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Abstract

Interaction within small groups can often be represented as a sequence of events, where
each event involves a sender and a recipient. Recent methods for modeling network data in
continuous time model the rate at which individuals interact conditioned on the previous his-
tory of events as well as actor covariates. We present a hierarchical extension for modeling
multiple such sequences, facilitating inferences about event-level dynamics and their variation
across sequences. The hierarchical approach allows one to share information across sequences
in a principled manner—we illustrate the efficacy of such sharing through a set of prediction
experiments. After discussing methods for adequacy checking and model selection for this class
of models, the method is illustrated with an analysis of high school classroom dynamics.

1 Introduction

Interactions among small groups of individuals are a focus of study across multiple disciplines.
Investigating the factors that influence group interaction can aid in our understanding of bargain-
ing, leadership, group decision-making, education, and social influence. For example, considerable
attention has been paid to exploring the relationship between group dynamics and task completion
[1, 2], the formation of norms and attitudes [3], and the creation of roles, status, and hierarchy [4].
A key requirement for scientific work in this area is a principled method for analyzing interactions
within a specific group as well as a means for comparing phenomena across groups.

Interactions among individuals can often be represented as a sequence of relational events –
discrete actions directed from one person to another [5, 6, 7]. In this paper we consider directed,
communicative events, though in general an action could be defined as a movement or gesture as
well. Regularities in sequences of interactions have long been observed empirically across a variety
of settings; these include behaviors such as turn-taking according to conversation norms [8], unequal
rates of communication acts [5], and the influence of contextual factors such as seating arrangement
[9]. Following the theory that social organization is a product of the actions of individuals [10, 11],
we aim to use sequences of interactions to make inferences about group dynamics. To achieve this
goal we need methods for assessing the explanatory power of theories for individual sequences of
events in particular contexts, and for exploring how well such theories generalize across settings.

This paper discusses a family of statistical models for relational event sequences that allow one
to study the mechanisms underlying both the sequences of actions and the time until each event.
Our approach builds on recently introduced methods for continuous-time network data [7] that
model the rate at which individuals interact conditioned on the previous history of events, actor
covariates, or exogenous events.
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This type of statistical framework allows for parameter estimation, principled model selection,
and the incorporation of complex temporal dependencies. Other types of models also permit infer-
ence of temporal dependencies from observational data (e.g. [12]), but make it difficult to incor-
porate new mechanisms into the model. The framework we employ for modeling relational events
has the advantage of being flexible, without sacrificing inferential or computational tractability.

In practice, we often observe multiple sequences. Collections of sequences may arise for example
from multiple trials of a group interaction experiment (in either the same or distinct conditions),
from observations from multiple groups or organizational units from a common distribution, etc.
In order to model multiple sequences, we embed the relational event family within a hierarchical
Bayesian structure. This facilitates inferences about event-level dynamics and their variation across
sequences, as well as pooling information across a collection of sequences in a principled manner.
An alternative approach for analyzing sequences collected in a variety of situations would be to
fit a relational event model to each sequence separately. Our proposed method instead assumes
the parameters are drawn from a common distribution and can thus leverage information from
the other sequences when few data are present. Historically, much (if not most) relational event
data has been collected and categorized manually (for example via interaction process analysis [5]).
Because of the level of effort required, data was often limited to only a few sequences. With recent
technological advances such data is becoming more prevalent, e.g. via mobile devices [13]. The
hierarchical approach allows one to compare theories to observed data as well as make predictions
about newly obtained sequences obtained in these new settings.

After giving the reader some background on related methods, we review the basic framework
for modeling relational event sequences. We present a hierarchical extension of this framework and
discuss methods for fitting such models. A simulated example is used to illustrate methods for
adequacy checking and model selection. The methodology is then applied to an analysis of high
school classroom dynamics from 297 sessions. We adjust for a variety of actor-level and dyadic
covariates, such as role (student or teacher), gender, race, and seating arrangement. The model
specification also includes indicators for typical participation shifts common to human conversation
[8], which we explore. We present estimates from the model and describe their implications. The
paper concludes with a discussion of future directions.

2 Background and related work

Relational structure (and the dynamics thereof) has been treated primarily via a network for-
malism, in which social actors are conceived of as embedded in a system of temporally extensive
relationships. Traditionally, most social network data have been collected via surveys or by par-
ticipant observation, with most longitudinal relational data taking the form of panel data: a series
of “snapshots” of an evolving network at various times. There are several approaches to analyzing
this type of data. Descriptive methods have been used to examine how particular node-level or
graph-level statistics change over time, and to describe phenomena such as extent of change in
edge structure as a whole (see, e.g., [14, 15]). Statistical approaches, on the other hand, often bor-
row from methods developed for static networks and parametrize the transition between graphs.
Examples include time-varying latent space methods [16], latent feature models [17], time-lagged
logistic regressions [18], and temporal exponential random graph models (ERGMs) [19, 20] using
specifications analogous to static ERGMs. A separate line of work assumes the observed networks
are outcomes from a latent continuous time Markov process [21, 22, 23] and models the switching
of latent edges.
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Figure 1: Illustration of event data and the assumptions of the model. Left: An sequence of
two events among four nodes: (1,2) occurs at time t1 and (2,3) occurs at time t2. Right: The
intensity functions for λ1,2(t) (solid) and λ34(t) (dotted) were chosen to illustrate that each λi,j(t)
is a function of the events prior to the last changepoint.

Our research contributes to a growing literature that leverages continuous-time models from
event history analysis [24] in order to model mechanisms at the event level. Instead of a series
of networks at discrete time points, the data is a sequence of edges together with the instanta-
neous times at which each edge occurred. In Section 3 we review a framework for modeling for
such data, previously applied to observational phenomena such as radio communication during
emergency response during the WTC disaster [7]. Recent extensions to this approach include mod-
eling additional real-valued information associated with each event [25], using approximations to
handle multiple-recipient data [26], using time-varying coefficients [27], or modeling the temporal
dependence using decision trees [28]. Other related work assumes that actors have a fixed rate of
initiating events and focus modeling efforts on mechanisms affecting the choice of recipient [29, 30].

3 A Framework for Modeling Relational Events

Suppose we observe a temporally ordered sequence of M dyadic events among N individuals during
the time window [0, τ) ⊂ R

+,

Aτ = {(tm, im, jm) : (im, jm) ∈ Rtm , 0 < t1 < · · · < tM < τ}
where the mth event occurs at time tm and has a sender im and a recipient jm. The set of

possible events at time t is referred to as the risk set Rt ⊆ {(i, j) : i, j ∈ {1, . . . , N}}; although the
risk set can itself be endogenously varying, we here will focus on the case in which Rt is fixed to
the set of all non-reflexive dyadic actions.

Given data of the above form, our primary modeling goal is to understand how the occurrence
of a dyadic event (t, i, j) is associated with statistics of the previous history of events as well as
dyadic and/or actor-level covariate. The foundation of this approach borrows from techniques for
modeling time-to-event data in survival analysis. In this context, recall that if Y is a random
variable describing the time until an event with probability density function f and cumulative
distribution function F , then the survival function S(y) = 1−F (y) = P (Y > y) is the probability of
the event not occurring before time y, and the hazard function h(y) = f(y)/S(y) = f(y)/(1−F (y))
is the conditional likelihood that Y = y given Y ≥ y. The relational event framework similarly
models the time until a given dyadic event occurs, as described below.

3



An event history A is modeled as a stochastic process where interactions from node i to node
j occur with an intensity λi,j(t|At) which can depend on previous events. The likelihood of an
observed sequence of M events under noninformative censoring is

p(Aτ |Θ,X) =

M
∏

m=1

λim,jm(tm|Atm)×
∏

(i,j)∈R

Si,j(tm − tm−1|Atm)×

∏

(i,j)∈R

Si,j(τ − tM |AtM ) (1)

This expression models the fact that M events occurred, that no other event occurs between the
previous event at time tm−1 and the event at time tm, and finally that no events occur between time
tM and τ . The non-informative censoring assumption implies that not observing event (i, j) during
some time interval leaves the waiting time distribution of some other event (k, l) ∈ R unchanged.

In order to incorporate dependence on the previous history of events, we follow [7] and model
the hazards λij(t|·) via a log linear form

λij(t|At,β, s,X) = exp{βT s(t, i, j,At)}

where β ∈ R
p is a vector of model parameters, and s(t, i, j,At) is a vector of P statistics pertaining

to the dyad (i, j). The statistics vector s(t, i, j,At) is a function of At, the event sequence up until
time t, and covariates about actors and dyads, X. The future rate of events from i to j can depend
on both information that is endogenous (e.g. mixing rates in previous events) and exogenous
information (e.g. actor covariates) via the specification of s. In this approach the intensities λij(t|·)
are piecewise-constant and only can change at event times, as shown in Figure 1; this automatically
satisfies the assumption of non-informative censoring required for Equation 1. By construction, the
likelihood for a fully observed sequence of events Aτ then simplifies to

p(Aτ |β,X) =
M
∏

m=1

λim,jm(tm|Atm)×
∏

(i,j)∈R

exp {−(tm − tm−1)λi,j(tm|Atm)}×

∏

(i,j)∈R

exp {−(τ − tM )λi,j(τ |AtM )} (2)

In subsequent sections we show how to use this framework to model sequences of relational
events. Because all dyadic events are conditionally independent on the last event, one may generate
data by repeating the following steps until tm exceeds the end time τ :

1. Given Atm−1
sample the inter-event time:

tm − tm−1 ∼ Exponential





∑

i,j

λij(tm−1|Atm−1
)
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2. Sample the observed event from the categorical distribution

p ((im, jm) = (i, j)) =
λi,j(tm−1|Atm−1

)
∑

(i,j)∈R λi,j(tm−1|Atm−1
)

In the rest of the paper, we denote a sequence of events generated in the time interval (0, τ) as
A|β,X ∼ REM(τ, β, s,X).

3.1 Connection to non-homogeneous Poisson processes

One may also view the above relational event framework as a continuous time Markov jump process
whose state space contains all possible dyadic interactions. The transition matrix (or rate matrix)
is modeled via the sufficient statistics s that are a function of the previous events in the sequence.
The process is completely determined by the times of the transitions and the sequence of states.

One implication of the modeling choices above is that all possible dyadic interactions in R are
Poisson processes which are conditionally independent given the previous event history and external
covariates. This imposes a memoryless property – the waiting time until the next event cannot
depend on the time since the previously observed event – though more flexibility can be achieved
by including additional changepoints.

3.2 Connection to the Cox proportional hazards model

If we wish to only model the order of the dyadic events, the likelihood of the event sequence uses
the multinomial likelihood: at time t we choose a single dyad (i, j) from among |R| options with
probability proportional to λij(t|At). We can rewrite this as follows [7]:

p(A|β, s) =
M
∏

m=1

λimjm(tm|Atm)
∑

(i,j)∈R λij(tm|Atm)

=

M
∏

m=1

exp{β′s(tm, im, jm,Atm)}
∑

(i,j)∈R exp{β′s(tm, i, j,Atm)} (3)

This is closely related to the Cox proportional hazards model [31] with time-varying covariates
[32], a regression-based approach from survival analysis for modeling treatment differences using
time-to-event data. This approach is semiparametric in nature since only the relative rates are
modeled and no parametric assumptions are placed on the baseline hazard. Here, however, we have
1) |R| possible events that are “at risk” and 2) only one failure time is observed at each event
while all others are right-censored. From this view, we have a sequence of local Cox models strung
together; the proportional hazards assumption permits inference on the relative rates rather than
the baseline hazard. Note that, as in our construction, this imposes piecewise-constant hazards.

The competing risks area of survival analysis [24] uses a similar framework to model how the
presence of various possible causes are related to the time to an event. Note that since s includes
time-varying covariates and particular events can occur multiple times, relational event models can
also be classified as dynamic models for recurrent event data.
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3.3 Connection to multinomial choice models

Let Ri(At) be the set of possible actions for sender i at time t. Then, conditional on no other event
occurring before i acts, the probability that i’s next action is a is given by

p(a|β, s,At) =
λia(t|At)

∑

(i,a)∈R λia(t|At)

=
exp{β′s(t, i, a,At)}

∑

(i,a)∈R exp{β′s(t, i, a,At)}
(4)

The above likelihood also exhibits similarities to conditional logit discrete choice models from
economics [33]. In this view, the statistics used to model a person’s utility can vary over time and
are a function of the actions the actor has directed towards others and those directed towards him
or her.

3.4 Process explosion

When using the proposed approach one must be careful when defining λij(t|At) = exp{β′s(t, i, j,At)}.
Consider a specification of the pth effect such that βp > 0 and sp(t, i, j,At) = Nij(t−) whereNij(t−)
is the number of occurrences of (i, j) before time t. When λij(t|At) is large then (i, j) will happen
often; in turn sp(t, i, j,At) will increase, and this feedback loop might lead to λij(t) → ∞ as t
approaches some finite time. For example, [24] describes a few particular cases when explosion
is expected: 1) if sp(t, i, j,At) = Nij(t−)2 (or any higher order polynomial) and βp > 0, 2) if
sp(t, i, j,At) = exp{βNij(t−)} with βp > 0, or 3) if sp(t, i, j,At) = Nij(t−)/t (the mean events per
time) and βp > e−1. In general, non-explosion occurs if the expected time until the next event
(across all possible states) does not converge to 0; if it does, the overall process will generate events
at an increasingly fast pace.

One advantage of the fully parametric model we pursue is that our estimation occurs with
respect to the observed event times, not just the order of events. The estimate of the pacing
constant should help model the mean number of events per unit time. Since our observed data is
over a finite time interval, we expect (and will check) that the hazards of the model do not explode
within that same time. In general, process explosion can be avoided by selecting model statistics
that remain well-bounded for all At (e.g., those that vary within a finite range).

4 Hierarchical models for multiple sequences

In some applications, it is natural to consider the joint analysis of multiple event sequences, e.g.,
as stemming from experimental replications, observations from multiple groups or organizational
units, etc. Naively, we could proceed by fitting the aforementioned relational event model to
multiple sequences individually and pooling the results in some fashion. However, we may want to
share information across sequence models in order to perform population-level inference, understand
session-level variation, and stabilize inference for poorly constrained parameters.

To this end, we propose a hierarchical variant of the relational event model. More specifically,
suppose we have K event sequences, denoting the kth event history by Ak with corresponding
event covariates Xk, and each sequence is modeled using a distinct parameter vector (i.e., for
the kth sequence, βk). Extending the previous notation, let event history k before time t be
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denoted as Ak,t. Suppose we model the kth sequence via a relational event model with a vector
of P effects with corresponding parameters βk ∈ R

P . We assume βk arises from an upper level
population distribution such that βk,p ∼ N (µp, σ

2
p), where µp ∈ R and σp > 0 are the mean

and standard deviation of the upper level distribution for the pth effect, respectively. This added
structure enables us to pool information concerning particular effects among sequences. Thus the
final hierarchical model is

Ak ∼ REM(τk,βk, s,Xk) µp ∼ Normal(0, σ2
µ) (5)

βk,p ∼ Normal(µp, σ
2
p) σ2

p ∼ Inv-Gamma(ασ, βσ)

In the case that a single sequence’s parameter overly influences the global value µp, a useful
variation instead considers a t-family such that (βk,p − µp)/σp ∼ tν where µp is the location, σp is
the scale, and ν is the degress of freedom. In this situation we let νp ∼ Exp(r) and r = 1/M since
an uninformative prior imposes a de facto normality assumption [34].

In the analyses shown here, we place a N(0, 2) prior on each µp so that a priori 95 percent of
the probability mass lies between a multiplicative effect of .01 and 50. The hyperparameters ασ

and βσ control how close βk,p should be to µp when few observations are available. In practice we
use hyperparameters ασ = 5 and βσ = 1 so that a priori the mean variance is about 0.25; as the
amount of data increases, in practice the method is insensitive to these settings.

4.1 Statistical Inference

We are interested in the posterior distribution of our parameters given observed data. By applying
Bayes rule we can derive the posterior distribution, where p(Ak|τk,βk, s,Xk) is the likelihood of
the lower level model in Equation 2:

p(β, µ, σ2|A) ∝
K
∏

k=1

p(Ak|τk,βk, s,Xk)

P
∏

p=1

p(βk,p|µp, σ
2
p)p(µp)p(σ

2
p) (6)

In this section we discuss several methods for obtaining summaries of the posterior distribution.
We begin by optimizing the above posterior and then discuss several techniques for using Markov
chain Monte Carlo to better understand the uncertainty in the distribution of the parameters.

4.1.1 Posterior mode estimation

One quantity of interest is the posterior mode, or maximum a posteriori (MAP) estimates of
the model parameters. When estimating a single event sequence, MAP estimates of β allow for
regularization in a manner that is not easily obtainable via maximum likelihood estimation. These
estimated may be obtained by iteratively maximizing the log posterior: for each parameter p
optimize p(µp|{β}Kk=1) and p(σ2

p|{βk}Kk=1, ασ , βσ), then for each sequence k optimize p(βk|µ,σ2).
Because of the presence of multiple posterior modes with low probability mass this MAP approach
is less useful in the hierarchical case than in the case of a single event sequence—appendix D
provides further discussion.
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4.1.2 Markov chain Monte Carlo via Metropolis-Hastings

In the multiple sequence case, we recommend sampling from from full posterior distribution using
Markov chain Monte Carlo techniques [35] rather than seeking point estimates (e.g., via MAP).
Using the Metropolis algorithm we obtain approximate samples from p(β|A,X) via a Markov chain
whose stationary distribution is the posterior of our parameters.1 The general procedure involved
follows standard practice for Bayesian inferene via MCMC (see, e.g. [36]): we draw Nburnin+Nkeep

samples, assessing convergence of the Markov chain by a combination of visual inspection of trace
plots and formal convergence diagnostics. Given convergence, we then compute summary statistics
(e.g. the posterior mean of our parameters) on the simulated draws in order to summarize relevant
properties of the posterior distribution.

One practical difficulty for MCMC simulation with the hierarchical relational event family is
that the posterior surface typically has many local modes (as discussed in D). While these modes
often contain little probability mass, the posterior surface surrounding them can be locally steep;
this can result in poor mixing for Metropolis algorithms based on local proposals (e.g., random
walk Metropolis), due to the Markov chain ascending a local peak and rejecting moves away from
it (thereby becoming “stuck” for long periods). While careful selection of the proposal distribution
(e.g., random walk step size) can obviate this problem, the large numbers of parameters involved in
the hierarchical model makes such calibration difficult. To facilitate better mixing, we thus employ
an MCMC technique called parallel tempering [37] (a variation on the swapping algorithm [38]).

The parallel tempering approach involves simulating K chains in parallel whose acceptance
rules vary – in addition to a base chain constructed in the usual fashion, additional chains are
maintained in “heated” (i.e., higher-entropy) states that accept proposals more often. After tswap

steps we incorporate an additional Metropolis step that allows for mixing across chains, allowing
poor (i.e., low posterior density) states to migrate from “cooler” chains to the “warmer” chains
(where they are readily replaced due to these chains’ faster mixing rates). In effect, the parallel
tempering system resembles an adaptive random walk Metropolis-Hastings algorithm, in which
local proposals are augmented by longer-range jumps preferentially targeted towards regions of
higher posterior density. We outline the general algorithm below, where the unnormalized density
of interest g(Θ) is the posterior p(β,µ,σ2|A,X).

Algorithm: Parallel Tempering In order to sample from an unnormalized density g(Θ) we
create a single Markov chain with an expanded state space by sampling J Markov chains in parallel.

π(Θ1, . . . ,ΘJ) ∝
J
∏

j=1

hj(Θj)

hj(Θj) ∝ exp{−g(Θj)/tj}

where t0 < · · · < tJ and hj(Θj) is the target distribution for chain j. The parameter tj tunes
the acceptance probability for chain j; large values “flatten” the posterior distribution making
proposals easier to accept (i.e. a “hot” chain). After every tswap draws, we propose a swap between
parameters in adjacent chains j and j + 1 with acceptance probability

1We cannot employ Gibbs sampling because the conditional distributions are not in closed form.
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min

{

1,
hj(Θ

(t)
j+1)

hj(Θ
(t)
j )

hj+1(Θ
(t)
j )

hj+1(Θ
(t)
j+1)

}

Having chains at different temperatures helps one obtain draws that are not stuck in local
modes and sample from a wider portion of the posterior. Such methods have been shown to
converge quickly in the presence of isolated, local modes [38].

4.2 Collapsed sampling

Since our immediate goal is inference on β, an alternative approach for accelerating convergence
is to integrate out the upper level variance parameter, σ2, integrating over its uncertainty. This
approach alleviates the issue of peaked modes since these regions contain such small amounts of
posterior mass that the sampler is unlikely to find them.

To facilitate integrating out σ2 we place an Inv-Gamma(ασ, βσ) prior on the upper level variance
parameter.2 Because the inverse gamma distribution is a conjugate prior to a Gaussian distribution
having a known location parameter, the posterior distribution of σ can be written in closed form
[39]:

σ2
p|{βk,p}Kk=1, µp, ασ, βσ ∼

Inv-Gamma

(

ασ +
K

2
, βσ +

1

2

K
∑

k=1

(βk,p − µp)
2

)

. (7)

The posterior distribution of µ given σ and the lower level parameters can in turn be written
as

µp|{βk,p}Kk=1, σp ∼ Normal

(

1

K

K
∑

k=1

βk,p,
σ2
p√
K

)

, (8)

which is easily simulated and well-behaved.
In contrast to the above parameters, each βk does not have a simple conjugate prior. In B we

derive the posterior density for each βk,p where σ2
p is analytically integrated out. These densities

can be sampled using techniques such as random-walk Metropolis-Hastings, slice sampling [40], or
Hamiltonian Monte Carlo (HMC) [41]; we find that using univariate slice sampling for each effect
βk,p works well.

To summarize, sampling from the posterior distribution amounts to the following steps:

1. For each event history k and effect p:

(a) Sample βk,p|Ak, µp, ασ, βσ using B.

2. For each effect p:

(a) Sample σ2
p|{βk,p}Kk=1, µp, ασ , βσ using Eqn. 7.

(b) Sample µp|{βk,p}Kk=1, σ
2
p using Eqn. 8.

2 This prior on the upper level variance parameter may have undesirable qualities when few data exist [39], but
here we assume J is not too small (perhaps > 10). In our application J is in the hundreds.
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4.2.1 Computational considerations

Evaluating the likelihood for the hierarchical relational event model can be computationally ex-
pensive. Note that sampling the collection of βk parameter vectors can be done in parallel. Even
so, for a given sequence the näıve approach has time complexity O(M · P · N2) when we have M
events, N actors, and P covariates. For model specifications of interest, however, dyads may share
similar covariates vectors and many covariate vectors may stay constant for large portions of the
event sequence. We take advantage of this fact to obtain significant computational savings. During
model fitting the computation of the second term becomes O(P · |U |), where U is the set of unique
vectors s(t, i, j,At) across all i, j, t. See C for details.

4.3 Model selection

The proposed framework has a large amount of flexibility with respect to model specification: for
example, one can adjust for sender-specific, receiver-specific, and event-specific covariates. For
model selection we employ the deviance information criterion (DIC), a commonly used criterion
that attempts to balance gains in predictive accuracy with a penalty for using a large number
of effective parameters. Given some probability model p(y|θ) with data y and parameters θ, the
deviance is -2 times the log-likelihood, D(y, θ) = −2 log p(y|θ). One approximation for the effective
number of parameters is the difference between the posterior mean of the deviance and the deviance
of the posterior mean

pD =
1

L

L
∑

l=1

D(y, θ(l))−D(y, θ̂)

where θ(l) is one of L samples from the posterior and θ̂ is a point estimate such as the posterior
mean [42]. The DIC is then defined as

DIC =
1

L

L
∑

l=1

D(y, θ(l)) + pD

Smaller DIC values are preferred. The statistic is readily computed using MCMC samples of
the posterior and is readily applicable to hierarchical models (whereas other standard approaches,
such as AIC and BIC, are not).

4.4 Prediction

Another approach to evaluate our hierarchical models is via a prediction task. When developing
such models, we are interested in how our models generalize to both future data for a given sequence
and to other sequences. If the hierarchical model is pooling information among the observed
sequences, then new sequences from the population should be less surprising under the model. We
use recall as a measure of surprise: the rank of the observed event in a sorted list of our predicted
outcomes.

Given K event sequences, for Ktest of the sequences we remove a portion of the sequence to use
as test data. For a given sequence and for each event in the test portion of a sequence, we compute
the intensity of each possible outcome in R using the previous history of events and a vector of
parameters sampled from our posterior. After sorting the predicted intensities of all possible events
{λi,j(tm|·)}(i,j)∈R in decreasing order, we find the rank of the observed event (im, jm) in the list of
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predicted intensities, and finally compute recall for a given cutoff z as the proportion of subsequent
events that were among the top-z most likely under the model. Higher values at a given level z
indicate that future events were ranked highly by the model, in turn indicating better predictive
performance for the model on new data.

5 Model specification and adequacy checking

In this section we begin by describing how various hypotheses can be incorporated into the modeling
procedure via the specification of the statistics s and illustrate these techniques through a simulated
example. Once a model is specified it is often of interest to understand the ways in which the
current model may be lacking in terms of its ability to explain certain aspects of the observed data.
When using linear regression, for example, one may analyze residuals to check for violations in
model assumptions, e.g. non-constant variance or non-linearity with respect to particular effects.
We demonstrate diagnostics for relational event models that leverage both structural information
about the aggregate network as well as common time-dependent structures.

5.1 Incorporating temporal dependencies

A key benefit of the relational event framework is that one may incorporate effects that capture
endogenous social dynamics. In particular, we will use effects relating to the “participation shifts”
of Gibson (2005), which are based on an enumeration of the six possible ways a dyadic interaction
can occur (where A, B, X, and Y are distinct actors): AB-BA and AB-BY (called “turn-receiving”),
AB-XA and AB-XB and AB-XY (called “turn-usurping”), and AB-AY (“turn-continuing”). For
example AB-BA denotes the case where actor A sends to actor B is immediately followed by B
sending to A. Similarly, AB-XB (turn-usurping) denotes the case where (A,B) is followed by (X,B)
where X is some other actor. These participation shifts represent common transitions that can
occur during dyadic interaction within small groups.

Per Butts (2008), we represent these types of effects in our model through the use of indicator
functions. If effect p is the statistic representing AB-BA, then we specify sp(tm, i, j) = I((im, jm) =
(i, j), (im−1 , jm−1) = (j, i)) to indicate whether the event (i, j) is followed by an event (j, i). A
positive parameter reflects an increased propensity for immediate reciprocation. The other partic-
ipation shift effects are defined and interpreted analogously.

In Section 7.2 we will include more complicated temporal structures into the model. When
specifying such statistics it is important to avoid having dependent terms that are near-affine, as
this will introduce large variances in the parameter estimates.

5.2 Synthetic data

To provide an illustration of model specification, consider a synthetic example involving dyadic
interactions among 10 individuals. Suppose these individuals fall into two classes: triangles and
squares. The dynamics among these actors will be governed by several simultaneous mechanisms,
which can be grouped into two categories:

1. structural: a core-periphery structure whereby squares interact preferentially with other
squares, sometimes with triangles, while triangles interact rarely with other triangles

2. time-dependent: an increased propensity for immediate reciprocation, turn-taking, and turn-
continuing.
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(a) Observed counts (b) Surprise under Model A (c) Surprise under Model B

Figure 2: Illustration of residual analysis using dyadic marginals for synthetic data. Edge widths
represent number of observations. Left: Dark colors denote a larger number of events. Center and
right: Red represent a higher amount of surprise under the model (see text). By adjusting for the
observed structure effects for intra-group and inter-group communication, the improved model is
only surprised by rare events.

More specifically, we include a multiplicative effect of e1.5 for all rates for events among triangles,
and e1 for events initiated by a triangle and received by a square.3 Similarly, we include effects
that depend on the previous event (say from actor A to actor B): a multiplicative effect of e1.5 for
the reciprocal event to the previous event (AB-BA), e1 for turn-taking events (AB-BY), and e.5 for
turn-continuing events (AB-AY). Simulated data from this model can be generated as described
in Section 3. The network in Figure 2a summarizes the synthetic data set, where the edges for
commonly occurring dyads have larger width and darker color. For the examples that follow we
simulated 1000 events, of which we observe 153 AB-AY events, 74 AB-BA events, and 188 AB-BY
events.4

5.3 Dynamic adequacy

Model adequacy assessment focuses on the basic question of whether (and to what extent) a pro-
posed model effectively captures specified features of an observed data set. With respect to re-
lational event models, one can consider a wide range of features (both dynamic and temporally
aggregated) which may be of scientific relevance in particular situations. Here, we illustrate some
basic examples of heuristics for assessing dynamic adequacy, and for identifying potential avenues
for model improvement.

We first consider the deviance residual (-2 times the loglikelihood) of each observed event given
the previous history of events and a set of model parameters, computed as

dm = −2



log λim,jm(tm|·)− (tm − tm−1)
∑

(i,j)∈R

log λi,j(tm|·)





Using the synthetic data discussed above, Figure 3 compares the deviances for each event under a
model with AB-BA effects to a model that also includes AB-BY and AB-AY effects. Events are

3Note this is done by setting the corresponding parameters βp to 1.5 and 1 respectively; using a loglinear form for
the hazard implies the effects are multiplicative.

4Note the probability of this number of AB-BA events happening under a uniform model is Bino-
mial(74;1000,1/100) (very small).
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categorized by the type of participation shift. As expected, the set of reciprocated events are better
explained once included in the model, indicated by a smaller deviance.

Alternatively we can consider the probability of each potential dyadic event being the next to
occur in the event sequence, given the previous history of events. This is equivalent to the likelihood
under the order-only model, and is computed as

p((im, jm)|Atm) =
λim,jm(t|·)

∑

(i,j)∈R λij(t|·)
.

As noted previously, this can be considered the probability of the observed event under a
multinomial probability model. In Figure 4 we compute this probability for models that include
participation shifts and those that do not. Before including them in the model, a number of events
with high probability under the true model were given small probability under the fitted model.

As expected, there are sets of events that are better explained once we include the effects in
the model. In practice, such an analysis can help an analyst better understand which events are
better explained by the additional effects. Repeating this analysis for each sequence elucidates how
broadly the modeling changes improve fit across the collection of sequences.

Figure 3: Deviance residuals for events in the synthetic data set. Lower values are better. Residuals
for each type of event are lower in the model that adjusts for these sorts of temporal effects.

5.4 Dyadic marginal analysis

In addition to the intertemporal properties of the event sequence, it is natural to consider the effec-
tiveness of a relational event model in reconstructing the dyadic structure of the time-aggregated
interaction network. It is natural for this purpose to consider the dyadic marginals of the event
sequence, wherein we aggregate interactions among directed pairs of individuals across time. For
any given directed pair, (i, j), it is useful to consider the extent to which the observed (i, j) events
were considered relatively probable under the proposed model, versus being anomalous. The pres-
ence of pairs for which a large fraction of interactions are “surprising” in this sense may suggest
the presence of unobserved covariate effects (e.g., homophily), and may provide clues as to the
structural context of events for which the model does or does not perform well.
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Figure 4: Per-event comparison for synthetic data between Models 1, 2, and 3. Model 3 places
adjusting for network structure and temporal structure in Model 3, fewer events are surprising
under the model.

A dyadic measure of “surprise” may be computed as follows. For each event, we rank the
predicted probabilities of all possible dyads (ordering randomly for any equal-probability events),
and for each dyad compute the proportion of observed events qij for which the predicted rank
exceeds a specified threshold (50, for the synthetic data). The matrix q may then be viewed as a
valued adjacency matrix, such that qij near 1 reflects that the model is often “surprised” by i, j
interactions. By considering q in conjunction with the matrix of raw dyadic event marginals (i.e.,
the total number of events sent by i to j), we can identify portions of the network for which the
model is in need of elaboration.

For our illustrative case, we begin by fitting a model that includes only an effect for events
occurring among square nodes, with no other mixing effects. In Figure 2b the edges are colored
darker for larger values of qij. This diagnostic reveals that the fitted model effectively captures
communication within the core of square nodes (low surprise), but is surprised by events from the
core to the periphery of triangle nodes. This structural insight suggests incorporating an effect for
this set of dyads. The results of fitting the augmented model and repeating the above procedure
are shown in Figure 2c. The square/square and square/triangle interactions are now well-predicted,
as shown by the low surprise rate. Triangle/triangle interactions continue to have high values of
q, but, as Figure 2a shows, these reflect small numbers of rare events that are inherently difficult
to predict. (The total improvement over previous models is shown in Figure 4.) As this example
illustrates, it may be unnecessary (or even impossible) to render all interactions unsurprising under
a given model. Rather, the objective of adequacy assessment is to ensure that important features of
the data are well-modeled, and that high levels of surprise are restricted to events that are relatively
rare within the data set.

6 Benefits of the hierarchical approach for multiple event sequences

In this section we illustrate the predictive benefits of the proposed hierarchical approach in the
multi-sequence case. We generate K = 20 sequences of M = 1000 events from the model, where
βk ∼ N(β, σ2) and Ak ∼ REM(M,βk, s,X), where we set σ = 1 and β and s are described in
Section 5.2. We fit the collection of sequences using 1000 MCMC iterations (see Section 3). Through
several experiments we show the hierarchical model pools information from other sequences to
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improve estimation and predictive performance.
First we empirically show that, when few events are observed, the hierarchical estimates of the

relational event dynamics are more accurate than those obtained by fitting separate models to each
sequence, β̂k. To do this, we compare estimates θ̂k to the true sequence parameters θk using the
mean squared error for that sequence MSE(θk, θ̂k) = 1

P

∑

(θ̂kp − θkp)
2. In Figure 5 we show the

average improvement in MSE across sequences when using the posterior mean from a hierarchical
fit, β̂, versus fitting a model to each sequence separately, β̂ind. Bars represent 95 percent confidence
intervals of the mean.

We perform a similar experiment with 30 replications of the 20 sequences, now with an emphasis
on the benefits in estimating the mean dynamics across the collection of sequences. We compare
the hierarchical approach to simply taking the mean of the lower fits by computing MSE(µ, µ̂) and
MSE(µ, 1

K

∑K
k=1 θ̂

ind
k ). Again, when few events are observed, the hierarchical estimates are less

noisy than the individual fits.
Next, we use the synthetic data set to illustrate the technique described in Section 4.4. For a

given sequence k with Mtrain events, we compute the mean recall at a cutoff z of the next event
using various methods. We compare this to the recall under the true model β. For example, a recall
of 65 percent at z = 5 indicates that this proportion of events are among the 5 most likely under
the model given the previous history; higher values are thus better since the observed events are
ranked highly by the model. We include a simple baseline p̂ that ranks future dyadic events by the
empirical frequency in event history. For the estimates β̂ind we make predictions using posterior
means from a relational event model fit to each sequence. We compare these predictions to those
made by β̂, the posterior means from using the hierarchical model, and µ̂, the posterior means of
the upper level location parameters.
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Figure 5: Comparing the error in the parameter estimates when using the hierarchical approach
compared to fitting separate models β̂ind. When few events are observed, the hierarchical estimates
closer to the truth than the individual fits. See text for details.

In Table 1 we compare each of these estimates to estimates of the lower level parameters under
the hierarchical model as we vary the amount of training data available Mtrain for the sequence
in question. We consider two recall cutoffs, 5 and 20, to get a sense of how well the model is
capturing reciprocity as well as covariate effects. The results show the hierarchical model pools
data effectively: when small amounts of data are available, the hierarchical estimates have similar
(or better) predictive performance than the population parameters µ̂; with large amounts of data
predicts at least as well as fitting each sequence separately.
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Cutoff z Mtrain p̂ µ̂ θ̂ind θtrue

5 10 29.9 0.5 12.2 -5.3
50 32.8 3.3 2.2 -2.2
100 33.7 4.9 0.2 -1.2
500 34.1 6.0 0.1 0.3

20 10 11.7 6.7 8.1 -5.0
50 14.9 7.9 2.3 -2.2
100 16.3 9.7 0.8 -1.3
500 18.6 10.2 0.2 -0.3

Table 1: Average percent improvement in recall of the hierarchical estimates θ̂ across 20 syn-
thetic event sequences. The results show the hierarchical model pools data effectively: when small
amounts of data are available, the hierarchical estimates perform similarly (or better) than the pop-
ulation parameters µ̂; with large amounts of data predicts at least as well as fitting each sequence
separately. See text for details.

7 Application to dynamics of high school classrooms

We use the hierarchical model to study student interactions in high school classrooms using data
collected via participant observation [43]. The dynamics of interaction in high school classrooms
have important consequences for educational research. With increasingly detailed data collection
in these settings, we also need to improve our modeling methods so that we can gain insight at the
level of individual decisions: in what situations do students stay on task, move off task, or learn
better? A more modest goal is to quantify which factors are associated with the propensity to
interact or share information, whether it is the gender diversity of the classroom, the seating chart,
or the style of teaching employed, to name just a few.

The proposed hierarchical method allows us to model interactions among students in a way
that 1) adjusts for actor covariates, 2) adjusts for typical participation shifts in conversation, and
3) shares information across hundreds of classroom sessions, enabling inferences at the classroom
level and the population level. After describing the data set, we outline the specification of our
models, perform model selection using DIC, and evaluate the predictive ability of the hierarchical
approach.

7.1 Description of the data set

Each classroom session is represented as a sequence of instantaneous dyadic events, each having a
sender, a recipient, and a timestamp. For the analysis, we select 278 classrooms for which we have
data on classroom interactions, the seating chart, and classroom attributes (e.g. subject matter,
student grades, and so on). We do not include sessions for which some of the student attributes
(such as gender or race) are missing or unreported. Information regarding student friendships and
shared extracurricular activities is available from survey data administered to these classrooms.

Each event is coded as occurring during one of three general contexts: Lecture, Groupwork, or
Silent. For each of these, one might hypothesize variation in conversational dynamics and norms;
we discuss how we account for this in our model below. In these high school classrooms lectures are
common (lasting for spells ranging between 3 and 40 minutes), containing mostly events that are
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1) directed from the teacher to the class as a whole, 2) a question from the student to the teacher,
or 3) student-student interactions. In order to distinguish between events directed at a particular
student versus the collective whole, we code all broadcasts as interactions with a representative
“broadcast” actor. 5

7.2 Model specification

In the specification of each classroom’s covariates Xk we include terms affecting the propensity to
send and receive, respectively, using factors such as sex, race, and student/teacher status. We also
include terms indicating when the actors of a dyad are friends, the same race, or the same gender.
These are implemented as indicator variables xijp = I(xikp = xjkp) where xikp represents the value of
covariate p for actor i of sequence k.

Some theories posit that the probability of interaction is higher when two individuals have many
“foci” in common [44]. To capture this, for each dyad we include a statistic representing the number
of shared extracurricular activities between the two individuals. A parameter is included for the
propensity to interact when two individuals are seating adjacent to each other, since a propinquity
effect can be important in small groups [9].6

Two classes of effects are included to specifically model conversational dynamics. As mentioned
in Section 5.1 we include effects capturing participation shifts in the conversation [8]. This represents
a collection of first-order Markov effects. These are likely to be important due to reciprocity effects
in general conversation [8] and, specifically, in the classroom [43].

For a particular actor, there is reason to expect more recent discussion participants to be more
salient for each actor involved due to mnemonic or contextual factors [7]. To model the propensity
of an actor to send to his or her recent contacts, we include j’s rank in the list of i’s most recent
in-neighbors and out-neighbors, which we will denote as ρs(i, j,A(tm))−1 where ρr(i, j,A(tm))−1

respectively. For example, if j is the last person i talked to, ρ(i, j,A(tm))−1 = 1; when i talks to a
different actor, this value falls to 1/2.7 Both ρs(i, j,A(tm))−1 and ρr(i, j,A(tm))−1 are included in
the vector of statistics s(tm, i, j,Atm).

Since the context of an event might modify other effects, for some models we include interaction
terms between the event’s context and the other statistics. For example, events associated with
groupwork might affect the propensity of teacher-broadcast events, so we consider terms such as
I(Event is Teacher-Broadcast)× I(Event is coded “groupwork”). For these models there are three
levels (lecture, groupwork, and silent-time) and we use lecture as the reference level.

7.3 Model fitting and interpretation

We fit the hierarchical relational event model to the classroom data described above via MCMC
using the techniques in Section 4.1. A number of model specifications were considered (see A).
In Table 2 we compare each model’s DIC as defined in Section 4.3. In general we find that
including conversational effects such as participation shifts and recency effects provide a large

5Broadcast events could alternatively be represented a series of dyadic events to each student. However, this would
confound our estimates for dyadic conversational effects. One idea is to model broadcast events via a entirely separate
specification where the broadcast event’s dependence on the previous history is modeled via its own parameters. We
leave this to future work.

6In order to have the “broadcast” actor not influence the estimates for gender, student, and race, we use the mean
of these statistics across the individuals in the room.

7To ensure that the behavior of ρ is well-defined, actors who do not belong to i’s in-neighborhood are considered
to have rank ∞.
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improvement in model fit. The improvement of B models over the corresponding C models shows
that incorporating dyadic covariates helps, e.g. adjacent seating and the number of activities two
actors share. Models that do not include a dyadic effect for teacher-to-class events suffer, as seen
by F1 being outperformed by E1 and G1.

A B C D E F G

1 416010.97 424013.66 467672.18 438826.80 423458.73 470573.29 436887.00
2 491267.67 531529.72 552627.56 555709.71 531893.94 553670.74 560816.36
3 544749.70 592048.94 608186.37 619200.81 592188.58 608604.79 618626.41

Table 2: DIC under various model specifications for the hierarchical model fit to high school
classroom interactions. Lower is better. Models with recency statistics tend to be preferred.

In Figure 7.4 we show the individual classroom parameter estimates under Model A1. The
baserate adjusts the overall pacing of the event sequence; a large amount of variability here means
that some classroom sessions were slower. The estimates also reveal a propensity for events to
occur from the teacher to the entire classroom (as one might expect), but also positive effects for
AB-BA, recency effects, same race, and whether the students are sitting next to each other.

7.4 Pooling information via the hierarchical model

In some cases individual sessions have little information concerning certain model effects (e.g.
the racial or gender mix within a particular classroom provide few opportunities for cross-group
interaction). Indeed, this is one of the reasons to pursue a hierarchical model: to share information
among the classrooms in a principled manner, by “shrinking” poorly-informed parameters from
individual sessions towards a shared, global value. We illustrate this for several parameters in
Figure 7 by showing estimates obtained when fitting the relational event model to each classroom
separately with respect to the estimates obtained via the hierarchical model. As expected, uncertain
or unconstrained parameters βk,p are brought towards the global value µp.

Figure 6: Estimates for each classroom β̂k.
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Figure 7: Point estimates for a single parameter across all 278 classroom sessions when fitting
each session separately (top) and in with the hierarchical model (bottom). Estimates that were
unrealistically high or low (due to problems with estimation) are now informed by estimates from
the other sessions and pulled towards the global mean for this model parameter.

7.5 Prediction experiment

In this section we evaluate the predictive accuracy of the hierarchical models fit to the collection
of high school classroom interactions. In Figure 7.5 we show the mean recall across classrooms.
While we observe variability in predictive accuracy across the classrooms, we see that on average
60 percent of subsequent events are among the top 5 most likely under the fitted model. This
accuracy is partly due to the model capturing the propensity for events involving the teacher and
the tendency for reciprocating events.

As in Section 6, the benefits of the hierarchical approach are demonstrated via a comparison
to both (a) predictions from fitting separate models and (b) predictions from the population-level
parameters. For 100 of the sequences we only include the first Mtrain events in the sequence when
fitting the model. The prediction task is to rank the remaining events conditioned on the previous
sequence of events (see Section 4.4).

Cutoff z Mtrain µ̂ θ̂ind

10 50 1.8 13.4
100 1.9 6.6
200 1.6 4.8

20 50 1.6 12.2
100 2.6 6.1
200 2.1 4.4

40 50 1.0 9.8
100 1.7 4.8
200 1.5 3.7

Table 3: Prediction experiment on the classroom data. Mean improvement in recall across class-
rooms for varying amounts of training data.

Table 3 shows the results of this experiment. Compared to using separate estimates for sequences
of 100 events, the hierarchical model ranks 6.6 percent more observed events among its top 10 most
likely and 6.1 percent more observed events among its top 20.

The results show the hierarchical model is able to share information the collection of sequences
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Figure 8: Mean test recall across the high school classrooms. Estimates obtained from fitting model
A-1 with Mtrain = 50. Bars show 1 standard deviation. On average, 60 percent of events are among
the fitted model’s top 5 most likely events.

in a way that improves predictive accuracy on those sequences with missing data. In the presence of
small amounts of data, the accuracy of the model is similar to using the population-level estimates;
as more events are observed, the model is able to outperform both the population-level estimates
as well as a set of models where each is fit to a single sequence.

8 Discussion

This paper introduces a hierarchical statistical framework for modeling collections of dyadic event
sequences with discussion of parameter estimation, model specification, adequacy checking, and
predictive evaluation.

A central question for the analysis of event sequences often is: how alike or different are the
sequences? In an analysis of high school classroom dynamics, a prediction experiment was used to
evaluate the added benefits of modeling the heterogeneity across classrooms. Estimates describing
the dynamics of the population of sequences had a predictive accuracy that was competitive with
other approaches. Thus, it appears in this case the central tendency appears to be quite dominant
and that heterogeneity, though present under the models considered, appears to be less of an issue.
Such inferences are important for understanding these data and future modeling efforts.

The flexibility of the framework allows for a variety of possible extensions. For example, in
some applications one may have actor attributes that change over the course of the event sequence,
or warrant more complex time-dependencies than those used here (such as second-order Markov
effects [12]). The hierarchical structure employed in this paper assumes sequences are exchangeable;
in other cases one might want to pool information only within a subset of sequences according to
some (known or unknown) attribute of the sequence or those involved. In such instances one could
propose a different prior structure on β so that information is pooled across individual sequences

20



in a different manner. In fact one could extend this framework to allow for multilevel modeling
whereby the upper level parameters are replaced with a linear predictor incorporating covariates
of the event sequence itself. For example, we may have a vector of covariates Wk that help explain
the variation in βk we might instead assume βk ∼ NP (β

′Wk, Iσ
2). Exploring other hierarchical

models for β is an interesting future direction.
Fine-grained data from interactions within small groups of individuals is increasingly avail-

able, both from online and face-to-face settings. Statistical inferences from methods such as those
proposed here can provide insight into how dynamics of small groups varies across contexts.
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A Model specifications

When specifying the vector of statistics for the classroom data, we group the various dyadic covari-
ates as follows:

• Group 1: Same Race, Same Gender, Student-Broadcast, Teacher-Broadcast

• Group 2: Are Friends, Adjacent Seating, log(number of co-activities)

• Group 3: Teacher-Broadcast, Teacher-broadcast x Previous event was teacher-broadcast

• Group 4: I(Lecture, Groupwork, Silence)
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Each model fit in Table 2 includes the following sender and receiver effects: Is Teacher, Is
Female, Is White. Each model also includes one or more of the above groups of dyadic covariates,
identifying this choice with a letter:

A. Group 1 and Group 2 and Group 3

B. Group 1

C. Group 2

D. Group 3

E. Group 1 x Group 4

F. Group 2 x Group 4

G. Group 3 x Group 4

The numbers denote the set of conversational effects included in a given model:

1. Recency effects and participation shifts

2. Participation shifts

3. Recency effects

For example, “Model B2” includes sender and receiver effects (Is Teacher, Is Female, Is white);
the letter “B” indicates that several dyadic effects are included (Are Friends, Adjacent Seating,
log(number of co-activities); and finally the number “2” indicates that participation shift effects
are included.

B Derivation of Sampling Equations

Given the hierarchical model θk ∼ Normal(µ, σ2) with prior σ2 ∼ Inv-Gamma(α, β), we integrate
out σ as follows:

p(θk|µ, α, β)

∝
∫

σ
p(θk|µ, σ2)p(σ2|α, β)dσ2

=

∫

σ

1√
2πσ2

exp

{

−(θk − µ)2

2σ2

}

βα

Γ(α)
(σ2)−(α+1) exp

{

− β

σ2

}

dσ

=
1√
2π

βα

Γ(α)

∫

σ
(σ2)−(α+1+1/2) exp

{

−
[

(θk − µ)2

2σ2
+

β

σ2

]}

dσ

=
1√
2π

βα

Γ(α)

∫

σ
(σ2)−(α+1+1/2) exp

{

−
[

(θk − µ)2/2 + β

σ2

]}

dσ

=
1√
2π

βα

Γ(α)

Γ(α+ 1/2)

[(θk − µ)2/2 + β]α+1/2
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C Computing the likelihood

Let U be the set of unique vectors s(t, i, j), and define an indexing such that U(i,j,k) = s(tk, i, j,Ak).
Note for a given tuple (i, j, k) there is only one element of U equal to s(t, i, j,Ak), but there are one
or more tuples (i, j, k) where Ur = U(i,j,k) for some element r. We can rearrange the computation
of the loglikelihood to take advantage of the set of unique vectors, U , and reduce the amount of
computation required during MCMC:

ℓ(β|AtM )

=

M
∑

m=1

[log λim,jm(tm|Atm)−

log
∑

(i,j)∈R

(tm − tm−1)λim,jm(tm|Atm)]

=
M
∑

m=1

|U |
∑

r=1

I(Ur = U(im,jm,k))β
′s(tm, im, jm,Am)−

M
∑

m=1

∑

(i,j)∈R

|U |
∑

r=1

I(Ur = U(i,j,k))(tm − tm−1) exp{β′s(tm, i, j,Am)}

=

|U |
∑

r=1

[

M
∑

m=1

I(Ur = U(im,jm,k))β
′Ur

]

−

|U |
∑

r=1





M
∑

m=1

∑

(i,j)∈R

I(Ur = U(i,j,k))(tm − tm−1) exp{β′Ur}





=

|U |
∑

r=1

[

qrUrβ −mr exp{β′Ur}
]

where qr =
∑M

m=1 I(Ur = U(im,jm,k)) and mr =
∑M

m=1

∑N
i=1

∑N
j=1 I(Ur = U(i,j,k))(tm − tk−1). Note

that computing qr and mr is O(M · N2) but each only needs to be computed once. Others have
considered reordering the computation of these types of expressions [45, 27], and the relative benefit
of each method depends on the nature of the statistics s(t, i, j,At).

D Posterior mode estimation

In the hierarchical setting, we have found that effects with little information associated with them
often have scale parameters whose posterior modes converge to 0 despite having little posterior mass
in this region. Note that the joint posterior has multiple asymptotic modes, since for a particular
effect p we can set βk,p to be equal across each sequence k and ascend the posterior density surface
by moving σp arbitrarily close to 0.8 Although underappreciated, this is a common behavior of

8This effect is somewhat counterintuitive, since we would expect the posterior distribution of poorly informed
parameters to have a large variance due to uncertainty. Since there is little information in such cases to distinguish
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hierarchical models. For example, [36] considers the following simple model that resembles our
setup:

yij|βj ∼ N(βj , 1) βj ∼ N(µ, τ) p(µ, τ) ∝ 1

where j = 1, . . . , J and i = 1, . . . , nj . This particular noninformative prior on τ happens to provide
a proper posterior as well as a closed form for the marginal posterior density p(τ |y). It is important
to note that problematic modes of the hierarchical joint posterior rarely contain much probability
mass, and that they are thus of little inferential importance; their presence, however, makes it
difficult for MAP and related methods to yield useful results.

parameters from each other across sequences, however, modes exist in which such parameters are approximately equal
and the associated scale parameter is approximately zero.
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