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Abstract

We present a unified approach to modelling dyadic relational data, namely that seen in
social, biological and technological networks, without restriction to the binary format. The
approach involves three principles: considering the marginal specification of any edge as the
fundamental unit, embedding as much dependence as possible in latent structural forms,
and using distributional forms that favour high-throughput computational methods for their
solution. We show that this approach allows for an extremely flexible and generalizable
way of describing the structural properties of relational systems; namely, we offer alternate
explanations for two approaches popular in the networks literature, the “small-world” and
“scale-free” mechanisms, and demonstrate the ability of marginal hierarchical modelling to
expand beyond them.

1 Networks and Relational Data

A network, defined as a collection of individuals (or “nodes”) who are connected in a pairwise

fashion (with undirected “edges” or directed “arcs”), is a powerful tool for describing many types

of complex systems across many fields of science, nature, technology and society. Because of

the relative ease in perceiving this type of system, network constructions have been used both

to describe systems that literally meet these criteria: computer networks have members that are

individual machines (literally known as nodes), connected by wire or wirelessly to each other in

pairwise fashion, often through hubs with high connectivity. As a result, solutions for the most

economical configuration of nodes and connections for the circumstance is, without exaggeration,

a multi-billion-dollar industry.

For other systems, a network model is often imposed onto the ensemble of individual compo-

nents and their interactions. In correlational models, two individuals that have a high correlation

in their outcomes are said to be connected – say, two people have breakfast at the same restaurant

over a weeklong period – and a network is formed by considering all correlations between pairs

of nodes. In this case, the network model may be a poor approximation if there is substantial
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interaction at a level higher than pairwise; one person invites two friends to breakfast, and the

three eat together, but the friends are unconnected except for their common acquaintance.

This work considers all classes of valued, directed networks under the heading of relational data:

n individual units (or nodes) are connected pairwise by a maximum of n(n− 1) directed edges (or

relations). When assigned value, the edges combine with the nodes into the ensemble configuration

of a network. It is the specification of these edges, including their values and uncertainties, that

form the basis of the investigation that follows.

Whether the network has a physical basis, or is simply an approximation for the entire system

of interaction, the same categories of scientific and statistical interest apply:

• Statistical Description. In a single instance of a network, there are of order n2 quantities in

terms of nodes and edges. Is there a set of sufficient statistics that parsimoniously summarizes

the construction of the network in a parametric family?

• Generative Inference and Prediction. This applies to both the story of how the network

comes to be, both in terms of the time evolution of nodes up until the time of observation

(the single observation case) and how networks from the same family would evolve (the

super-population case). What does “asymptotic behaviour” mean in the case of networks

– a single network growing in size with the same generative properties, a single network

whose properties scale in some way with increasing size, or a growing series of networks with

identical properties?

• Nodal behaviour. One of the over-arching goals of modelling a network is to show how it

impacts the individuals within it. Therefore, any network constructed must ultimately be

connected back to nodal properties and outcomes in order to have meaning. Modelling un-

certainty in network ties therefore has a directly measurable impact on the nodes themselves.

Additional background on these modelling questions can be found in Goldenberg et al. [2009]

and Kolaczyk [2009].

We begin by reviewing the development of stochastic network modelling from the perspective

of statistics and sociology, from the Erdős-Rényi-Gilbert model to the Exponential Random Graph

model, and introduce other mechanisms that have been designed to account for unexplained con-

nections between individuals such as latent spaces and membership models. We then introduce

the piecewise development of the general approach we prescribe, in terms of each of the three

levels of assembly: general, node-specific and edge-specific quantities. This is then followed by the

application of the method to binary networks produced by the “small-world” method of Watts and

Strogatz [1998] and the preferential attachment mechanism of Barabasi and Albert [1999] as well

as the assortative mixing measure of Newman [2002].
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2 Edge-Specific Binary Network Models

2.1 Erdős-Rényi-Gilbert Random Graphs

While graph theory has provided many insights into the construction of deterministic networks,

much of the interest in the use of networks in a nondeterministic setting began with a series of

papers from Paul Erdős and Alfred Rényi [Erdos and Renyi, 1959, 1960, 1961; Erdos, 1959, 1961].

These papers put forth the notion of the canonical “classical random graph”. In this simple model

there is a community of N individuals, and
(
N
2

)
potential undirected two-person relations, k of

which are known to exist. There is an ensemble of graphs of size
((N

2 )
k

)
with this particular property,

and remarkably, the properties common to the members of the ensemble are known to depend on

the fraction of edges per node, λ = k/N , namely that graphs with λ > 1 are completely connected

in the asymptotic limit.1

Our starting point is the closely related paper of Gilbert [1959], which takes a binomial starting

point: each tie has probability of existing, independent of every other possible tie, with some fixed

probability p. This is immediately extensible to the case where there are N(N − 1) potential

directed edges that exist independently and with common probability p, or that for the edge

between individuals labelled i and j, the tie is defined as Yij ∼ Be(p).

Other schemes for generating connected structures have since arisen. In the past 10 years, many

researchers in the computer science, physics, and machine learning communities have followed

these examples in proposing models for evolutions of complex networks with simple underlying

properties. Among others, explorations in unified structure across classes [Airoldi and Carley,

2005], hierarchical sub-grouping [Clauset et al., 2008], and self-similar “Kronecker power” models

[Leskovec et al., 2005] have brought new insights into the growth of complex systems from simple

roots.

2.2 Distinguishing Individuals

It is of great interest in many scientific applications to include individual-specific information when

considering the formation of networks among them. In particular, there are insights provided by

mixed effects modelling that show how to include both covariate information and latent effects at

each level (such as individuals or their communities), neither of which is possible under the classes

of models previously specified.

Binary relational ties are modelled according to the probability of their presence. An extremely

1There is a substantial literature on using ensemble methods for random graphs, where each member of the
ensemble has the same statistical specification and each has an equal probability of observation. Blitzstein and
Diaconis [2006], Newman et al. [2001] and Handcock and Morris [2006] all deal with the generation of random
graphs with fixed degree distribution, such that the number of ties for each individual is identical. A comparison
of these methods appears in Section 7.
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popular method of connecting binary outcomes to factors that affect their probabilities is the use

of a link function, whose main purpose is to transform a potentially unbounded quantity to a

value between zero and one. The most popular link functions for this purpose are the Gaussian

cumulative distribution function (the use of which gives “probit”, or probability unit, modeling),

and the logistic distribution, which gives effects in terms of log-odds ratios [Berkson, 1951].

2.3 Joint-Conditional Specifications: The p-class of models

Several models have been proposed where the explicit probability model for a network’s edges is

in the joint distribution, so that a specification for a tie is made conditionally on the rest of the

network. A description of the opposite approach is given in Section 5; here a series of models are

detailed from the original approach, with their dependences constructed and measured.

The p1 model

A groundbreaking model was published by Holland and Leinhardt [1981] and named “p1” in part

due to its simplicity. The model suggests the presence of three types of relations: the propensity

with which an individual will be outgoing, or “gregariousness”; the propensity with which an

individual will attract others, known as “popularity” and/or “attractiveness”; and the degree to

which a connection in one direction will be reciprocated in the other direction compared to what

would normally be expected, or “reciprocity”.

To demonstrate this model, consider a trivial network of two individuals. With two possible

directed edges, there are four mutually exclusive outcomes that can be observed. As specified

by Holland and Leinhardt [1981] (with a slight modification), each of their joint probabilities is

specified in the 2-by-2 table:

Y21=0 Y21=1

Y12=0 P((Y12, Y21) = (0, 0)) = n P((Y12, Y21) = (0, 1)) = b

Y12=1 P((Y12, Y21) = (1, 0)) = a P((Y12, Y21) = (1, 1)) = m

The probabilities represent a mutual, asymmetric (individual 1 sends, a, or receives, b), or null

connection respectively. This suggests a quadrinomial specification for any dyad (1, 2):

P (Y12, Y21|m,n, a, b) = mY12Y21aY12(1−Y21)b(1−Y12)Y21n(1−Y12)(1−Y21),

noting that the probabilities sum to unity: n + a + b + m = 1. When respecified in terms of

logarithms of the probabilities, the expression becomes
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P (Y12, Y21|m,n, a, b) = exp

(
Y12Y21 log

mn

ab
+ Y12 log

a

n
+ Y21 log

b

n
+ log n

)
.

This is an exponential family specification, yielding a set of natural parameters: θ12 = log a
n

and θ21 = log b
n

are expressions for the probability of an outbound or inbound connection relative

to a null connection, and ρ12 = mn
ab

= ρ21 reflects the likelihood of two individuals holding identical

views on their relationship, rather than disagreement. Replication of this particular dyad k times

would produce the joint distribution

P (Y12,1, Y21,1, ..., Y12,k, Y21,k|m,n, a, b)

= exp

(
k∑
j=1

(Y12,jY21,j) log
mn

ab
+

k∑
j=1

Y12,j log
a

n
+

k∑
j=1

Y21,j log
b

n
+ k log n

)
.

In practice, however, only one replicate of each dyad is observed in a network setting. When

expanding this full network of N people, each probability in the quadrinomial is labelled accord-

ing to the dyad in question: the quantities (n, a, b,m) become (nij, aij, aji,mij), and the natural

parameters change accordingly to θij = log
aij

nij
and ρij = log

mijnij

aijaji
. Because 3

(
N
2

)
terms are im-

possible to estimate with 2
(
N
2

)
data points, Holland and Leinhardt [1981] simplify this expression

to reflect a global tendency for reciprocation, and individual-specific effects for gregariousness and

attractiveness:

ρij = ρ, (1)

θij = θ + αi + βj. (2)

Additionally, the baseline tendency for tie formation stipulates that the sender and receiver

effects are set with respect to a reference point. In the p1 case, each of the effects sums to zero:

∑
i

αi = 0; (3)∑
j

βj = 0. (4)

When this is expanded for all dyads simultaneously, the p1 specification for a graph Y =

{Yij,∀i, j < N, i 6= j} is
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p1(Y ) = exp

(
θ(
∑
i,j

Yij) +
∑
i

αi(
∑
j

Yij) +
∑
j

βj(
∑
i

Yij) + ρ
∑
i,j

(YijYji)

)∏
i<j

nij,

which can be used to draw corresponding random graphs given the appropriate parameters, which

in this case are taken to be fixed effects. Maximum likelihood estimation is the method recom-

mended by Holland and Leinhardt [1981] to estimate the effects within and generate simulated

random graphs for comparison.

Differential Reciprocity in p1

An immediate extension to the p1 model is proposed by Fienberg and Wasserman [1981], by

extending the specification of the reciprocity term to be

ρij = ρ+ ρi + ρj,

where each ρi represents the additional tendency for individual i to reciprocate a relationship over

a baseline level ρ, and all terms sum to zero,
∑

i ρi = 0.

As this is an extension of the general model, a likelihood ratio test can be performed to see if

the additional dispersion in reciprocity is necessary for model fit.

Partial pooling of sender-receiver terms in p1

Another extension of the model is into Bayesian territory. In the treatment of Wong [1987], the

sender and receiver effects are partially pooled and jointly modelled, such that[
αi

βi

]
∼ N2

([
0

0

]
,

[
σ2
α ησασβ

ησασβ σ2
β

])
.

In this specification, a relationship between the “gregariousness” and the “popularity” of each

individual is modelled as a correlation, taken to be identical for each individual. Empirical Bayes

methods are then used to estimate the common variance and correlation.

Addition of covariates: p2

One specification that follows from the original is the addition of the impact of covariates to the

terms for the baseline, sender, receiver and reciprocity terms. As specified in van Duijn et al.

[2004], the model takes the form
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αi = X1iγ1 + Ai (5)

βi = X2iγ2 +Bi (6)

µij = µ+ Z1ijδ1 (7)

ρij = ρ+ Z2ijδ2 (8)

where X1, X2, Z1 and Z2 are matrices of covariates to be considered; γ1, γ2, δ1 and δ2 are the

corresponding vectors of coefficients; and Ai and Bi are respective intercept terms with common

variances σ2
A and σ2

B. µ and ρ are the common parameters for all arc means and correlations.

2.4 Geometric/Topologically Specified Models

A class of models that find their origins in the logistic specification are Exponential Random Graph

models, or p-star (p*) models, which were primarily conceived for purposes in which individuals are

not explicitly differentiated by their characteristics, only by the network level structure: sociological

patterns are encoded as statistics within the likelihood function, and the ensemble of individuals

and links is modeled jointly. The method has its origins in the Markov Graph models of Frank

and Strauss [1986], in relation to Markov Random Fields and the connection of edges that share a

common node; the method is detailed in [Wasserman and Pattison, 1996; Anderson et al., 1999].

In short, the likelihood of the graph is given in the form of the ensemble Y, where Yij is a

binary directed edge, and the statistical measures of interest to the investigator, such as counts

for 3-cycles, C =
∑

i<j<k YijYjkYki, and transitive triples, T =
∑

i,j,k YijYjkYik, are placed directly

into the likelihood

p(Y|α, β) =
1

κ(β)
exp (α + β1C(Y) + β2T (Y))

such that the constant κ(β) normalizes the likelihood. Due to the allowance of dyadic dependence,

this constant is notoriously difficult to compute exactly as network size increases. Even a maximal

simultaneous dependence of three dyads on a modestly-sized 30 node network leads to
((30

2 )
3

)
=

13, 624, 345 total terms to calculate.

While the specification is popular with sociologists, due mainly to the specification of structures

with known explanations, it has several deficiencies for our purposes, mainly that its parameters

are not directly interpretable for the behavior of the individuals. Additionally, while individual

characteristics such as covariates can be added to the likelihood through summary statistics, it is

not clear that these coefficients will be interpretable in combination with motif-based measures.

As a result, there is significant motivation to pursue an approach through which one can measure
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and recover the presence of these quantities of interest in a meaningful and interpretable way.

3 Latent Characteristic Modelling Approaches

Many of the models previously discussed have the capacity to include information on the nodes

of a network in the likelihood of tie formation, particularly in terms of known covariates. These

methods are expanded on in Chapter 4 in greater detail. This section contains background on

a different approach: methods for inferring the presence of a latent geometry or latent nodal

characteristics as a means of explaining connectivity.

One of the simplest modes of node identification is that of membership in a group. The principle

of stochastic equivalence in relational data requires that the probability of a tie between members

of two groups (or, two members in the same group) depends only on the label of the group(s);

that is, all members of a group are essentially identical as far as tie formation is concerned. (For

a more detailed explanation, see Hoff [2007b].)

If the cluster memberships are known, the system can be analyzed using the stochastic block-

model method of Fienberg and Wasserman [1981]. With K subgroups, there are (K +
(
K
2

)
) intra-

and inter-component factors to estimate; dyadic independence then extends upward to component

independence allowing for faster analysis. In the examples provided by Fienberg and Wasserman

[1981], each component factor is estimated under the p1 framework, though the methodology is

not restricted to this interpretation. This is extended to the full directed graph case in Wang and

Wong [1987]

This method is almost immediately extensible to models with multiple group assignments.

However, since these multiple groups may overlap with each other, the estimation procedure for

component factors cannot be performed in parallel.

On the other side are algorithms that infer group membership based on relational ties. Wasser-

man and Anderson [1987]; Snijders and Nowicki [1997]; Nowicki and Snijders [2001] describe meth-

ods and algorithms for estimating a flexible number of clusters, and assignment to each cluster

with a particular probability.

The trick in this case is that clusters are measured on people, whereas observations are made on

ties. There is a clear advantage to this approach, in that clusters represent sociological phenomena.

In particular, it is apparent that a cluster represents a community, or other such group, that has

a tangible meaning or benefit to its members, leading to interpretability of the results both for

connections and for individual outcomes.

There is an extension to the “mixed-membership” case, in which each individual can simulta-

neously belong to multiple blocks to various degrees. Airoldi et al. [2007, 2008] give an overview

as well as algorithms to model mixed membership with Bayesian methods, in particular the use

of a variational Expectation-Maximization (v-EM) algorithm to approximate the posterior distri-
8



bution [Jordan et al., 1999]. To summarize the generative process of the model, consider a mixed

membership vector ~πp for each individual p, which describes the strength of association with each

block. (Any individual’s respective strengths sum to 1.)

A tie existence is generated by sampling a single group membership for individuals p and q.

Given these groups (Gp, Gq), the probability of a tie is given by the block matrix BGp,Gq . Note

that this method also allows for links within clusters to be less likely than those between clusters,

a property inherited from the observable cluster model of Fienberg and Wasserman [1981].

3.1 Latent Trait Models

The notion of latent cluster membership can be extended to the notion of latent traits. In this

conception [Hoff, 2005; Nickel, 2006] the underlying traits are not confined to sum to one; the

tendency of individuals to interact is instead perceived to be the inner product of latent trait

vectors with respect to an underlying weight matrix.

The generative model for tie formation gives the probability of a tie as

logit(pij) = µ+ ztiCzj,

where C is the weight matrix, typically diagonal, and (zi, zj) are the latent trait vectors. Note that

for identifiability, either the elements of C must be fixed in magnitude or the latent trait vectors

are somehow constrained.

The value of this method is not simply in accounting for unexplained tie formation, but also

as a hypothesis-generating mechanism. For those traits where Cii < 0, there is a latent trait

heterophily; likewise, a latent-trait homophily is observed when Cii > 0. Given that the model

can pick up one of these phenomena, it may represent an unobserved covariate on the nodes worth

discovering, rather than simply a useful mathematical curiosity.

3.2 Latent Space Models

An alternative explanation for social connectivity lies in considering a latent geometry within

which all nodes take a position. The stochastic model postulated by Hoff et al. [2002] places nodes

within a latent Cartesian space. The tendency for any two individuals to be connected by an edge

is then driven by the distance between the individuals in the space. For example, let di be the

position of individual i in the latent space. The probability of connection is then governed by

logit(pij) = µ− γ||di − dj||2

so that an increased distance implies a decreasing likelihood of connection. It is worth noting that
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as expressed, the connection probability will always decrease from the maximum value governed

by µ. This approach was integrated with the blockmodel approach in Handcock et al. [2007], and

with sender and receiver effects in Krivitsky et al. [2009].

Another approach was considered in Linkletter [2007], so that rather than using only unex-

plained variance to formulate and space, a functional nonparametric method that begins with

known covariates uses these to produce a latent space model. This is one step along the way to

integrating the entire approach into a functional data analysis method.

4 Framework: Modelling Relational Data With Marginally

Specified Hierarchical Models

Most of the approaches just listed are based on a notion of conditional dyadic independence, or

the construction that given a set of underlying characteristics, the variability of each undirected

edge, or of each complementary pair of directed arcs, is unaffected by the effect of other remaining

ties. While this is by no means a certainty in many real-world observable sitations – for example,

a person can only have two biological parents (and indeed, must have them) – this in no way

limits the practical benefits of this modelling approach to other data sets. The presentation of

conditional dyadic independence cuts off more complicated dependence patterns between dyads at

the overt level, but with the exchange that these trends can be more cleanly explained at a level

below that of observation.

As motivated, this paper contains a unifying framework for many of these previous approaches

that allows for considerable extension. In the binary case, ties are represented as an observed

outcome of an underlying continuous process, based primarily on the Gaussian framework but

adaptable to other contexts, and the investigator can bring to bear tools developed in compu-

tational statistics, dynamic programming, and other connecting literatures in order to efficiently

and correctly model these sorts of relational data. This is not the first time the approach has

been proposed – similar models have been well-implemented in the work of Peter Hoff and his

colleagues [Hoff, 2007b; Hoff and Ward, 2003; Hoff, 2005; Krivitsky et al., 2009] – but, to the

author’s knowledge, it is the first large-scale attempt to unify the modelling framework for various

dyadic relational data types with a wider class of models, largely focused on the GLM framework,

and the generalization of computational methods for their analysis.

As the outcomes Y can be considered entries in an N -by-N matrix, it is standard to group these

terms in four entries: grand mean value, row effects, column effects and row-column interactions.

For this reason, we begin with a redefinition of the p1 model from the marginal point of view,

capturing the four components: mean density, sender properties, receiver properties and reciprocity

between the arcs. Next, three of the properties explored in the last section are brought into the
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current framework: latent spaces, latent characteristics and the behaviour of assortative mixing

on degree. Following this, the extension of the standard Gaussian to a multivariate Student-t is

discussed, converting the “probit”-type analysis to a ‘’robit” [Liu, 2004]. Finally, we conclude

with a discussion on the comparisons between log-linear models and their marginal equivalents,

including several arguments why the marginal model should be used in the base case for network

analysis.

4.1 Marginal Specification and Extension of p1

The original p1 model was specified on a series of
(
n
2

)
dyads with quadrinomial probability speci-

fications for each. In the marginal case, there are 2
(
n
2

)
arcs to be specified, namely of the form

Yij ∼ Be(pij),

or in general probit notation,

Yij ∼ Be(Φ(µij)).

The first simplifying step in p1 is to simplify this probability into terms representing the grand

mean, sender and receiver. This becomes

Yij ∼ Be(Φ(µ+ αi + βj))

so that the terms µ + αi + βj represent the same types of quantities as before – the increased

likelihood of ties in general, ties from sender i and ties to receiver j – even though their numerical

interpretations are slightly different, in terms of their effect on the differing likelihoods.

As detailed in Appendix B, this formula can be represented in terms of a latent normal variable

Zij, so that the previous expression is equivalent to

Yij ∼ I(Zij > 0); Zij ∼ N(µ+ αi + βj, 1).

Once this step is made, the conversion from two independent normals to one bivariate normal is

immediate, and the dyad (Yij, Yji) is now expressed as the realization of a latent bivariate normal:

[
Yij

Yji

]
|

[
Zij

Zji

]
=

[
I(Zij > 0)

I(Zji > 0)

]
; (9)
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Parameter Draw Type Distribution Method[
Zij
Zji

]
Parallel TN2(

[
µ+ αi + βj
µ+ αj + βi

]
,

[
1 ρ
ρ 1

]
,

[
Yij
Yji

]
) Direct Draw

αi Sequential Normal Direct Draw
βj Sequential Normal Direct Draw
µ Sequential Normal Direct Draw
σα — Inv-Gamma Direct Draw
σβ — Inv-Gamma Direct Draw
ρ — p(Z|ρ)p(ρ) Grid approx.

Table 1: An RCMS table summary for computing the GLM version of p1. Further definitions are
in Appendix A.

[
Zij

Zji

]
|α, β, ρ ∼ N2

([
µ+ αi + βj

µ+ αj + βi

]
,

[
1 ρ

ρ 1

])
. (10)

To compare to the canonical p1, the sender and receiver effects can be restricted to have zero

sum,
∑

i αi =
∑

i βi = 0. Each node’s sender and receiver effects may also come from a common

family, as expressed in Wong [1987],[
αi

βi

]
∼ N2

([
0

0

]
,

[
σ2
α ραβσασβ

ραβσασβ σ2
β

])
(11)

with appropriate prior distributions on these variances and the correlation term ραβ.

A Gibbs sampling scheme, as inspired by Albert and Chib [1993], is relatively easy to put

together. Following the method derived in Appendix B, there is a Gibbs sampling algorithm as

given in Table 1. Of special note is the algebra needed to demonstrate the direct draws for the

sender, receiver and grand mean effects. Consider the draw for one sender component αi; the

log-likelihood for a single bivariate normal containing the term, as divided into conditional and

marginal pieces, is given as:

log(p(Zij|α, β, µ, ρ)p(Zji|Zij, α, β, µ, ρ))

= C − 1
2

(Zij − αi − βj − µ)2 − 1
2(1−ρ2)

(Zji − αj − βi − µ− ρ(Zij − αi − βj − µ))2

= 1
2

((Zij − βj − µ)− αi)2 + ρ
2(1−ρ2)

(
αi − (Zij − βj − 1−ρ

ρ
µ− Zji−αj−βi

ρ
)
)2

,

which is in quadratic form for αi, conditional on the remaining terms. The addition of either a

prior distribution common to all α, or a hierarchical pooling model such as Equation 11, make the

conditional draw for the parameter as natural as from a standard distribution.

It is also notable that the addition of other terms to the formula, as specified in Table 2 and
12



described later in this section, do not affect the form of these draws when conditioned on; the

quadratic form is preserved.

4.2 Covariate Inclusion for Senders, Receivers, Edges

As introduced, node effects are modelled as indicators for the presence of a particular individual;

for example, the sender effect αi may also be considered as
∑

k αkδki, to signify the presence of

an effective covariate: the indicator that the node being considered corresponds to sender i. From

here, it is a simple addition to generalize to other covariates, whether or not they are uniform for

all senders, receivers or edges.

The inclusion for covariates on senders, receivers and edges is straightforward:[
Zij

Zji

]
|

[
µ, α, β, ρ,X,

W,U, γ, ν, θ

]
∼ N2

([
µ+ (αi +Xiγi) + (βj +Wjνj) + Uijθ

µ+ (αj +Xjγj) + (βi +Wiνi) + Ujiθ

]
,

[
1 ρ

ρ 1

])
;

the steps added to the Gibbs sampler are identical in form to the node effects due to their quadratic

form representations.

4.3 Differential Reciprocity Adjustments

Fienberg and Wasserman [1981] propose an extension of the p1 model around the notion of differ-

ential reciprocity; that is, the tendency for one arc in a dyad to mirror the connection of the other

may vary based on the information on the participating nodes. Under the original specification,

the reciprocity term was considered as an odds ratio; in the GLM framework, it is considered to

be a correlation.

For full specification, consider the Fisher transform

q =
1

2
log

1 + ρ

1− ρ
,

so that the transformed quantity q is without bound. Then, the transformed correlation may take

the form

qij = µq + τi + τj + Vijψ,

so that µq represents the baseline reciprocity, and τi and τj represent the deviations due to each

of the two nodes in the dyad, subject to a zero-sum or pooling constraint,

∑
i

τi = 0 or τi ∼ N(0, σ2
τ ).
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Covariates Vij can be included for the edge, multiplied by the coefficient vector ψ to produce

the observed effect on reciprocity.

By using the inverse transform,

ρij = ρji =
e2qij − 1

e2qij + 1
,

the parameters are restored to the original (−1, 1) range to act as correlations between each edge

in the dyad.

4.4 Latent Spaces and Parameters

Latent spaces and parameters have been introduced mainly in undirected contexts, but there is

little reason why they cannot be integrated into the current approach. Consider first the marginal

distribution of a single arc. If there is assumed to be a k−dimensional latent space where increased

distance represents a decreased likelihood of connection, where di is a k−dimensional vector in the

latent space, and the general marginal expression for an arc is Zij ∼ N(µij, 1), then the mean of

the latent strength can be expressed as

µij|ω,d = ω|di − dj|,

so that ω < 0 guarantees that greater distance decreases connections. Sampling this model can

prove to be troublesome, because there is a nonidentifiability of scale between ω and the position

di.

This can be standardized with two steps: fixing ω = −1, and fixing one dyad in the latent

space: d1 = ~0, and d2 = (1, 0, ..., 0). If desired, further constraints can be placed on all of the first

k nodes.

The issue becomes one of multimodality. The act of compressing n nodes into a k−dimensional

space will ensure that there will be an exceedingly large number of local modes in the system,

since given the other nodes, each node will have at least one locally preferred location, even if the

other nodes are not themselves optimally placed. One solution to this problem is to incorporate a

simulated annealing ladder into the maximization routine, so that the local nodes are free to sort

themselves on a rough scale in the early iterations of the procedure, increasing the likelihood of

finding a preferred global configuration.

Once this is done, it is a simple matter to add these latent positions into the Gibbs sampler

through a Metropolis step: propose a random step in the latent space, then accept the new position

if a uniform random variable is below the ratio of the new posterior probability over the original.

The construction of latent parameters has a similar issue. For a k−dimensional parameter

space, the latent strength is expressed as
14



µij|z, C = z′iCzj,

where zi is a length-k vector and C is a k-by-k matrix of magnitudes. This can be interpreted

as the inner product between character vectors zi and zj with respect to the Euclidean space

transformed by C, but with one important addition: the diagonal elements of C can be negative,

implying that the coordinate is heterophilic, as opposed to a positive value implying homophily

on the latent characteristic.

A reliable RCMS profile can be built by fixing the coordinate of one point, say z′1 = (1, 1, ..., 1),

and allowing all other points and the mixing matrix C to vary relatively, exploring these via

Metropolis steps. As in the latent position model, an optimization by simulated annealing may

prove to be the most efficient way of determining a reliable starting point.

4.5 Assortative Mixing on Popularity and Gregariousness, Rather than

Degree

An observation that has been observed in real networks is the notion of assortative mixing: in-

dividuals with similar numbers of ties are more likely to associate with each other than would

otherwise be expected by their own gregariousness or popularity, even though it is reasonable to

expect individuals with a large number of ties to connect to each other with great likelihood. If

this is the case, it is likely that additional forces are at work.2

The approach of Newman [2002] measures assortative mixing within a network as a descriptive

statistic: a coefficient of the correlation between the joint degree distribution of two connected

nodes and the degree of nodes in the marginal sense, then normalized with respect to the maximum

value. Consider the measure of “remaining degree” of one node (di− 1), and the joint distribution

of two connected nodes ((di− 1), (dj − 1)). The assortativity is defined as the correlation between

the joint remaining degree probability of a pair of nodes and their marginal remaining degree

probabilities, with respect to each edge in the system; that is, nodes with higher degree have

a higher tendency to contribute to the mixing statistic. As this is a statistical description, the

inclusion of this behaviour in a generative model requires a corresponding parameter.

Consider the p1-type model

µij = µ+ αi + βj + εij

as a starting point, where α and β have mean 0 and the error term εij ∼ N(0, 1). To alter the level

2In particular, the fact that nodes have the appearance of organizing according to their network structure
represents an endogeneity in the modelling step that static generative models may have difficulty in handling.
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of assortative mixing, the parameter χ is introduced and an additional term is included, directly

proportional to the popularity and gregariousness of the individuals:

µij = µ+ αi + βj + χαiβj + εij.

As the sender and receiver terms are naturally centered at zero, there are four regimes to

consider: when each of these terms is greater or less than zero respectively. Positive values of

χ raise the tie strength when αi and βj have the same sign, and lower for opposite signs, the

key characteristic of assortative mixing; likewise, negative values for χ lower the tie strength for

opposite-signed gregariousness and popularity in the individuals for this particular arc.

This form is also easily computable given the conditional maximization and sampling frame-

work. In the Gibbs sampling formulation, conditional on χ and βj, the sampling for αi remains

straightforward, as the full conditional posterior distribution is still a quadratic form. This remains

true for the sampling of any one parameter, conditional on the other two.

4.6 Robust Analyses with the Multivariate t Distribution

Stability is often a concern in binary modelling with the probit framework, due to the light tails

of the underlying normal distribution. A mechanism for allowing heavier tails, hence gaining

resilience against outliers and robustness to the assumption of latent normality, is provided in

“robit” regression [Liu, 2004]. The addition of extra variability on the latent normal is performed

with a data augmentation step and is complementary to the Gibbs sampling and ECM approaches

used to this point.

The original latent variable formation is Zij|µij ∼ N(µij, 1). To convert this to a t-distribution,

the constant variance is replaced by a random variable. In particular, consider a Gamma variate

Gij ∼ 2/νGam(ν/2), so that EGij = 1 and E 1
G

= ν
ν−2

. A representation for the standard t

distribution is

Tij|Gij ∼ N

(
0,

1

Gij

)
,

yielding the marginal distribution

Tij ∼ tν .

As the variance for this distribution is ν
ν−2

, the underlying variate can be restored to unit

variance with an added scale factor, and given the original mean shift µij, the latent distribution

takes the form
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Tij|µij,Gij ∼ N

(
µij,

ν − 2

νGij

)
.

Given the augmented variance, the probability of a positive Bernoulli outcome is now

P (Tij > 0|Gij, µij) = Φ

(
(ν − 2)µij
νGij

)
;

conditional on the augmented variance term Gij, the existing Gibbs sampling structure may still

be used for the augmented data Tij|Gij and the terms included in µij. Given a fixed degrees of

freedom ν, the Gibbs sampler for each Gij draws from the distribution for the gamma:

log(p(Zij|µij, Gij)p(Gij)) = c+
1

2
logGij −Gij

(Zij − µij)2ν

2(ν − 2)
+ (ν/2− 1) logGij − νGij/2;

Gij|Zij, µij ∼
2

ν(1 +
(Zij−µij)2

ν−2
)
Gam

(
ν + 1

2

)
.

One additional benefit of the robit model is the ability to tune the degrees of freedom. In

particular, Liu [2004] suggests that setting ν = 7 gives the robit model contours that approximate

the logistic distribution quite well, with the benefit of heavier tails. This means that for the addition

of computing power, a Gibbs sampling model can be built that will approximate the commonly

used logistic model very well, while still maintaining the benefits of heavy-tailed distributions.

4.7 Integration with Other Generalized Linear Model Forms, and Fur-

ther Extensions

All the recipes listed in this section have so far been defined on the probit model for two main

reasons. First, as these methods have been defined and developed primarily for the analysis of

binary data, it is essential that any extensions that are subsequently developed can be applied to

that domain. Second, the computational tools developed for other analyses of binary data are not

themselves limited to this class of outcomes.

The model-building strategies laid out to this point for probit-type models are equally applicable

to other classes of data, with differences only in the parametrizations of each of these model families.

4.7.1 Normal-family Data

Because the binary data strategy has been derived from latent normal-family distributions, the

extension to this family of data is immediate. Consider the general form for a bivariate normal
17



distribution,[
Zij

Zji

]
|

[
µij, µji, σij,

σji, ρij

]
∼ N2

([
µij

µji

]
,

[
σij 0

0 σji

][
1 ρij

ρij 1

][
σij 0

0 σji

])
,

which has three groups of terms that can be expanded: mean values, variances and correlation.

The mean term can be decomposed just as in the previous examples, with a grand mean, sender

and receiver effects, assortative mixing and latent parameters. Correlation between arcs in a dyad

can be handled as in Section 4.3.

The inclusion of standard deviation terms in the parametrization, particularly the notion of

differential variance, allows for additional flexibility in modelling. Consider a decomposition of the

form

log σij = log µσ + log σi + log σj,

so that the variance of each edge depends on both the mean degree of variance in the system and

on characteristics of each node in the dyad.

4.7.2 Partial Correlations as Network Ties

Section 4.3 refers to the modelling strategies for reciprocity between ties as a correlation function.

While these are instances of modelling latent quantities, the same methodology can be applied to

correlations that are estimated between units.

If the correlation between units represents the total impact of one unit’s fluctuations on the

other, than partial correlations between units represent direct effects, represented as network ties.

The Fisher transformation

qij = log
1 + ρ′ij
1− ρ′ij

is used to bring the data to the normal scale; subsequently, this can be modelled as if each

transformed correlation is a normal random variable.

4.7.3 Count Data

If data are integer-valued counts, Yij ∼ Poisson(λij) is a natural interpretation for tie strengths,

which can then be modelled as

log λij = µ+ αi + βj
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for sender and receiver effects respectively. The Negative Binomial distribution can be modelled

as in Zheng et al. [2006] by adding an additional overdispersion term,

log λij = µ+ αi + βj + γij,

where γij ∼ ωGamma(1/ω); if necessary, this itself can be expanded so that the overdispersion is

hierarchically modelled and necessarily positive,

logωij = logω + logωi + logωj.

4.7.4 Finite Ordinal Data

In applications of the measurement of network ties by surveys, many measurements are taken

on an ordinal scale. The work of Rasch [1960] suggests that this may be accomplished through a

latent variable estimation method. While the original method was proposed in terms of the logistic

distribution, the definition is equally palatable in terms of the normal distribution.

Consider k ordinal levels of a particular response to a survey question; the typical example

is a five-point scale in the style of Likert [1932], where a statement can be treated as {strongly

disagree, disagree, neither, agree, strongly agree}, rescaled to {1, 2, 3, 4, 5}. While these values can

be taken directly as numerical scores, it is also possible to consider these to be the manifestation

of a latent normal random variable with break points, in this case {β1, ...β4}, such that

P (X = i) = Φ(βi)− Φ(βi−1),

where β0 = −∞ and βk =∞ for the sake of completeness. This can be directly expressed in terms

of the latent normal,

X =
∑
i

iI(βi−1 < Z < βi)

so that inference is then taken on the breakpoints. Given that the latent variable is normal, and

that survey questions to one individual regarding another is a description of a directed arc, it then

remains to model each arc as the manifestation of the latent variable, Zij|µij ∼ N(µij, 1) as in the

binary and continuous normal cases.

4.8 The General Case

The cases presented have common roots: each expression required for the stochastic generation

of the relational structure can be decomposed into grand mean, sender, receiver and interaction

19



Y|T = f(T 1, T 2, ...): Parameter Symbol
T kij = global mean µ

+ sender covariate term(i) αi +Xiγi
+ receiver covariate term(j) βj +Wjνj
+ sender/receiver mixing term(ij) χ(αi +Xiγi)(βj +Wjνj)
+ arc covariate term(ij) Uijθ + εij
+ latent geometric term(ij) −|di − dj|
+ latent property term(ij) z′iCzj

Definitions µ, α, β, γ, ν, χ, θ, ω Effects (fixed, random, mixed)
Xi,Wj, Uij Covariates

di (Latent) position
zi Latent characteristic vector
C Latent characteristic factor matrix
εij Noise or Overdispersion

Table 2: The framework for all GLM network estimation, with broad definitions of each term
involved. Each of the terms in the general functional framework can be composed in terms of
these effect groupings. The function f(T 1, T 2, ...) may be deterministic or stochastic.

terms. These terms are summarized in Table 2.

As dyadic data, the pair (Yij, Yji) are taken together as a unit and may share many characteris-

tics. They may be independent given their characteristics, or dependent under a chosen framework

like a Generalized Estimating Equations method, the aforementioned bivariate probit, or a more

general latent copula formulation [Klaassen and Wellner, 1997; Pitt et al., 2006; Shaw and Lee,

2007; Hoff, 2007a].

5 Discussion: Comparing Marginal Specifications to Con-

ditional Models

Section 2 gives a number of examples where the arcs in a dyad were treated jointly in the mod-

elling process. This section demonstrates some of the options available when arcs were analyzed

marginally first, with the interaction of the two arcs in a dyad considered as a secondary concern.

The choice to refer instead to marginal models for ties has a number of motivations, which are

discussed in the upcoming subsections. Two main areas are discussed: first, the fundamental unit

of analysis in each case, being the arc or the dyad; second, the expandability of marginal models

versus their joint counterparts.
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5.1 The Fundamental Unit: The Arc or the Dyad

If there is dyadic independence and the object in question is undirected, there is no issue of

model choice, as the two are functionally equivalent: the arc is the dyad, and vice versa, and the

parametrization is essentially a matter for the investigator, whether a choice between logit and

probit analysis, or a parametric versus nonparametric model, or any other choice that may come

up in model selection. This also applies if the two arcs in the model are conditionally independent;

if there is no need to account for the other object, it is as if there are two undirected dyads across

the same pair of nodes.

The issue becomes the case of dependence, and the unit of interest in each case. While the

dyad is the equivalent of the experimental unit in this case (since it is perceived to be conditionally

independent of all others), the arc is the unit of observation, as it focuses on one individual

first. These data sets are typically collected by survey on the individual, or the observation of

communications to or from an individual, so that while the reciprocal behaviour is potentially full

of information, a model can easily be composed without the need for corresponding mutuality of

observation.

5.2 Expandability: Beyond the Binary Case

It has been demonstrated that marginal and joint methods can both model conditionally inde-

pendent binary data. When expanding to edge types beyond the binary, there is more room for

debate about which method is preferable.

Consider first the case of ordinal data in the uncountably infinite case, where each arc is valued

along the real line or a subset thereof. When the choice is between modelling the probability of a

dyad value in an infinitesimal area, or of first modelling each arc probability within an infinites-

imal length, separating this problem from that of the correlation of the two arc values. While a

functional data approach might be able to model the probabilities in terms of a joint functional

distribution, such methods are less suitable for parametric models, or even Generalized Additive

Models, whose multidimensional equivalents have typically been defined to be interpreted in terms

of the marginal distributions, such as the multivariate normal.

The issue becomes slightly murkier when arcs are measured as classes of finite, categorical data.

While the quadrinomial model can be extended to a general k2-nomial framework for k categories

in each arc, there is a disadvantage when only one correlation parameter is presented between the

two outcomes, yielding models with only 2k + 1 degrees of freedom as opposed to k2 − 1 in the

multinomial framework.

However, the issue is strictly one of interpretability, as there is no strict requirement that only

one interaction term is necessary. Imai and van Dyk [2005] propose a latent variable formulation

for the multinomial probit, using a latent multivariate normal whose result is determined by
21
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Figure 1: A series of networks formed by the Watts-Strogatz small-world algorithm. Left, an
“ordered” lattice, in which every node is connected to its two nearest neighbours. Middle, a small
number of rewirings is permitted, maintaining the close connection of neighbours but decreasing
the geodesic path lengths. Right, continued rewiring of connections at random.

the component with the maximum value. The expansion of this multivariate normal with the

appropriate correlations included would allow for the marginal model to be implemented in this

context as well; these modifications will be implemented in future research.

6 Reformulations of Classic Examples, with Extensions

Several popular approaches from outside the statistical literature are built around generative

schemes that propose to explain how real networks came to be in existence. However, it is all

too easy to confuse the map with the territory – in this case, the mistake of accepting a proposed

generative model for the network both as the best (and possibly only) story, and as predictive of

future growth and of similar networks – when alternate explanations are available.

It is for these reasons that we demonstrates the applicability of a workhorse GLM approach to

model the same circumstances as described by those models from a different perspective. In the

process, there is no commitment to a single generative story for these systems, only to demonstrate

that there are multiple ways of constructing the same networks that give rise to multiple plausible

explanations for their generation; in particular, that there are other simple explanations for small-

world and preferential-attachment graphs. The remaining section deals with a class of data that

can be put together with similar simple explanations: the modelling of correlational data, often

used to propose binary network structures.

6.1 Watts-Strogatz “Small-World” Networks

While studying the mechanisms of coupled harmonic oscillations in biological networks, Watts and

Strogatz [1998] identified a structural class of networks now known as “small world” networks, as
22



inspired by the work of social psychologist Stanley Milgram in the 1960s [Milgram, 1967], which

itself was also the source of the expression “six degrees of separation”. While the initial work

of Watts and Strogatz focused on structural aspects, in later work the notion was generalized

as being an interpolation between an “orderly” ring lattice and a “chaotic” Erdős-Rényi random

graph. The original algorithm took the following form.

1. Create n nodes around a two-dimensional ring. Connect edges between nodes if they are

within a certain distance along the ring; in particular, the original paper proposed that a

node was connected to each of its two nearest neighbours on each side, for a degree of four

for each node.

2. Select a rewiring proportion p, and choose 4np edge endpoints uniformly.

3. For each selected endpoint (with node identity i), choose a node uniformly at random from

all nodes in the lattice (k) except for the corresponding endpoint of the current edge (j);

rewire the edge such that Yij = 0 and Ykj = 1.

An example of rewiring at two scales is given in Figure 1 for an example. This model has proven

extremely inspiring to researchers across fields; a thorough review of the literature is available

[Dorogovtsev and Mendes, 2002]. This model is easy to code, and to visually process. It also

has the advantage of being extremely fast in the large n case (2.25 × 105, in the movie-actors

example). However, the generation process of the model assumes a stark bifurcation between

two classes of relationships: close neighbours and everyone else. Additionally, while the story of

“random rewiring” of a fixed number of connections is easy to explain the topological properties

of a system, it may prove to be an implausible model for the way in which the connections in a

networked system may develop.

The original small-world generative model takes three parameters: n, the number of nodes in

the system: k, the number of neighbours on each side to which a node is initially tied, and p,

the probability that any end of a tie is rewired at random. The GLM method for constructing a

small-world-type graph takes a similar input, with a slight redefinition of terms. While n is still

the number of nodes in the system, let d be the total edge density (equal to 2k/(n − 1) in the

original case) to allow for a wider range of densities. p becomes a measure of the influence of

longer-distance nodes.

Begin with n nodes equally positioned around a circle with circumference n. Let sij be the

distance between nodes i and j along the circle.3 Let Yij be drawn from a Bernoulli {0, 1} random

variable with probability of success as the sum of two pieces.

3Other distance functions may possibly be substituted here to produce different network topologies; the ring
structure is presented to maintain consistency with the original model.
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First, there is the propensity to connect to an immediate neighbour. In the complete “order”

case, an individual connects with probability one to the closest connections, those within a distance

of bkc = b (n−1)d
2
c, and with proportional probability if just outside this range. That is, if k = 2.5,

then the nearest two nodes on each side would be connected, and those a distance three away

would connect with one-half probability, and with probability zero for any nodes farther away. All

together, this represents a success probability

oij = δ(sij ≤ bkc) + (k − bkc)δ(0 < sij − bkc ≤ 1).

Second, there is the piece more indicative of chaotic behaviour. In the standard small-world

model, this takes the form of an Erdős-Rényi probability, so that the probability of connection is

proportional only to the density, defined as

cij = d.

The small-world GLM is then composed by weighing the order and chaos probabilities according

to the factor p, so that

Yij ∼ Be((1− p)oij + pcij).

As will be shown in the next section, this simultaneous model with a latent space is sufficient

to explain small-world characteristics as well as the original Watts-Strogatz model. However, the

ability to expand this model beyond these characteristics, not the least of which is the addition of

nodal properties, is an advantage that the GLM approach has over the original.

To demonstrate the characteristics of the GLM models in comparison to the original small-world

generation, each model is simulated for a series of cases with 200 nodes, in which the expected

number of ties for each node is 6. The cases take various degrees of perturbation to demonstrate the

presence of “small-world characteristics” in both the Watts-Strogatz and GLM generative models,

namely

• The mean path length for all pairs of points.

• The Watts-Strogatz clustering statistic, defined to be the mean of the fraction of observed

triangles from all those possible for each node, Kk =
P

i

P
j YkiYkjYijP

i

P
j YkiYkj

, averaged over all nodes

k.

These characteristics are on displayed at various levels of p in Figure 2. As the degree of

“chaos” increases with rising p, there is a region where the degree of local clustering remains high,

while the median distance between points decreases markedly, for both the new GLM model and

the original small-world model of Watts and Strogatz [1998].
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Figure 2: The median path length and clustering statistics for small-world graphs generated by
the Watts-Strogatz and GLM methods. Each display the region between the curves where the
graphs have small-world properties

6.2 Preferential Attachment Models

As many networks form through a process of aggregation, there is great interest in explaining a

network’s structure through a process of evolution. The mechanism proposed in Barabasi and

Albert [1999], largely known today by the term “preferential attachment”, follows this general

mechanism:

1. Begin with a small collection of k connected nodes (a “seed” network) with some configuration

of ties between them. Make note of the degree of each node, di =
∑

j Yij.

2. Add a new node labelled k + 1 to the system, and create a link with one of the current k

nodes with respective probabilities pj =
djP
i di

, proportional to the degree of each of the nodes

at this time.

3. Repeat step 2, updating the degree distribution with each step.

The symmetry of an Erdős-Rényi random graph may suggest simultaneous formation, due to

the relatively even distribution of ties. In this class of network, the individuals with the longest

memberships are more likely to have a higher number of ties due, effectively, to their longevity,

amplified by an individual’s tendency to connect with these more popular individuals. This is a

process studied in Simon [1955] and de Solla Price [1976], and exemplifies the “rich get richer”

phenomenon as a natural consequence. This is a mechanism that has been shown to explain the

growth of the World Wide Web in its early years.
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Notably, a preferential attachment model does not distinguish directly between its member

individuals by label; when a complete graph is presented, the order of attachment is typically

inferred from the degree distribution of the node. Thus, the model considers the notion of degree

to be the identifying factor in the age of its presence in the network.

These methods represent the evolution of a system in which the active age of a node is partly

responsible for its propensity to have ties attached. But it is also reasonable to model this asso-

ciation as a function of the intrinsic popularity of a node. For example, a system of nodes whose

popularities are heterogeneous can be generated as

βj ∼ N(µ, σ2),

so that µ is the mean popularity and σ2 the heterogeneity between nodes; the subsequently gen-

erated popularities are then the basis for the generation of a directed graph. In keeping with

previous examples and motivations, a probit link with data augmentation is used to obtain the

directed graph:

Zij ∼ N(βj, 1);

Yij = I(Zij > 0).

A symmetrized version of this graph is produced to get the undirected equivalent, so that

Yij = max (I(Zij > 0), I(Zji > 0)) .

The next section shows that generative systems with this level of heterogeneity can produce

systems that have the signature characteristics of the scale-free model, in common with the growth-

plus-preferential-attachment mechanism, yet also have additional interesting properties.

6.2.1 Example: A Simultaneous Heterogeneous Degree Network

To produce a network with similar “obvious” characteristics to a preferential attachment modelled

network with n total nodes, a large number N of networks are simulated under the preferential

attachment mechanism and recording the degree distribution for each, and taking the mean at

each position; that is, let

Dm =
1

N

∑
k

dk(m)

be the mean degree of the mth most popular node across all simulations.
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Figure 3: Fitting the expected degree of each node under a GLM model to the observed degrees
of networks constructed by preferential attachment.

Quantity Value
Visible Nodes ≈ 1000
“True” Nodes ≈ 5000

µ -5.41
σ 0.974

Table 3: Results for a least-squares fit for a normal distribution fit to the estimated popularity
measures. Note the much larger estimate of the number of true nodes present in the system that
are not part of the visible giant component of the system.

Correspondingly, as node m should have Dm incoming connections, and the probability of any

one incoming connection is Φ(βm), there is an estimate for each individual βm = Φ−1(Dm/(n−1)).

A curve is fit to the cumulative distribution curve (see Figure 3), corresponding to the expected

fraction of edges per node for various ranges of beta using a simple least-squares criterion.

Three quantities are obtained in the fit: the mean shift, the standard deviation (scale), and the

total number of points that would make the completed curve – including the addition of nodes with

degree zero that would be unaccounted for with an algorithm that guarantees a fully connected

graph. Rough estimates for a corresponding fit are given in table 3.

The most notable feature of the system is its high size, strongly indicating the presence of a

great number of nodes that are not apparent in the main system, possibly in smaller components

only internally connected.

A simulation from the GLM model is plotted in Figure 4 to show the similarities between it
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and the original model. The largest component in this simulation has 906 nodes; there are an

additional 1221 nodes that are connected in some way to others, leaving 3779 isolated nodes.

Finally, note that this system is not meant to be an exact duplication of the preferential

attachment model. In particular, the dynamic properties of this class of system are considerably

different from preferential attachment, not the least of which is the likelihood that new nodes are

not guaranteed to join the giant component. This generative scheme can capture many of the

same features of an observed network for which preferential attachment is a plausible mechanism,

while at the same time noting that the use of a preferential attachment model would not indicate

the presence of so many disconnected nodes that are no less involved in the system under study.

A Rotational Conditional Maximization and Sampling Meth-

ods

Throughout this work, the analyses proposed are executed by computer, given both the magnitudes

of the data sets and the complexity of the models. As the models are composed, they are build

with the ability to separate into conditional components. Additionally, the introduction of a latent

structure with data augmentation allows for components that are easier to handle for sampling

and maximization. For this reason, while many other algorithmic approaches are feasible to solve

for the state of the system, this work advocates methods in which the likelihood or posterior

distribution is maximized or sampled in terms of one parameter (or one parameter group) at a

time. In the likelihood approach, this is done with the ECM algorithm [Meng and Rubin, 1993],

which is already attractive due to the nature of the augmented data {Zij}.
In the Bayesian framework, the most common conditional sampler is the Gibbs sampler [Geman

and Geman, 1984], one of the more commonly used Markov Chain Monte Carlo (MCMC) methods,

in which each parameter (or sub-block of parameters) is sampled in sequence from the current

full conditional distribution; the stationary state of the chain is then taken to be the posterior

distribution in the inference. Approximations of the posterior distribution are also calculable

though variational EM (vEM) methods (see Jordan et al. [1999] for examples), which can also be

conditionally maximized by rotating through the model parameters.

Because both of these methods can be expressed in table form – the sequence of parameters

from which to calculate expectation functions, find maxima or take draws – all distributions will

be displayed in this form, a Rotational Conditional Maximization and/or Sampling (RMCS) table,

for whatever method of inference is chosen to solve the system; a simple RCMS method is given

in Table 4 for a bivariate normal distribution with known correlation. As a personal preference of

the author, systems will be solved first through the maximization of the posterior distribution in

the style of ECM (though here in the fully Bayesian context, all variables are considered random
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Figure 4: A representative simulation of the GLM model for scale-free-type networks. 1221 nodes
with connections are shown, 906 of which are in the largest component.
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[
Z1i

Z2i

]
|
[
µ1

µ2

]
∼ N2

([
µ1

µ2

]
,

[
1 ρ
ρ 1

])
; µ1, µ2 ∼ N(0, 10002)

Parameter Draw Type Distribution Method
µ1 Single

∏
i p(Zi1, Zi2|µ1, µ2)p(µ1) Direct Draw (normal)

µ2 Single
∏

i p(Zi1, Zi2|µ1, µ2)p(µ2) Direct Draw (normal)

Table 4: A Rotational Conditional Maximation and/or Sampling table for a bivariate normal
distribution with known covariance.

variables, not missing “data” per se), and probability intervals calculated through generalized

Gibbs sampling methods about any modes discovered in the previous step.

B Marginal Specifications of Dyads under the Gaussian

Framework

Older network methods have been based on log-linear modeling and logistic regressions, which

have enjoyed a long history largely due to their ease of computation. As the logistic CDF has an

easy closed form, probabilities can be calculated from these models quickly, and by hand, given

values for the parameters. However, due to the recent rise in computational power, difficulties

formerly associated with the Gaussian CDF are no longer an impediment to its adoption for these

tasks. In particular, its natural multivariate specification makes it ideal for modeling dependence

between ties and individuals. See Cox [1972] for a road map of multivariate binary analysis that

is still valid today.

Because the Gaussian CDF represents the probability of an underlying normal random variable

being above or below a particular point, I consider all of our modeling of binary ties to reflect such

a latent scheme. The approach used is a class of data augmentation algorithm first proposed to

solve computational problems by Tanner and Wong [1987], while the particular algorithm uses has

its roots in the work of Albert and Chib [1993]. Others who have extended this approach for other

classes of data are McCulloch and Rossi [1994]; Nobile [1998]; Imai and van Dyk [2005]. in this

case, I extend the approach of Albert and Chib to consider multivariate binary models using latent

multivariate Gaussians.

The use of latent continuous variables for modelling discrete outcomes has a history over a

century old, including cases when the outcomes can be dependent. Pearson [1900] first described

a procedure for interpreting a binary outcome as the dichotomization of a latent normal random

variable, which are then extended to a pair of outcomes on a two-by-two contingency table with a

latent bivariate normal.
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Figure 5: A latent bivariate normal random variable forms the basis for a bivariate probit model.

Consider a contingency table with the following cell and marginal probabilities for the joint

binary variables (Y1, Y2):

Joint Probabilities Y2 = 0 Y2 = 1 Total

Y1 = 0 n a 1− π1

Y1 = 1 b m π1

Total 1− π2 π2 1

The layout of the table suggests a measure of dependence between the two outcome variables:

if the joint probabilities in the table can all be expressed as the product of their marginal distri-

butions, the rows and columns are independent. The mechanism suggested by Pearson [1900] is

to parameterize dependence in terms of the latent bivariate normal.

The estimate of the correlation ρ between the latent normal variable pairs is what later became

known as “tetrachoric correlation” (literally, the “four voices” in a two-by-two table). Due in no

small part to the difficulty in calculating functions of the normal cumulative distribution function,

this approach of analyzing contingency tables became less popular than the kappa technique for

quantifying rater agreement, a concept with similar mathematical properties but unconcerned with

latent traits, and odds-ratio estimation for off-diagonal probabilities, which have characteristics

that have proven useful in the biometric literature.

Development of probit-based techniques later became widespread in biological studies by Bliss

[1935], though the introduction of [Ashford and Sowden, 1970] reintroduced the concept of the
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bivariate probit to the biometric community.4

In general, the bivariate specification is extendable to the multivariate case. Rather than

estimating cell probabilities (as there is no easy expression for multivariate normal CDFs) I use

the Pearson latent variable specification. Let (Y1, ..., Yn) be a vector of binary responses. In general,

the latent multivariate normal Z is defined as

Z ∼ Nn (µ,Σ) ;

V ar(Zi) = 1;

Cov(Zi, Zj) = ρij, i 6= j;

Yi|Zi = I (Zi > 0) .

Marginally, each outcome Yi is a Bernoulli outcome with success probability Φ(µ). If there is

no correlation between observations, the model reverts to a traditional probit analysis.

C Estimation Methods and Algorithms

The latent variable specification makes Bayesian inference on the resulting model significantly

easier than in log-linear models. I use a modification of the algorithm proposed by Albert and

Chib [1993] that capitalizes on the Gaussian framework, while adding sampling steps for the

additional correlation terms.

Consider first a simple model where each observed outcome i ∈ {1, ..., n} is bivariate binary,

and all outcomes are conditionally independent:

[
Yi1

Yi2

]
|

[
Zi1

Zi2

]
=

[
I(Zi1 > 0)

I(Zi2 > 0)

]
;[

Z11

Zi2

]
|β, ν, ρ ∼ N2

([
Xiβ

Xiν

]
,

[
1 ρ

ρ 1

])
,

where the last line is a bivariate general linear model with independent rows, and prior distributions

are specified appropriately. All together, the latent variables are specified as a (2n)−variate normal:

4The authors make a key point that not all joint distributions whose margins are normal are themselves mul-
tivariate normal, such as the case (Y ∼ N(0, 1), X = SY , S = 2Be(0.5) − 1) in which X and Y are uncorrelated
but dependent. It is assumed throughout this work that the underlying model is the canonical multivariate normal
distribution.

32



Parameter Distribution Method[
Zij
Zji

]
Parallel Truncated N2 Direct Draw[

β
ν

]
Joint N2p Direct Draw

ρ — p(Z|ρ)p(ρ) Grid approximation

Table 5: An RMCS table for the bivariate normal with coefficients β and ν; full expressions for
each term are given in the text. (See Section A for more on RCMS notation.)

[
Z1

Z2

]
|β, ν, ρ ∼ N2n

(
(I2 ⊗X)

[
β

ν

]
,

[
1 ρ

ρ 1

]
⊗ In

)

In this specification, a Gibbs sampler in the form of that suggested by Albert and Chib [1993]

can be executed to obtain draws from the posterior distribution (Table 5 gives the steps in order.)

To draw the latent normal conditional on the coefficients β, µ, correlation ρ and outcomes (Y1,Y2),

the truncated bivariate normal is used, where all n units can be drawn simultaneously:[
Zi1

Zi2

]
|β, ν, ρ,Y ∼ TN2

([
Xiβ

Xiν

]
,

[
1 ρ

ρ 1

]
,

[
Yi1

Yi2

])
.

For the coefficients (β, ν), the properties of the multivariate normal make the mean and variance

estimates easier to calculate,[
β

ν

]
|Z, ρ ∼ N2p

(
(I2 ⊗ (X ′X)−1X ′)

[
Z1

Z2

]
,

[
1 ρ

ρ 1

]
⊗ (X ′X)−1

)
.

This form is easily extendable to include a non-flat multivariate prior distribution for (β, ν).

Without a convenient conjugate form, the draw for ρ is best done by either a Metropolis-

Hastings step or an approximation such as a grid-method draw. Since the value is bounded to

the interval (−1, 1), my personal preference is for a grid sample or a direct acceptance-rejection

scheme, which would allow for more mixing than a Metropolis-Hastings method.

References

Airoldi, E. and Carley, K. (2005). Sampling algorithms for pure network topologies. ACM

SIGKDD Explorations Newsletter, 7 13–22.

Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2007). Combining stochastic
33



block models and mixed membership for statistical network analysis. Lecture Notes in Computer

Science, 4503.

Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2008). Mixed membership

stochastic blockmodels. Journal of Machine Learning Research, 9 1981–2014.

Albert, J. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data.

Journal of the American Statistical Association, 88 669–679.

Anderson, C. J., Wasserman, S. and Crouch, B. (1999). A p* primer: logit models for

social networks. Social Networks, 21 37–66.

Ashford, J. and Sowden, R. (1970). Multivariate probit analysis. Biometrics, 26 535–546.

Barabasi, A. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286

509–512.

Berkson, J. (1951). Why i prefer logits to probits. Biometrics, 7 327.

Bliss, C. (1935). The calculation of the dosage-mortality curve. Annals of Applied Biology, 22

307–330.

Blitzstein, J. and Diaconis, P. (2006). A sequential importance sampling algorithm for gen-

erating random graphs with prescribed degrees. Unpublished manuscript.

Clauset, A., Moore, C. and Newman, M. E. J. (2008). Hierarchical structure and the

prediction of missing links in networks. Nature, 453.

Cox, D. (1972). The analysis of multivariate binary data. Applied Statistics, 21 113–20.

de Solla Price, D. (1976). A general theory of bibliometric and other cumulative advantage

processes. Journal of the American Society for Information Science, 27 292–306.

Dorogovtsev, S. and Mendes, J. (2002). Evolution of networks. Advances in Physics, 51

1079–1187.

Erdos, P. (1959). Graph theory and probability, i. Canadian Journal of Mathematics, 11 34–38.

Erdos, P. (1961). Graph theory and probability, ii. Canadian Journal of Mathematics, 13

346–352.

Erdos, P. and Renyi, A. (1959). On random graphs. Publications Mathematicae, 6 290.

Erdos, P. and Renyi, A. (1960). On the evolution of random graphs. Publications of the

Mathematical Institute - Hungarian Academy of Science, 5 17.
34



Erdos, P. and Renyi, A. (1961). On the strength of connectedness of a random graph. Acta

Mathematica Hungarica, 12 261–267.

Fienberg, S. and Wasserman, S. (1981). Categorical data analysis of single sociometric rela-

tions. Sociological methodology, 11 156–192.

Frank, O. and Strauss, D. (1986). Markov graphs. Journal of the American Statistical Asso-

ciation, 81 832–842.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distribution, and the bayesian

restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence, 6 721–41.

Gilbert, E. (1959). Random graphs. Annals of Mathematical Statistics, 30 1141–1144.

Goldenberg, A., Zheng, A. X., Fienberg, S. E. and Airoldi, E. (2009). A survey of

statistical network models. Unpublished manuscript.

Handcock, M. S. and Morris, M. (2006). A simple model for complex networks with arbitrary

degree distribution and clustering. In Statistical Network Analysis: Models. 103.

Handcock, M. S., Raftery, A. E. and Tantrum, J. M. (2007). Model-based clustering for

social networks. Journal of the Royal Statistical Society, Series A, 170 301354.

Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American

Statistical Association, 295 286–295.

Hoff, P. D. (2007a). Extending the rank likelihood for semiparametric copula estimation. Annals

of Applied Statistics, 1 265–283.

Hoff, P. D. (2007b). Modeling homophily and stochastic equivalence in symmetric relational

data. Neural Information Processing Systems, 20.

Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002). Latent space approaches to social

network analysis. Journal of the American Statistical Association, 97 1090–1098.

Hoff, P. D. and Ward, M. D. (2003). Modeling dependencies in international networks. Tech.

rep., University of Washington.

Holland, P. and Leinhardt, S. (1981). An exponential family of probability distributions for

directed graphs. Journal of the American Statistical Association, 76 33–65.

Imai, K. and van Dyk, D. (2005). A bayesian analysis of the multinomial probit model using

marginal data augmentation. Journal of Econometrics, 124 311–334.

35



Jordan, M., Ghahramani, Z., Jaakkola, T. and Saul, L. (1999). Introduction to variational

methods for graphical models. Machine Learning, 37 183–233.

Klaassen, C. A. J. and Wellner, J. A. (1997). Efficient estimation in the bivariate normal

copula model: normal margins are least favourable. Bernoulli, 3 55–77.

Kolaczyk, E. (2009). Statistical Analysis of Network Data. Springer.

Krivitsky, P. N., Handcock, M. S., Raftery, A. E. and Hoff, P. D. (2009). Representing

degree distributions, clustering, and homophily in social networks with latent cluster random

effects models. Social Networks, 31 204–213.

Leskovec, J., Chakrabarti, D., Kleinberg, J. and Faloutsos, C. (2005). Realistic, math-

ematically tractable graph generation and evolution, using kronecker multiplication. In ACM

SIGKDD. 133.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22 55.

Linkletter, C. (2007). Spatial Process Models for Social Network Analysis. Ph.D. thesis, Simon

Fraser University.

Liu, C. (2004). Robit regression: A simple robust alternative to logistic and probit regression.

In Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives. Wiley,

227–238.

McCulloch, R. and Rossi, P. (1994). An exact likelihood analysis of the multinomial probit

model. J. Economet, 64 207–40.

Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ecm algorithm:

A general framework. Biometrika, 80 267–78.

Milgram, S. (1967). The small world problem. Psychology Today, 2 60–67.

Newman, M. (2002). Assortative mixing in networks. Physical Review Letters, 89 208701.

Newman, M., Strogatz, S. and Watts, D. (2001). Random graphs with arbitrary degree

distributions and their applications. Phys Rev E Stat Nonlin Soft Matter Phys, 64 026118.

Nickel, C. L. M. (2006). Random Dot Product Models: A Model for Social Networks. Ph.D.

thesis, Johns Hopkins University.

Nobile, A. (1998). A hybrid markov chain for the bayesian analysis of the multinomial probit

model. Statistics and Computing, 8 229–242.

36



Nowicki, K. and Snijders, T. A. B. (2001). Estimation and prediction for stochastic block-

structures. Journal of the American Statistical Association, 96 1077–1087.

Pearson, K. (1900). Mathematical contributions to the theory of evolution. vii. on the correlation

of characters not quantitatively measurable. Philosophical Transactions of the Royal Society of

London, Series A, 195 1–47.

Pitt, M., Chan, D. and Kohn, R. (2006). Efficient bayesian inference for gaussian copula

regression models. Biometrika, 93 537–554.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Tech. rep.,

Danish Institute for Educational Research. From expanded edition (1980) with foreword and

afterword by BD Wright.

Shaw, W. T. and Lee, K. (2007). Copula methods vs canonical multivariate distributions: the

multivariate student t distribution with general degrees of freedom. Tech. rep., King’s College

London.

Simon, H. A. (1955). On a class of skew distribution functions. Biometrika, 42 425.

Snijders, T. A. B. and Nowicki, K. (1997). Estimation and prediction for stochastic block-

structures for graphs with latent block structure. Journal of Classification, 14 75–100.

Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data

augmentation. Journal of the American Statistical Association, 82 528–540.

van Duijn, M., Snijders, T. and Zijlstra, B. (2004). p2: a random effects model with

covariates for directed graphs. Statist. Neerland, 58 234–254.

Wang, Y. J. and Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of

the American Statistical Association, 82 8–19.

Wasserman, S. and Anderson, C. (1987). Stochastic a posteriori blockmodels: Construction

and assessment. Social Networks, 9 1–36.

Wasserman, S. and Pattison, P. (1996). Logit models and logistic regressions for social net-

works: I. an introduction to markov random graphs and p-star. Psychometrika, 60 401426.

Watts, D. and Strogatz, S. (1998). Collective dynamics of “small-world” networks. Nature,

393 440–442.

Wong, G. Y. (1987). Bayesian models for directed graphs. Journal of the American Statistical

Association, 82 397.
37



Zheng, T., Salganik, M. J. and Gelman, A. (2006). How many people do you know in

prison?: Using overdispersion in count data to estimate social structure in networks. Journal of

the American Statistical Association, 101.

38


	Networks and Relational Data
	Edge-Specific Binary Network Models
	Erdos-Rényi-Gilbert Random Graphs
	Distinguishing Individuals
	Joint-Conditional Specifications: The p-class of models
	Geometric/Topologically Specified Models

	Latent Characteristic Modelling Approaches
	Latent Trait Models
	Latent Space Models

	Framework: Modelling Relational Data With Marginally Specified Hierarchical Models
	Marginal Specification and Extension of p1
	Covariate Inclusion for Senders, Receivers, Edges
	Differential Reciprocity Adjustments
	Latent Spaces and Parameters
	Assortative Mixing on Popularity and Gregariousness, Rather than Degree
	Robust Analyses with the Multivariate t Distribution
	Integration with Other Generalized Linear Model Forms, and Further Extensions
	The General Case

	Discussion: Comparing Marginal Specifications to Conditional Models
	The Fundamental Unit: The Arc or the Dyad
	Expandability: Beyond the Binary Case

	Reformulations of Classic Examples, with Extensions
	Watts-Strogatz ``Small-World'' Networks
	Preferential Attachment Models

	Conclusions
	Rotational Conditional Maximization and Sampling Methods
	Marginal Specifications of Dyads under the Gaussian Framework
	Estimation Methods and Algorithms

