdos-Rényi-Gilbert Random Graphs

While graph theory has provided many insights into the construction of deterministic networks,
much of the interest in the use of networks in a nondeterministic setting began with a series of
papers from Paul Erdés and Alfred Rényi [Erdos and Renyi, 1959, 1960, 1961; Erdos, 1959, 1961].
These papers put forth the notion of the canonical “classical random graph”. In this simple model
there is a community of N individuals, and (];[ ) potential undirected two-person relations, k of
which are known to exist. There is an ensemble of graphs of size (<Ig>) with this particular property,
and remarkably, the properties common to the members of the ensemble are known to depend on
the fraction of edges per node, A = k/N, namely that graphs with A > 1 are completely connected
in the asymptotic limit.!

Our starting point is the closely related paper of Gilbert [1959], which takes a binomial starting
point: each tie has probability of existing, independent of every other possible tie, with some fixed
probability p. This is immediately extensible to the case where there are N(N — 1) potential
directed edges that exist independently and with common probability p, or that for the edge
between individuals labelled ¢ and j, the tie is defined as Y;; ~ Be(p).

Other schemes for generating connected structures have since arisen. In the past 10 years, many
researchers in the computer science, physics, and machine learning communities have followed
these examples in proposing models for evolutions of complex networks with simple underlying
properties. Among others, explorations in unified structure across classes [Airoldi and Carley,
2005], hierarchical sub-grouping [Clauset et al., 2008], and self-similar “Kronecker power” models
[Leskovec et al., 2005] have brought new insights into the growth of complex systems from simple

roots.

2.2 Distinguishing Individuals

It is of great interest in many scientific applications to include individual-specific information when
considering the formation of networks among them. In particular, there are insights provided by
mixed effects modelling that show how to include both covariate information and latent effects at
each level (such as individuals or their communities), neither of which is possible under the classes
of models previously specified.

Binary relational ties are modelled according to the probability of their presence. An extremely

!There is a substantial literature on using ensemble methods for random graphs, where each member of the
ensemble has the same statistical specification and each has an equal probability of observation. Blitzstein and
Diaconis [2006], Newman et al. [2001] and Handcock and Morris [2006] all deal with the generation of random
graphs with fixed degree distribution, such that the number of ties for each individual is identical. A comparison
of these methods appears in Section 7.
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popular method of connecting binary outcomes to factors that affect their probabilities is the use
of a link function, whose main purpose is to transform a potentially unbounded quantity to a
value between zero and one. The most popular link functions for this purpose are the Gaussian
cumulative distribution function (the use of which gives “probit”, or probability unit, modeling),

and the logistic distribution, which gives effects in terms of log-odds ratios [Berkson, 1951].

2.3 Joint-Conditional Specifications: The p-class of models

Several models have been proposed where the explicit probability model for a network’s edges is
in the joint distribution, so that a specification for a tie is made conditionally on the rest of the
network. A description of the opposite approach is given in Section 5; here a series of models are

detailed from the original approach, with their dependences constructed and measured.

The p; model

A groundbreaking model was published by Holland and Leinhardt [1981] and named “p;” in part
due to its simplicity. The model suggests the presence of three types of relations: the propensity
with which an individual will be outgoing, or “gregariousness”; the propensity with which an
individual will attract others, known as “popularity” and/or “attractiveness”’; and the degree to
which a connection in one direction will be reciprocated in the other direction compared to what
would normally be expected, or “reciprocity”.

To demonstrate this model, consider a trivial network of two individuals. With two possible
directed edges, there are four mutually exclusive outcomes that can be observed. As specified
by Holland and Leinhardt [1981] (with a slight modification), each of their joint probabilities is
specified in the 2-by-2 table:

| Yo1=0 Voi=1
Yi5=0 P(<Yv127Yv21) = (070)) n P<<Yv127Yv21) = (07 1)) =b
Yip=1 | P((Yi2,Y21) = (1,0)) = a P((Y12,Y2n) = (1,1)) =m

The probabilities represent a mutual, asymmetric (individual 1 sends, a, or receives, b), or null

connection respectively. This suggests a quadrinomial specification for any dyad (1, 2):
P(Y'lz }/21|m n.a b) — mY12Y21 ; Yi2(1=Y21) (1=Y12) Y21 (1-Y12) (1= Y21)

noting that the probabilities sum to unity: n 4+ a4+ b+ m = 1. When respecified in terms of

logarithms of the probabilities, the expression becomes



mn

P(Y127Y21|m,naaa b) = exp (mem log b
a

b
+Y’12log2 —|—Y2110g—+logn> )
n n

This is an exponential family specification, yielding a set of natural parameters: 61, = log #

and 0y = logg are expressions for the probability of an outbound or inbound connection relative

mn __

ab
views on their relationship, rather than disagreement. Replication of this particular dyad k times

to a null connection, and ps = po1 reflects the likelihood of two individuals holding identical

would produce the joint distribution

P(Y12,1,Y21,1, ---7Yl2,k,Y21,k|m;n;a7 b)

k k k
mn a b
= exp ( E (}/1273')/21’]') lOg E + jgl }/1273' lOg E + E )/217]‘ lOg ﬁ + k IOg n) .

j=1 j=1

In practice, however, only one replicate of each dyad is observed in a network setting. When
expanding this full network of N people, each probability in the quadrinomial is labelled accord-

ing to the dyad in question: the quantities (n,a,b, m) become (n;j, a;;, a;i,m;;), and the natural
i Mt - Because 3(%)) terms are im-

parameters change accordingly to 0;; = log —~ and p;; = log

possible to estimate with 2(]; ) data points, Holland and Leinhardt [1981] simplify this expression
to reflect a global tendency for reciprocation, and individual-specific effects for gregariousness and

attractiveness:

Pij = P (1>
Qij = 9+Oéi+ﬁj- (2>

Additionally, the baseline tendency for tie formation stipulates that the sender and receiver

effects are set with respect to a reference point. In the p; case, each of the effects sums to zero:

Zai = 0 (3)
Zﬁj = 0. (4)

When this is expanded for all dyads simultaneously, the p; specification for a graph ¥V =



pi(Y) = exp (9(2 Yij) + Zai(z Yij) + Zﬁj(z Yij) + PZ(Yinjz‘)> Hmj,

J iJ i<y

which can be used to draw corresponding random graphs given the appropriate parameters, which
in this case are taken to be fixed effects. Maximum likelihood estimation is the method recom-
mended by Holland and Leinhardt [1981] to estimate the effects within and generate simulated

random graphs for comparison.

Differential Reciprocity in p;

An immediate extension to the p; model is proposed by Fienberg and Wasserman [1981], by

extending the specification of the reciprocity term to be

pig =P+ Pit P,

where each p; represents the additional tendency for individual 7 to reciprocate a relationship over
a baseline level p, and all terms sum to zero, ). p; = 0.
As this is an extension of the general model, a likelihood ratio test can be performed to see if

the additional dispersion in reciprocity is necessary for model fit.

Partial pooling of sender-receiver terms in p;

Another extension of the model is into Bayesian territory. In the treatment of Wong [1987], the

sender and receiver effects are partially pooled and jointly modelled, such that

e (o) L, 7))
Bi 0 NCa03 U%

In this specification, a relationship between the “gregariousness” and the “popularity” of each
individual is modelled as a correlation, taken to be identical for each individual. Empirical Bayes

methods are then used to estimate the common variance and correlation.

Addition of covariates: p»

One specification that follows from the original is the addition of the impact of covariates to the
terms for the baseline, sender, receiver and reciprocity terms. As specified in van Duijn et al.
[2004], the model takes the form



a = X+ A (5)
Bi = Xy + B; (6)
(7)
(8)

g = p+ Z1iion
pij = P+ Z2ijds

where Xy, X5, Z; and Z; are matrices of covariates to be considered; 1, 72, d; and d, are the
corresponding vectors of coefficients; and A; and B; are respective intercept terms with common

variances 04 and ¢0%. p and p are the common parameters for all arc means and correlations.

2.4 Geometric/Topologically Specified Models

A class of models that find their origins in the logistic specification are Exponential Random Graph
models, or p-star (p*) models, which were primarily conceived for purposes in which individuals are
not explicitly differentiated by their characteristics, only by the network level structure: sociological
patterns are encoded as statistics within the likelihood function, and the ensemble of individuals
and links is modeled jointly. The method has its origins in the Markov Graph models of Frank
and Strauss [1986], in relation to Markov Random Fields and the connection of edges that share a
common node; the method is detailed in [Wasserman and Pattison, 1996; Anderson et al., 1999].

In short, the likelihood of the graph is given in the form of the ensemble Y, where Y;; is a
binary directed edge, and the statistical measures of interest to the investigator, such as counts
for 3-cycles, C' = >_ Yi;YikYii, and transitive triples, T' = >
into the likelihood

i<jk ik Y;;Y;1Yir, are placed directly

p(Y[0 ) = s exp o+ HO(Y) + BT (Y)
such that the constant () normalizes the likelihood. Due to the allowance of dyadic dependence,
this constant is notoriously difficult to compute exactly as network size increases. Even a maximal
simultaneous dependence of three dyads on a modestly-sized 30 node network leads to ((3§)) =
13,624, 345 total terms to calculate.

While the specification is popular with sociologists, due mainly to the specification of structures
with known explanations, it has several deficiencies for our purposes, mainly that its parameters
are not directly interpretable for the behavior of the individuals. Additionally, while individual
characteristics such as covariates can be added to the likelihood through summary statistics, it is
not clear that these coefficients will be interpretable in combination with motif-based measures.

As a result, there is significant motivation to pursue an approach through which one can measure

7



and recover the presence of these quantities of interest in a meaningful and interpretable way.

3 Latent Characteristic Modelling Approaches

Many of the models previously discussed have the capacity to include information on the nodes
of a network in the likelihood of tie formation, particularly in terms of known covariates. These
methods are expanded on in Chapter 4 in greater detail. This section contains background on
a different approach: methods for inferring the presence of a latent geometry or latent nodal
characteristics as a means of explaining connectivity.

One of the simplest modes of node identification is that of membership in a group. The principle
of stochastic equivalence in relational data requires that the probability of a tie between members
of two groups (or, two members in the same group) depends only on the label of the group(s);
that is, all members of a group are essentially identical as far as tie formation is concerned. (For
a more detailed explanation, see Hoff [2007b].)

If the cluster memberships are known, the system can be analyzed using the stochastic block-
model method of Fienberg and Wasserman [1981]. With K subgroups, there are (K + (%)) intra-
and inter-component factors to estimate; dyadic independence then extends upward to component
independence allowing for faster analysis. In the examples provided by Fienberg and Wasserman
[1981], each component factor is estimated under the p; framework, though the methodology is
not restricted to this interpretation. This is extended to the full directed graph case in Wang and
Wong [1987]

This method is almost immediately extensible to models with multiple group assignments.
However, since these multiple groups may overlap with each other, the estimation procedure for
component factors cannot be performed in parallel.

On the other side are algorithms that infer group membership based on relational ties. Wasser-
man and Anderson [1987]; Snijders and Nowicki [1997]; Nowicki and Snijders [2001] describe meth-
ods and algorithms for estimating a flexible number of clusters, and assignment to each cluster
with a particular probability.

The trick in this case is that clusters are measured on people, whereas observations are made on
ties. There is a clear advantage to this approach, in that clusters represent sociological phenomena.
In particular, it is apparent that a cluster represents a community, or other such group, that has
a tangible meaning or benefit to its members, leading to interpretability of the results both for
connections and for individual outcomes.

There is an extension to the “mixed-membership” case, in which each individual can simulta-
neously belong to multiple blocks to various degrees. Airoldi et al. [2007, 2008] give an overview
as well as algorithms to model mixed membership with Bayesian methods, in particular the use

of a variational Expectation-Maximization (v-EM) algorithm to approximate the posterior distri-



bution [Jordan et al., 1999]. To summarize the generative process of the model, consider a mixed
membership vector 7, for each individual p, which describes the strength of association with each
block. (Any individual’s respective strengths sum to 1.)

A tie existence is generated by sampling a single group membership for individuals p and gq.
Given these groups (G, G,), the probability of a tie is given by the block matrix Bg, g,. Note
that this method also allows for links within clusters to be less likely than those between clusters,

a property inherited from the observable cluster model of Fienberg and Wasserman [1981].

3.1 Latent Trait Models

The notion of latent cluster membership can be extended to the notion of latent traits. In this
conception [Hoff, 2005; Nickel, 2006] the underlying traits are not confined to sum to one; the
tendency of individuals to interact is instead perceived to be the inner product of latent trait
vectors with respect to an underlying weight matrix.

The generative model for tie formation gives the probability of a tie as
logit(pi;) = p+ 2z Cz;,

where C' is the weight matrix, typically diagonal, and (z;, z;) are the latent trait vectors. Note that
for identifiability, either the elements of C' must be fixed in magnitude or the latent trait vectors
are somehow constrained.

The value of this method is not simply in accounting for unexplained tie formation, but also
as a hypothesis-generating mechanism. For those traits where Cj; < 0, there is a latent trait
heterophily; likewise, a latent-trait homophily is observed when Cj; > 0. Given that the model
can pick up one of these phenomena, it may represent an unobserved covariate on the nodes worth

discovering, rather than simply a useful mathematical curiosity.

3.2 Latent Space Models

An alternative explanation for social connectivity lies in considering a latent geometry within
which all nodes take a position. The stochastic model postulated by Hoff et al. [2002] places nodes
within a latent Cartesian space. The tendency for any two individuals to be connected by an edge
is then driven by the distance between the individuals in the space. For example, let d; be the

position of individual ¢ in the latent space. The probability of connection is then governed by

logit(pi;) = 1 — ||d;i — djll2

so that an increased distance implies a decreasing likelihood of connection. It is worth noting that
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as expressed, the connection probability will always decrease from the maximum value governed
by p. This approach was integrated with the blockmodel approach in Handcock et al. [2007], and
with sender and receiver effects in Krivitsky et al. [2009].

Another approach was considered in Linkletter [2007], so that rather than using only unex-
plained variance to formulate and space, a functional nonparametric method that begins with
known covariates uses these to produce a latent space model. This is one step along the way to

integrating the entire approach into a functional data analysis method.

4 Framework: Modelling Relational Data With Marginally
Specified Hierarchical Models

Most of the approaches just listed are based on a notion of conditional dyadic independence, or
the construction that given a set of underlying characteristics, the variability of each undirected
edge, or of each complementary pair of directed arcs, is unaffected by the effect of other remaining
ties. While this is by no means a certainty in many real-world observable sitations — for example,
a person can only have two biological parents (and indeed, must have them) — this in no way
limits the practical benefits of this modelling approach to other data sets. The presentation of
conditional dyadic independence cuts off more complicated dependence patterns between dyads at
the overt level, but with the exchange that these trends can be more cleanly explained at a level
below that of observation.

As motivated, this paper contains a unifying framework for many of these previous approaches
that allows for considerable extension. In the binary case, ties are represented as an observed
outcome of an underlying continuous process, based primarily on the Gaussian framework but
adaptable to other contexts, and the investigator can bring to bear tools developed in compu-
tational statistics, dynamic programming, and other connecting literatures in order to efficiently
and correctly model these sorts of relational data. This is not the first time the approach has
been proposed — similar models have been well-implemented in the work of Peter Hoff and his
colleagues [Hoff, 2007b; Hoff and Ward, 2003; Hoff, 2005; Krivitsky et al., 2009] — but, to the
author’s knowledge, it is the first large-scale attempt to unify the modelling framework for various
dyadic relational data types with a wider class of models, largely focused on the GLM framework,
and the generalization of computational methods for their analysis.

As the outcomes Y can be considered entries in an N-by-/N matrix, it is standard to group these
terms in four entries: grand mean value, row effects, column effects and row-column interactions.
For this reason, we begin with a redefinition of the p; model from the marginal point of view,
capturing the four components: mean density, sender properties, receiver properties and reciprocity

between the arcs. Next, three of the properties explored in the last section are brought into the
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current framework: latent spaces, latent characteristics and the behaviour of assortative mixing
on degree. Following this, the extension of the standard Gaussian to a multivariate Student-¢ is
discussed, converting the “probit”-type analysis to a ‘robit” [Liu, 2004]. Finally, we conclude
with a discussion on the comparisons between log-linear models and their marginal equivalents,
including several arguments why the marginal model should be used in the base case for network

analysis.

4.1 Marginal Specification and Extension of p;

The original p; model was specified on a series of (Z) dyads with quadrinomial probability speci-

fications for each. In the marginal case, there are 2(’;) arcs to be specified, namely of the form
Yij ~ Be(pij),
or in general probit notation,
Yij ~ Be(®(pi))-

The first simplifying step in p; is to simplify this probability into terms representing the grand

mean, sender and receiver. This becomes

Yij ~ Be(®(u+ ai + ;)

so that the terms p + o; + [, represent the same types of quantities as before — the increased
likelihood of ties in general, ties from sender ¢ and ties to receiver 7 — even though their numerical
interpretations are slightly different, in terms of their effect on the differing likelihoods.

As detailed in Appendix B, this formula can be represented in terms of a latent normal variable

Zi;, so that the previous expression is equivalent to

Once this step is made, the conversion from two independent normals to one bivariate normal is

immediate, and the dyad (Y;;,Yj;) is now expressed as the realization of a latent bivariate normal:

Yij
Y.

J

Z;
7.

J

| 9)




Parameter Draw Type Distribution Method

{g”| Parallel TNQ(V+ i +ﬁjJ : r pJ : {Y;j|) Direct Draw
ji p+ o+ B p 1 Y

o Sequential Normal Direct Draw
B; Sequential Normal Direct Draw
1 Sequential Normal Direct Draw
Ou — Inv-Gamma Direct Draw
og — Inv-Gamma Direct Draw
p — p(Z[p)p(p) Grid approx.

Table 1: An RCMS table summary for computing the GLM version of p;. Further definitions are

in Appendix A.
1
[ ”D (10)
p 1

To compare to the canonical p;, the sender and receiver effects can be restricted to have zero

7.

J

B+ o+ G
B+ o+ 5

|O‘757p ~ N2 (

sum, y . o; = » .3 = 0. Each node’s sender and receiver effects may also come from a common

family, as expressed in Wong [1987],

5= (o)

with appropriate prior distributions on these variances and the correlation term p,g.

PapTa0s o3

A Gibbs sampling scheme, as inspired by Albert and Chib [1993], is relatively easy to put
together. Following the method derived in Appendix B, there is a Gibbs sampling algorithm as
given in Table 1. Of special note is the algebra needed to demonstrate the direct draws for the
sender, receiver and grand mean effects. Consider the draw for one sender component «;; the
log-likelihood for a single bivariate normal containing the term, as divided into conditional and

marginal pieces, is given as:

log(p(Zij|Oé,ﬁ,,U,p)p(Zji|Zij704,ﬁ,,U,p)>
= C—3(Zy— =B — 1) = 5ty (Zjs — g = By — = p(Ziy — i = B — p))”

1 2 P 1-p Zji—a;j—Bs 2
= 5((Zz'j_ﬁj_,u)_ai)+m(ai_(zij_ﬁj_Tﬂ_T)> ;

which is in quadratic form for «;, conditional on the remaining terms. The addition of either a
prior distribution common to all «, or a hierarchical pooling model such as Equation 11, make the
conditional draw for the parameter as natural as from a standard distribution.

It is also notable that the addition of other terms to the formula, as specified in Table 2 and
12



described later in this section, do not affect the form of these draws when conditioned on; the

quadratic form is preserved.

4.2 Covariate Inclusion for Senders, Receivers, Edges

As introduced, node effects are modelled as indicators for the presence of a particular individual,
for example, the sender effect o; may also be considered as ), a0y, to signify the presence of
an effective covariate: the indicator that the node being considered corresponds to sender i. From
here, it is a simple addition to generalize to other covariates, whether or not they are uniform for
all senders, receivers or edges.

The inclusion for covariates on senders, receivers and edges is straightforward:

s, By p, X, N L pl).
2 3 P 1 )

W.U,v,v,0
the steps added to the Gibbs sampler are identical in form to the node effects due to their quadratic

n+ (CYZ' + X{Yz) + (ﬁj + le/j) + UUG

| A+ (aj + X;57;) + (B + Wivs) + Uy

form representations.

4.3 Differential Reciprocity Adjustments

Fienberg and Wasserman [1981] propose an extension of the p; model around the notion of differ-
ential reciprocity; that is, the tendency for one arc in a dyad to mirror the connection of the other
may vary based on the information on the participating nodes. Under the original specification,
the reciprocity term was considered as an odds ratio; in the GLM framework, it is considered to
be a correlation.
For full specification, consider the Fisher transform
1 1+
q=3 log —p7
2 1—p
so that the transformed quantity ¢ is without bound. Then, the transformed correlation may take

the form
Qij = Hg + Ti + 7 + Vi,

so that p, represents the baseline reciprocity, and 7; and 7; represent the deviations due to each

of the two nodes in the dyad, subject to a zero-sum or pooling constraint,

ano or 7 ~ N(0,02).
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Covariates V;; can be included for the edge, multiplied by the coefficient vector 1 to produce
the observed effect on reciprocity.

By using the inverse transform,

et — 1

Pij = Pji = ma

the parameters are restored to the original (—1, 1) range to act as correlations between each edge
in the dyad.

4.4 Latent Spaces and Parameters

Latent spaces and parameters have been introduced mainly in undirected contexts, but there is
little reason why they cannot be integrated into the current approach. Consider first the marginal
distribution of a single arc. If there is assumed to be a k—dimensional latent space where increased
distance represents a decreased likelihood of connection, where d; is a k—dimensional vector in the
latent space, and the general marginal expression for an arc is Z;; ~ N (g, 1), then the mean of

the latent strength can be expressed as
pijlw, d = wld; — djl,

so that w < 0 guarantees that greater distance decreases connections. Sampling this model can
prove to be troublesome, because there is a nonidentifiability of scale between w and the position
d;.

This can be standardized with two steps: fixing w = —1, and fixing one dyad in the latent
space: dy = 0, and dy = (1,0, ...,0). If desired, further constraints can be placed on all of the first
k nodes.

The issue becomes one of multimodality. The act of compressing n nodes into a k—dimensional
space will ensure that there will be an exceedingly large number of local modes in the system,
since given the other nodes, each node will have at least one locally preferred location, even if the
other nodes are not themselves optimally placed. One solution to this problem is to incorporate a
simulated annealing ladder into the maximization routine, so that the local nodes are free to sort
themselves on a rough scale in the early iterations of the procedure, increasing the likelihood of
finding a preferred global configuration.

Once this is done, it is a simple matter to add these latent positions into the Gibbs sampler
through a Metropolis step: propose a random step in the latent space, then accept the new position
if a uniform random variable is below the ratio of the new posterior probability over the original.

The construction of latent parameters has a similar issue. For a k—dimensional parameter

space, the latent strength is expressed as A
1



/
wijlz, C = z,Cz;,

where z; is a length-k£ vector and C' is a k-by-k£ matrix of magnitudes. This can be interpreted
as the inner product between character vectors z; and z; with respect to the Euclidean space
transformed by C, but with one important addition: the diagonal elements of C' can be negative,
implying that the coordinate is heterophilic, as opposed to a positive value implying homophily
on the latent characteristic.

A reliable RCMS profile can be built by fixing the coordinate of one point, say 24 = (1,1, ..., 1),
and allowing all other points and the mixing matrix C' to vary relatively, exploring these via
Metropolis steps. As in the latent position model, an optimization by simulated annealing may

prove to be the most efficient way of determining a reliable starting point.

4.5 Assortative Mixing on Popularity and Gregariousness, Rather than

Degree

An observation that has been observed in real networks is the notion of assortative mixing: in-
dividuals with similar numbers of ties are more likely to associate with each other than would
otherwise be expected by their own gregariousness or popularity, even though it is reasonable to
expect individuals with a large number of ties to connect to each other with great likelihood. If
this is the case, it is likely that additional forces are at work.?

The approach of Newman [2002] measures assortative mixing within a network as a descriptive
statistic: a coefficient of the correlation between the joint degree distribution of two connected
nodes and the degree of nodes in the marginal sense, then normalized with respect to the maximum
value. Consider the measure of “remaining degree” of one node (d; — 1), and the joint distribution
of two connected nodes ((d; — 1), (d; —1)). The assortativity is defined as the correlation between
the joint remaining degree probability of a pair of nodes and their marginal remaining degree
probabilities, with respect to each edge in the system; that is, nodes with higher degree have
a higher tendency to contribute to the mixing statistic. As this is a statistical description, the
inclusion of this behaviour in a generative model requires a corresponding parameter.

Consider the p;-type model
pij =+ o + B + €4

as a starting point, where o and 3 have mean 0 and the error term ¢;; ~ N(0,1). To alter the level

2In particular, the fact that nodes have the appearance of organizing according to their network structure
represents an endogeneity in the modelling step that static generative models may have difficulty in handling.



of assortative mixing, the parameter x is introduced and an additional term is included, directly

proportional to the popularity and gregariousness of the individuals:

pij = po+ o + B + xouf; + €45

As the sender and receiver terms are naturally centered at zero, there are four regimes to
consider: when each of these terms is greater or less than zero respectively. Positive values of
X raise the tie strength when «; and (; have the same sign, and lower for opposite signs, the
key characteristic of assortative mixing; likewise, negative values for y lower the tie strength for
opposite-signed gregariousness and popularity in the individuals for this particular arc.

This form is also easily computable given the conditional maximization and sampling frame-
work. In the Gibbs sampling formulation, conditional on x and (3;, the sampling for «; remains
straightforward, as the full conditional posterior distribution is still a quadratic form. This remains

true for the sampling of any one parameter, conditional on the other two.

4.6 Robust Analyses with the Multivariate ¢ Distribution

Stability is often a concern in binary modelling with the probit framework, due to the light tails
of the underlying normal distribution. A mechanism for allowing heavier tails, hence gaining
resilience against outliers and robustness to the assumption of latent normality, is provided in
“robit” regression [Liu, 2004]. The addition of extra variability on the latent normal is performed
with a data augmentation step and is complementary to the Gibbs sampling and ECM approaches
used to this point.

The original latent variable formation is Z;;|u;; ~ N (j;5,1). To convert this to a t-distribution,
the constant variance is replaced by a random variable. In particular, consider a Gamma variate
Gyj ~ 2/vGam(v/2), so that EG;; = 1 and EL = %5, A representation for the standard ¢

2
distribution is

1
yielding the marginal distribution

7—;‘]’ ~ ty.

As the variance for this distribution is %5, the underlying variate can be restored to unit

variance with an added scale factor, and given the original mean shift p;;, the latent distribution

takes the form
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iy v—2
Tij|pij, Gij ~ N (Mz’j; F) :
ij

Given the augmented variance, the probability of a positive Bernoulli outcome is now
(v — 2)pi
P(Ty; > 0|Gyj, pij) = @ [ —22 ) ;
(T3 Gl ig) ( en

conditional on the augmented variance term Gj;, the existing Gibbs sampling structure may still
be used for the augmented data T;;|G;; and the terms included in p;;. Given a fixed degrees of

freedom v, the Gibbs sampler for each G;; draws from the distribution for the gamma:

e A CN = et Yoe . o Fi = )Y o
log(p(Zwlluzja ng)p(G2]>) =c+ 5 log sz - Guw + (V/Q - 1) log Gzy - VGZJ/Qﬂ

2 v+1
Gij| Zijs p1ij ~ 1+ (zijy_;;m)Gam ( 2 ) '

One additional benefit of the robit model is the ability to tune the degrees of freedom. In
particular, Liu [2004] suggests that setting v = 7 gives the robit model contours that approximate
the logistic distribution quite well, with the benefit of heavier tails. This means that for the addition
of computing power, a Gibbs sampling model can be built that will approximate the commonly

used logistic model very well, while still maintaining the benefits of heavy-tailed distributions.

4.7 Integration with Other Generalized Linear Model Forms, and Fur-

ther Extensions

All the recipes listed in this section have so far been defined on the probit model for two main
reasons. First, as these methods have been defined and developed primarily for the analysis of
binary data, it is essential that any extensions that are subsequently developed can be applied to
that domain. Second, the computational tools developed for other analyses of binary data are not
themselves limited to this class of outcomes.

The model-building strategies laid out to this point for probit-type models are equally applicable

to other classes of data, with differences only in the parametrizations of each of these model families.

4.7.1 Normal-family Data

Because the binary data strategy has been derived from latent normal-family distributions, the

extension to this family of data is immediate. 1()7onsidelr the general form for a bivariate normal



distribution,

Z;;
7.

J

Higs His Tigs | [ Ha || 9 0111 piy|l|oy O
Tjis Pij Hiji 0 o5 |pij 1 0 o

which has three groups of terms that can be expanded: mean values, variances and correlation.
The mean term can be decomposed just as in the previous examples, with a grand mean, sender
and receiver effects, assortative mixing and latent parameters. Correlation between arcs in a dyad
can be handled as in Section 4.3.

The inclusion of standard deviation terms in the parametrization, particularly the notion of
differential variance, allows for additional flexibility in modelling. Consider a decomposition of the

form
log oi; = log iy +log o; + log o,

so that the variance of each edge depends on both the mean degree of variance in the system and

on characteristics of each node in the dyad.

4.7.2 Partial Correlations as Network Ties

Section 4.3 refers to the modelling strategies for reciprocity between ties as a correlation function.
While these are instances of modelling latent quantities, the same methodology can be applied to
correlations that are estimated between units.

If the correlation between units represents the total impact of one unit’s fluctuations on the
other, than partial correlations between units represent direct effects, represented as network ties.

The Fisher transformation

]
is used to bring the data to the normal scale; subsequently, this can be modelled as if each

transformed correlation is a normal random variable.

4.7.3 Count Data

If data are integer-valued counts, Y;; ~ Poisson(\;;) is a natural interpretation for tie strengths,

which can then be modelled as

log \ij = p+ a; + B34
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for sender and receiver effects respectively. The Negative Binomial distribution can be modelled

as in Zheng et al. [2006] by adding an additional overdispersion term,

log Aij = p1 + a; + B; + 7ij,

where 7;; ~ wGamma(l/w); if necessary, this itself can be expanded so that the overdispersion is

hierarchically modelled and necessarily positive,
log w;; = logw + log w; + log w;.

4.7.4 Finite Ordinal Data

In applications of the measurement of network ties by surveys, many measurements are taken
on an ordinal scale. The work of Rasch [1960] suggests that this may be accomplished through a
latent variable estimation method. While the original method was proposed in terms of the logistic
distribution, the definition is equally palatable in terms of the normal distribution.

Consider k ordinal levels of a particular response to a survey question; the typical example
is a five-point scale in the style of Likert [1932], where a statement can be treated as {strongly
disagree, disagree, neither, agree, strongly agree}, rescaled to {1,2,3,4,5}. While these values can
be taken directly as numerical scores, it is also possible to consider these to be the manifestation

of a latent normal random variable with break points, in this case {1, ...04}, such that

P(X = i) = ®(8) — (i),

where 3y = —oo and [ = oo for the sake of completeness. This can be directly expressed in terms

of the latent normal,
X = Zﬂ[(ﬁiﬂ < Z < [)

so that inference is then taken on the breakpoints. Given that the latent variable is normal, and
that survey questions to one individual regarding another is a description of a directed arc, it then
remains to model each arc as the manifestation of the latent variable, Z;;|u;; ~ N(pi;,1) as in the

binary and continuous normal cases.

4.8 The General Case

The cases presented have common roots: each expression required for the stochastic generation

of the relational structure can be decomposed into grand mean, sender, receiver and interaction
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Y|T = f(T',T?,...): Parameter Symbol

T = global mean L

+ sender covariate term(i) a; + X

+ receiver covariate term(j) B; + Wiv;

+ sender/receiver mixing term(ij) x (o + X;7:)(8; + Wiv;)

+ arc covariate term(ij) Uii0 + ¢ij

+ latent geometric term(ij) —|d; — dj|

+ latent property term(ij) 2/C'z;

Definitions o, 8,7, v, X, 0, w Effects (fixed, random, mixed)
X, W;, Us; Covariates

d; (Latent) position
Z; Latent characteristic vector
C Latent characteristic factor matrix
Eij Noise or Overdispersion

Table 2: The framework for all GLM network estimation, with broad definitions of each term
involved. Each of the terms in the general functional framework can be composed in terms of
these effect groupings. The function f(T",T?,...) may be deterministic or stochastic.

terms. These terms are summarized in Table 2.

As dyadic data, the pair (Y;,Y};) are taken together as a unit and may share many characteris-
tics. They may be independent given their characteristics, or dependent under a chosen framework
like a Generalized Estimating Equations method, the aforementioned bivariate probit, or a more
general latent copula formulation [Klaassen and Wellner, 1997; Pitt et al., 2006; Shaw and Lee,
2007; Hoff, 2007a].

5 Discussion: Comparing Marginal Specifications to Con-
ditional Models

Section 2 gives a number of examples where the arcs in a dyad were treated jointly in the mod-
elling process. This section demonstrates some of the options available when arcs were analyzed
marginally first, with the interaction of the two arcs in a dyad considered as a secondary concern.
The choice to refer instead to marginal models for ties has a number of motivations, which are
discussed in the upcoming subsections. Two main areas are discussed: first, the fundamental unit
of analysis in each case, being the arc or the dyad; second, the expandability of marginal models

versus their joint counterparts.
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5.1 The Fundamental Unit: The Arc or the Dyad

If there is dyadic independence and the object in question is undirected, there is no issue of
model choice, as the two are functionally equivalent: the arc is the dyad, and vice versa, and the
parametrization is essentially a matter for the investigator, whether a choice between logit and
probit analysis, or a parametric versus nonparametric model, or any other choice that may come
up in model selection. This also applies if the two arcs in the model are conditionally independent;
if there is no need to account for the other object, it is as if there are two undirected dyads across
the same pair of nodes.

The issue becomes the case of dependence, and the unit of interest in each case. While the
dyad is the equivalent of the experimental unit in this case (since it is perceived to be conditionally
independent of all others), the arc is the unit of observation, as it focuses on one individual
first. These data sets are typically collected by survey on the individual, or the observation of
communications to or from an individual, so that while the reciprocal behaviour is potentially full
of information, a model can easily be composed without the need for corresponding mutuality of

observation.

5.2 Expandability: Beyond the Binary Case

It has been demonstrated that marginal and joint methods can both model conditionally inde-
pendent binary data. When expanding to edge types beyond the binary, there is more room for
debate about which method is preferable.

Consider first the case of ordinal data in the uncountably infinite case, where each arc is valued
along the real line or a subset thereof. When the choice is between modelling the probability of a
dyad value in an infinitesimal area, or of first modelling each arc probability within an infinites-
imal length, separating this problem from that of the correlation of the two arc values. While a
functional data approach might be able to model the probabilities in terms of a joint functional
distribution, such methods are less suitable for parametric models, or even Generalized Additive
Models, whose multidimensional equivalents have typically been defined to be interpreted in terms
of the marginal distributions, such as the multivariate normal.

The issue becomes slightly murkier when arcs are measured as classes of finite, categorical data.
While the quadrinomial model can be extended to a general k%-nomial framework for k categories
in each arc, there is a disadvantage when only one correlation parameter is presented between the
two outcomes, yielding models with only 2k + 1 degrees of freedom as opposed to k? — 1 in the
multinomial framework.

However, the issue is strictly one of interpretability, as there is no strict requirement that only
one interaction term is necessary. Imai and van Dyk [2005] propose a latent variable formulation

for the multinomial probit, using a latent multivariate normal whose result is determined by
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Figure 1: A series of networks formed by the Watts-Strogatz small-world algorithm. Left, an
“ordered” lattice, in which every node is connected to its two nearest neighbours. Middle, a small
number of rewirings is permitted, maintaining the close connection of neighbours but decreasing
the geodesic path lengths. Right, continued rewiring of connections at random.

the component with the maximum value. The expansion of this multivariate normal with the
appropriate correlations included would allow for the marginal model to be implemented in this

context as well; these modifications will be implemented in future research.

6 Reformulations of Classic Examples, with Extensions

Several popular approaches from outside the statistical literature are built around generative
schemes that propose to explain how real networks came to be in existence. However, it is all
too easy to confuse the map with the territory — in this case, the mistake of accepting a proposed
generative model for the network both as the best (and possibly only) story, and as predictive of
future growth and of similar networks — when alternate explanations are available.

It is for these reasons that we demonstrates the applicability of a workhorse GLM approach to
model the same circumstances as described by those models from a different perspective. In the
process, there is no commitment to a single generative story for these systems, only to demonstrate
that there are multiple ways of constructing the same networks that give rise to multiple plausible
explanations for their generation; in particular, that there are other simple explanations for small-
world and preferential-attachment graphs. The remaining section deals with a class of data that
can be put together with similar simple explanations: the modelling of correlational data, often

used to propose binary network structures.

6.1 Watts-Strogatz “Small-World” Networks

While studying the mechanisms of coupled harmonic oscillations in biological networks, Watts and

Strogatz [1998] identified a structural class of ng%works now known as “small world” networks, as



inspired by the work of social psychologist Stanley Milgram in the 1960s [Milgram, 1967], which
itself was also the source of the expression “six degrees of separation”. While the initial work
of Watts and Strogatz focused on structural aspects, in later work the notion was generalized
as being an interpolation between an “orderly” ring lattice and a “chaotic” Erdos-Rényi random

graph. The original algorithm took the following form.

1. Create n nodes around a two-dimensional ring. Connect edges between nodes if they are
within a certain distance along the ring; in particular, the original paper proposed that a
node was connected to each of its two nearest neighbours on each side, for a degree of four

for each node.
2. Select a rewiring proportion p, and choose 4np edge endpoints uniformly.

3. For each selected endpoint (with node identity i), choose a node uniformly at random from
all nodes in the lattice (k) except for the corresponding endpoint of the current edge (j);
rewire the edge such that Y;; = 0 and Yj,; = 1.

An example of rewiring at two scales is given in Figure 1 for an example. This model has proven
extremely inspiring to researchers across fields; a thorough review of the literature is available
[Dorogovtsev and Mendes, 2002]. This model is easy to code, and to visually process. It also
has the advantage of being extremely fast in the large n case (2.25 x 10°, in the movie-actors
example). However, the generation process of the model assumes a stark bifurcation between
two classes of relationships: close neighbours and everyone else. Additionally, while the story of
“random rewiring” of a fixed number of connections is easy to explain the topological properties
of a system, it may prove to be an implausible model for the way in which the connections in a
networked system may develop.

The original small-world generative model takes three parameters: n, the number of nodes in
the system: k&, the number of neighbours on each side to which a node is initially tied, and p,
the probability that any end of a tie is rewired at random. The GLM method for constructing a
small-world-type graph takes a similar input, with a slight redefinition of terms. While n is still
the number of nodes in the system, let d be the total edge density (equal to 2k/(n — 1) in the
original case) to allow for a wider range of densities. p becomes a measure of the influence of
longer-distance nodes.

Begin with n nodes equally positioned around a circle with circumference n. Let s;; be the
distance between nodes i and j along the circle.® Let Y;; be drawn from a Bernoulli {0, 1} random

variable with probability of success as the sum of two pieces.

30ther distance functions may possibly be substituted here to produce different network topologies; the ring
structure is presented to maintain consistency with the original model.
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First, there is the propensity to connect to an immediate neighbour. In the complete “order”
case, an individual connects with probability one to the closest connections, those within a distance
of |k] = L@J, and with proportional probability if just outside this range. That is, if k = 2.5,
then the nearest two nodes on each side would be connected, and those a distance three away
would connect with one-half probability, and with probability zero for any nodes farther away. All

together, this represents a success probability
0ij = 0(sij < [k]) + (k= [k])6(0 < s;5 — [k] < 1).

Second, there is the piece more indicative of chaotic behaviour. In the standard small-world
model, this takes the form of an Erdds-Rényi probability, so that the probability of connection is
proportional only to the density, defined as

Cij = d.

The small-world GLM is then composed by weighing the order and chaos probabilities according
to the factor p, so that

Yij ~ Be((1 = p)oi; + peij)-

As will be shown in the next section, this simultaneous model with a latent space is sufficient
to explain small-world characteristics as well as the original Watts-Strogatz model. However, the
ability to expand this model beyond these characteristics, not the least of which is the addition of
nodal properties, is an advantage that the GLM approach has over the original.

To demonstrate the characteristics of the GLM models in comparison to the original small-world
generation, each model is simulated for a series of cases with 200 nodes, in which the expected
number of ties for each node is 6. The cases take various degrees of perturbation to demonstrate the
presence of “small-world characteristics” in both the Watts-Strogatz and GLM generative models,

namely

e The mean path length for all pairs of points.

e The Watts-Strogatz clustering statistic, defined to be the mean of the fraction of observed

triangles from all those possible for each node, K, = %, averaged over all nodes
i 225 YkiXkj

k.

These characteristics are on displayed at various levels of p in Figure 2. As the degree of
“chaos” increases with rising p, there is a region where the degree of local clustering remains high,
while the median distance between points decreases markedly, for both the new GLM model and

the original small-world model of Watts and StrQOfatz [1998].
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Figure 2: The median path length and clustering statistics for small-world graphs generated by
the Watts-Strogatz and GLM methods. Each display the region between the curves where the
graphs have small-world properties

6.2 Preferential Attachment Models

As many networks form through a process of aggregation, there is great interest in explaining a
network’s structure through a process of evolution. The mechanism proposed in Barabasi and
Albert [1999], largely known today by the term “preferential attachment”, follows this general

mechanism:

1. Begin with a small collection of k connected nodes (a “seed” network) with some configuration

of ties between them. Make note of the degree of each node, d; = > ; Yi;.

2. Add a new node labelled k& + 1 to the system, and create a link with one of the current k
nodes with respective probabilities p; = %, proportional to the degree of each of the nodes

at this time.
3. Repeat step 2, updating the degree distribution with each step.

The symmetry of an Erdés-Rényi random graph may suggest simultaneous formation, due to
the relatively even distribution of ties. In this class of network, the individuals with the longest
memberships are more likely to have a higher number of ties due, effectively, to their longevity,
amplified by an individual’s tendency to connect with these more popular individuals. This is a
process studied in Simon [1955] and de Solla Price [1976], and exemplifies the “rich get richer”
phenomenon as a natural consequence. This is a mechanism that has been shown to explain the

growth of the World Wide Web in its early yealg,



Notably, a preferential attachment model does not distinguish directly between its member
individuals by label; when a complete graph is presented, the order of attachment is typically
inferred from the degree distribution of the node. Thus, the model considers the notion of degree
to be the identifying factor in the age of its presence in the network.

These methods represent the evolution of a system in which the active age of a node is partly
responsible for its propensity to have ties attached. But it is also reasonable to model this asso-
ciation as a function of the intrinsic popularity of a node. For example, a system of nodes whose

popularities are heterogeneous can be generated as

ﬁj ~ N(:ua U2)a

so that y is the mean popularity and o? the heterogeneity between nodes; the subsequently gen-
erated popularities are then the basis for the generation of a directed graph. In keeping with
previous examples and motivations, a probit link with data augmentation is used to obtain the

directed graph:

A symmetrized version of this graph is produced to get the undirected equivalent, so that
Vi = max (I(Z;; > 0),1(Z;; > 0)).

The next section shows that generative systems with this level of heterogeneity can produce
systems that have the signature characteristics of the scale-free model, in common with the growth-

plus-preferential-attachment mechanism, yet also have additional interesting properties.

6.2.1 Example: A Simultaneous Heterogeneous Degree Network

To produce a network with similar “obvious” characteristics to a preferential attachment modelled
network with n total nodes, a large number N of networks are simulated under the preferential
attachment mechanism and recording the degree distribution for each, and taking the mean at

each position; that is, let

be the mean degree of the m!™ most popular node across all simulations.
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Simultaneous Popularity Model Fitting
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Figure 3: Fitting the expected degree of each node under a GLM model to the observed degrees
of networks constructed by preferential attachment.

Quantity Value
Visible Nodes | ~ 1000
“True” Nodes | =~ 5000

! -0.41
o 0.974

Table 3: Results for a least-squares fit for a normal distribution fit to the estimated popularity
measures. Note the much larger estimate of the number of true nodes present in the system that
are not part of the visible giant component of the system.

Correspondingly, as node m should have D,,, incoming connections, and the probability of any
one incoming connection is ®(f3,,), there is an estimate for each individual 3,, = ®~}(D,,/(n—1)).
A curve is fit to the cumulative distribution curve (see Figure 3), corresponding to the expected
fraction of edges per node for various ranges of beta using a simple least-squares criterion.

Three quantities are obtained in the fit: the mean shift, the standard deviation (scale), and the
total number of points that would make the completed curve — including the addition of nodes with
degree zero that would be unaccounted for with an algorithm that guarantees a fully connected
graph. Rough estimates for a corresponding fit are given in table 3.

The most notable feature of the system is its high size, strongly indicating the presence of a
great number of nodes that are not apparent in the main system, possibly in smaller components
only internally connected.

A simulation from the GLM model is plotted in Figure 4 to show the similarities between it
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and the original model. The largest component in this simulation has 906 nodes; there are an
additional 1221 nodes that are connected in some way to others, leaving 3779 isolated nodes.
Finally, note that this system is not meant to be an exact duplication of the preferential
attachment model. In particular, the dynamic properties of this class of system are considerably
different from preferential attachment, not the least of which is the likelihood that new nodes are
not guaranteed to join the giant component. This generative scheme can capture many of the
same features of an observed network for which preferential attachment is a plausible mechanism,
while at the same time noting that the use of a preferential attachment model would not indicate

the presence of so many disconnected nodes that are no less involved in the system under study.

A Rotational Conditional Maximization and Sampling Meth-

ods

Throughout this work, the analyses proposed are executed by computer, given both the magnitudes
of the data sets and the complexity of the models. As the models are composed, they are build
with the ability to separate into conditional components. Additionally, the introduction of a latent
structure with data augmentation allows for components that are easier to handle for sampling
and maximization. For this reason, while many other algorithmic approaches are feasible to solve
for the state of the system, this work advocates methods in which the likelihood or posterior
distribution is maximized or sampled in terms of one parameter (or one parameter group) at a
time. In the likelihood approach, this is done with the ECM algorithm [Meng and Rubin, 1993,
which is already attractive due to the nature of the augmented data {Z;;}.

In the Bayesian framework, the most common conditional sampler is the Gibbs sampler [Geman
and Geman, 1984], one of the more commonly used Markov Chain Monte Carlo (MCMC) methods,
in which each parameter (or sub-block of parameters) is sampled in sequence from the current
full conditional distribution; the stationary state of the chain is then taken to be the posterior
distribution in the inference. Approximations of the posterior distribution are also calculable
though variational EM (VEM) methods (see Jordan et al. [1999] for examples), which can also be
conditionally maximized by rotating through the model parameters.

Because both of these methods can be expressed in table form — the sequence of parameters
from which to calculate expectation functions, find maxima or take draws — all distributions will
be displayed in this form, a Rotational Conditional Maximization and/or Sampling (RMCS) table,
for whatever method of inference is chosen to solve the system; a simple RCMS method is given
in Table 4 for a bivariate normal distribution with known correlation. As a personal preference of
the author, systems will be solved first through the maximization of the posterior distribution in

the style of ECM (though here in the fully Bayesian context, all variables are considered random
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GLM-type Scale-Free Imitation

Figure 4: A representative simulation of the GLM model for scale-free-type networks. 1221 nodes
with connections are shown, 906 of which are in the largest component.

29



Z1; 21 1 1 P]) 2
~ N , : 1 ~ N(0,1000
{Zzz} | [M] 2 ([M] [ﬂ 1 sz~ N )

Parameter Draw Type Distribution Method
1 Single L1, p(Zia, Zia|pta, pr2)p(p1)  Direct Draw (normal)
L2 Single [L;p(Za, Zia|pa, p2)p(p2)  Direct Draw (normal)

Table 4: A Rotational Conditional Maximation and/or Sampling table for a bivariate normal
distribution with known covariance.

variables, not missing “data” per se), and probability intervals calculated through generalized

Gibbs sampling methods about any modes discovered in the previous step.

B Marginal Specifications of Dyads under the (Gaussian

Framework

Older network methods have been based on log-linear modeling and logistic regressions, which
have enjoyed a long history largely due to their ease of computation. As the logistic CDF has an
easy closed form, probabilities can be calculated from these models quickly, and by hand, given
values for the parameters. However, due to the recent rise in computational power, difficulties
formerly associated with the Gaussian CDF are no longer an impediment to its adoption for these
tasks. In particular, its natural multivariate specification makes it ideal for modeling dependence
between ties and individuals. See Cox [1972] for a road map of multivariate binary analysis that
is still valid today.

Because the Gaussian CDF represents the probability of an underlying normal random variable
being above or below a particular point, I consider all of our modeling of binary ties to reflect such
a latent scheme. The approach used is a class of data augmentation algorithm first proposed to
solve computational problems by Tanner and Wong [1987], while the particular algorithm uses has
its roots in the work of Albert and Chib [1993]. Others who have extended this approach for other
classes of data are McCulloch and Rossi [1994]; Nobile [1998]; Imai and van Dyk [2005]. in this
case, | extend the approach of Albert and Chib to consider multivariate binary models using latent
multivariate Gaussians.

The use of latent continuous variables for modelling discrete outcomes has a history over a
century old, including cases when the outcomes can be dependent. Pearson [1900] first described
a procedure for interpreting a binary outcome as the dichotomization of a latent normal random
variable, which are then extended to a pair of outcomes on a two-by-two contingency table with a

latent bivariate normal.
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A Bivariate Probit: Mean=(0.2,0.4), Cor=0.5
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Figure 5: A latent bivariate normal random variable forms the basis for a bivariate probit model.

Consider a contingency table with the following cell and marginal probabilities for the joint

binary variables (Y7, Y5):

Joint Probabilities | Yo =0 Y; =1 | Total
Y1 =0 n a 1—m

Yi=1 b m m

Total | 1 — 79 o 1

The layout of the table suggests a measure of dependence between the two outcome variables:
if the joint probabilities in the table can all be expressed as the product of their marginal distri-
butions, the rows and columns are independent. The mechanism suggested by Pearson [1900] is
to parameterize dependence in terms of the latent bivariate normal.

The estimate of the correlation p between the latent normal variable pairs is what later became
known as “tetrachoric correlation” (literally, the “four voices” in a two-by-two table). Due in no
small part to the difficulty in calculating functions of the normal cumulative distribution function,
this approach of analyzing contingency tables became less popular than the kappa technique for
quantifying rater agreement, a concept with similar mathematical properties but unconcerned with
latent traits, and odds-ratio estimation for off-diagonal probabilities, which have characteristics
that have proven useful in the biometric literature.

Development of probit-based techniques later became widespread in biological studies by Bliss

[1935], though the introduction of [Ashford and Sowden, 1970] reintroduced the concept of the
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bivariate probit to the biometric community.*

In general, the bivariate specification is extendable to the multivariate case. Rather than
estimating cell probabilities (as there is no easy expression for multivariate normal CDFs) I use
the Pearson latent variable specification. Let (Y7, ..., Y,,) be a vector of binary responses. In general,

the latent multivariate normal Z is defined as

Z ~ Nn (M? 2)7
Var(Z;) = 1,
Cou(Zi, Z;) = pi,i # J;
YilZ = 1(Z>0).

Marginally, each outcome Y; is a Bernoulli outcome with success probability ®(u). If there is

no correlation between observations, the model reverts to a traditional probit analysis.

C Estimation Methods and Algorithms

The latent variable specification makes Bayesian inference on the resulting model significantly
easier than in log-linear models. I use a modification of the algorithm proposed by Albert and
Chib [1993] that capitalizes on the Gaussian framework, while adding sampling steps for the
additional correlation terms.

Consider first a simple model where each observed outcome i € {1,...,n} is bivariate binary,

and all outcomes are conditionally independent:

Y; Zo|  |1(Zip>0)|
A X, 1

. |ﬁ7 v,po~ N2 6 ) P )
Zl'2 XZ'I/ 1% 1

where the last line is a bivariate general linear model with independent rows, and prior distributions

are specified appropriately. All together, the latent variables are specified as a (2n)—variate normal:

4The authors make a key point that not all joint distributions whose margins are normal are themselves mul-
tivariate normal, such as the case (Y ~ N(0,1), X = SY, S = 2Be(0.5) — 1) in which X and Y are uncorrelated
but dependent. It is assumed throughout this work that the underlying model is the canonical multivariate normal
distribution.
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Parameter Distribution Method

{?| Parallel Truncated Ny Direct Draw
ji

[f } Joint Ny, Direct Draw
p — p(Zlp)p(p)  Grid approximation

Table 5:  An RMCS table for the bivariate normal with coefficients # and v; full expressions for
each term are given in the text. (See Section A for more on RCMS notation.)

IR
v p 1

In this specification, a Gibbs sampler in the form of that suggested by Albert and Chib [1993]

can be executed to obtain draws from the posterior distribution (Table 5 gives the steps in order.)

[Z1] 18,0, p ~ Na, ((12 ® X)
Z

To draw the latent normal conditional on the coefficients 3, i, correlation p and outcomes (Y1, Y32),

the truncated bivariate normal is used, where all n units can be drawn simultaneously:

Zi X3 L op
A A R )

For the coefficients (3, /), the properties of the multivariate normal make the mean and variance

Y;
Y;

Y

estimates easier to calculate,

;

This form is easily extendable to include a non-flat multivariate prior distribution for (3, v).

Z 1
N (e A
Z2 P 1

® (X’X)l) :

Without a convenient conjugate form, the draw for p is best done by either a Metropolis-
Hastings step or an approximation such as a grid-method draw. Since the value is bounded to
the interval (—1,1), my personal preference is for a grid sample or a direct acceptance-rejection

scheme, which would allow for more mixing than a Metropolis-Hastings method.
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