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RANDOM GRAPH MODELS
FOR TEMPORAL PROCESSES IN

SOCIAL NETWORKS*

GARRY ROBINS** and PHILIPPA PATTISON

Department of Psychology, University of Melbourne

(Received April 14, 2000; In final form September 1, 2000)

We generalize the graphical modeling approach of p* social influence models to develop
discrete time models for the temporal evolution of social networks. Plausible general
processes pertaining to network evolution are broadly discussed as a basis for across-
time dependence assumptions. Systematic temporal processes are construed as effects
that are homogeneous across the network, and that reflect dynamics inherent in a
particular social relation. Any one actor cannot control these dynamics, especially given
that non-dyadic configurations may be implicated, for instance, tendencies for various
triadic configurations to be constructed or to collapse of over time. Non-systematic
processes, on the other hand, may pertain to the changing nature of a particular dyadic
tie, or to change involving a particular sociotemporal neighborhood of the network. Non-
systematic processes are inhomogeneous across time and across the network, and are
modeled as random.

In constructing p* dependence graphs, systematic temporal processes may be rep-
resented, in part, by the perfect dependence assumption, whereby network across-time
dependencies "mirror" within-time dependencies. We develop temporal perfect depend-
ence models appropriate for Markov random graphs. To disentangle non-systematic
from systematic temporal processes is not straightforward, but the use of the constant
tie assumption - whereby ephemeral ties are assumed not to have influence across time -
is one possible approach. We illustrate these models with three empirical examples: first,
with an analysis of the Freeman EIES data; and then with data from a newly formed
small training group involving two networks, trust and friendship.

* An earlier version of this paper was presented at the Sunbelt International Social
Networks meeting, Vancouver, April 2000. The authors would like to thank Tom
Snijders and Peter Elliott for helpful comments on this paper.

** Corresponding author. E-mail: g.robins@psych.unimelb.edu.au.
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6 G. ROBINS AND P. PATTISON

1 INTRODUCTION

There is a growing emphasis in the network literature on the need to
model network change over time (Doreian and Stokman, 1997; Frank,
1991; Stokman and Doreian, 1997; Suitor, Wellman and Morgan,
1997). In their review of recent work on network evolution, Doreian
and Stokman (1997) classified studies of network process into four
main categories: studies that predicted attributes from structural
information, akin to the contagion process described by Leenders
(1997a); descriptive studies of network change; studies in which the
network nodes, or other features of network structure, were dis-
tributed over time (Doreian and Stokman, 1997, referred to network
structures "unfolding through time"); and studies where network
change is seen as a transition in network structure between time points.

In this article, we describe a random graph (p*) modeling approach
to temporal network change. Robins, Pattison and Elliott (in press)
and Robins, Elliott and Pattison (2000) presented p* models for social
influence and social selection, respectively. These models can be seen
in the context of Doriean and Stokman's (1997) first category of
studies, involving the interplay of attributes and social structure. In
these models, time was not a variable, but as Robins et ah (in press)
discussed, temporal processes are nevertheless implicit. The models in
this article, on the other hand, explicitly include time. We present a
random graph discrete time model of network change across two or
more time points, falling within Doriean and Stokman's fourth category
of network transition.

The p* class of models has its foundation in the work on Markov
random graphs by Frank and Strauss (1986) and Strauss and Ikeda
(1990). The class of models was more fully explicated in three papers,
detailing models for univariate networks (Wasserman and Pattison,
1996), for multivariate networks (Pattison and Wasserman, 1999),
and for valued networks (Robins, Pattison and Wasserman, 1999). The
models are underpinned by the Hammersley - Clifford theorem (Besag,
1974), which provides a probability description for a collection of
interacting variables, assuming a given set of dependencies among the
variables. The set of dependencies can be depicted in a dependence graph,
with the nodes representing variables and an edge representing an
assumed conditional dependence between two variables (i.e., conditional
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RANDOM GRAPH MODELS FOR NETWORKS 7

on all other variables). It is this approach to complex dependence
structures that enables p* models to go beyond dyadic independence
network models typified by p\ (Holland and Leinhardt, 1981).

In standard p* models, the dependence graph represents depend-
encies among network variables. For social influence models, Robins
et al. (in press) generalized the dependence graph to allow two blocks
of variables with directed dependencies from one to the other, by
specifying the set of network variables as predictors of a collection of
mutually dependent attribute variables. Graphical modeling tech-
niques (e.g., Lauritzen, 1996) provided the means to deal with directed
dependence graphs. This approach also allows us to model network
change. Rather than having attributes as predictors, we use the net-
work measured at time t\ to predict the network at time ti. This
generalization is relatively straightforward: the major difficulty lies
in specifying appropriate cross-time dependence structures. Before we
introduce details of the model, we discuss what we see as an important
omission in the network change literature: there is only a limited
consideration of plausible dependence structures for models of network
evolution.

1.1 Dependence Structures and Sociotemporal Neighborhoods

Robins et al. (in press) noted that the central task in developing
effective p* models is the specification of an appropriate dependence
structure. In some cases, investigators may be assisted by theoretical
or empirical results, but often little such guidance is available. For
non-temporal network models, there is value in investigating a nested
series of increasingly complex dependence assumptions (see Pattison
and Wasserman, 1999, for an example of this type of approach),
commencing with a Bernoulli graph assumption (where all possible
network ties are assumed independent), followed by a dyadic
independence assumption, and then a Markov random graph
assumption (where possible ties are conditionally dependent whenever
they share an actor).

Pattison and Wasserman (1999) discussed a number of common
theoretical themes in the social modeling literature and translated
them into counterpart dependence assumptions. For a model to
capture these widely accepted theoretical effects, a Markov random
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8 G. ROBINS AND P. PATTISON

graph dependence structure at the least is required. But as Pattison and
Robins (2000) argued, there are often good reasons to impose some
constraints on the Markov random graph assumption, as well as to
examine dependence structures that exemplify longer range effects
in the network. Pattison and Robins described the techniques, based
on the notion of partial conditional independence, that enable the
exploration of these more complex dependence structures. They pro-
posed that interdependencies occured within localized regions of a
social space (local social neighborhoods). In p* models, dependence
graph cliques identify subsets of ties assumed mutually conditionally
dependent, that is, ties (and individuals) that constitute possible sites
of mutual contingency. In that sense, the cliques of the dependence
graph can be identified with hypothesized social neighborhoods.
Individuals, of course, may occupy many different neighborhoods,
allowing processes (e.g., social influence) to be generated across the
entire network. The p* class can then be seen as models for global
network structures arising from self-organizing processes in local,
overlapping social neighborhoods. It is through the generalization of
the notion of neighborhood to include personal characteristics of
individuals as well as their interpersonal ties that the social influence
and social selection models of Robins and colleagues are introduced.

As we noted earlier, p* models are associated with an implicit tem-
poral process. Indeed a p* model can be seen as the equilibrium dis-
tribution of what we might term a network "birth and death" process
in which, at any point in time, a network link is added or removed with
probability determined by the/?* model. Such processes are assumed to
be stationary, however, and the models are consequently subject to the
criticism that they privilege social structural locations over temporality
(Emirbayer, 1997). As Abbott (1997) argues, "One cannot understand
social life without understanding the arrangements of particular social
actors in particular social times and places Every social fact is situ-
ated, surrounded by other contextual facts and brought into being by a
process relating it to past contexts" (Abbott, 1997, p. 1152). Abbott
characterizes network analysis as an attempt to deal with spatial
contextuality, but both he and Emirbayer observe that there have
been relatively few successful attempts to incorporate aspects of social
"process" or "action" into these static network accounts. Both point
to Padgett and Ansell's (1993) account of Cosimo de Medici's rise to
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RANDOM GRAPH MODELS FOR NETWORKS 9

power through "robust action" as an innovative analysis that attempts
to combine contextuality in both social space and time. Emirbayer
argues that Padgett and Ansell, together with several others, "con-
verge upon the idea that network dynamics are dialectically related
to network structures, each of these 'moments' partially conditioning
the other" (Emirbayer, 1997, p. 306). The modelling challenge associ-
ated with this insight is to build models for "recurrent patterns of action
in recurrent structures" (Abbott, 1997, p. 1168), for "recurrent mechan-
isms, patterns, and sequences in meso-level 'occassions'" (Emirbayer,
1997, p. 296).

In this paper, we take some initial steps in formulating p* models
that attempt to characterize recurrent sociotemporal structures.
We introduce sociotemporal neighbourhoods as the building blocks
from which models are constructed. These neighbourhoods are here
construed as collections of mutually contingent, temporally dependent
possible network ties, in terms of which recurrent sociotemporal
structures can be described. In introducing models built from socio-
temporal neighbourhoods, we aim to take a first step in addressing the
challenge that Abbott poses: "We require... ways of investigating
complex spatial interdependence, and of making this spatial inter-
dependence more and more temporally structured, till again we arrive
at the description and measurement of interactional fields" (Abbott,
1997, p. 1166).

Despite the fact that the proposed class of models begins to address
some penetrating theoretical critiques of existing network models,
there is little in the theoretical or network literatures to guide detailed
model formulation. Accordingly, we see the first stages of model
development as somewhat tentative, but nonetheless crucial, steps in
an iterative process of empirically- and theoretically-guided model
development.

There is little theoretical and empirical guidance about what form
sociotemporal neighborhoods might take. The theoretical themes
that Pattison and Wasserman (1999) translated into a form of social
neighborhood often imply a process through time (e.g., the evolution
of transitive or mutual network configurations). Yet, in their standard
expression, such effects do not explicitly incorporate time as a variable.
Indeed, with some notable exceptions (see, for instance, Van de Bunt,
Van Duijn and Snijders, 1999), the problem of dependence structures
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10 G. ROBINS AND P. PATTISON

is not particularly prominent in many discussions of temporal network
modeling. As Van de Bunt et al. point out, the two main classes of
dynamic stochastic network models - loglinear models (e.g., Wasser-
man and Iacobucci, 1988) and continuous-time Markov chains
(e.g., Wasserman, 1980; Leenders, 1997a, b) - are both restricted by a
dyadic independence assumption. With this restriction, it is not surpris-
ing that discussion of dependence structures has not been central.

Banks and Carley's (1997) discussion of the types of models used in
temporal network studies is similarly revealing. Most of the statistical
procedures they discuss have relatively simple dependence assump-
tions across time. For the most part, dyadic independence is assumed.
Where models go beyond that assumption, computer simulation is
usually required and a non-statistical approach is often adopted.
Simulation is valuable when there is firm theoretical ground from
which to postulate "rules" that are hypothesized as the basis for the
evolution of social structures. For instance, simulation has been used
to model network evolution as an explanation of group formation
(e.g., Zeggelink, 1994; 1995; Zeggelink, Stokman and Van de Bunt,
1997) and to investigate in empirical studies different substantive
theories of how particular structures might develop (Stokman and
Zeggelink, 1997). The rules under which simulation programs are
written can be seen as embodying or implying a particular form to a
sociotemporal neighborhood. Simulation approaches, however, do
not permit a more exploratory investigation of empirical data to infer
what these rules of social evolution might be for a particular type of
relationship within a particular set of individuals.

Snijders (1995; 1997; see also Snijders and van Duijn, 1997) has
gone beyond the dyadic independence assumption with continuous
time Markov models that can be implemented as simulation models.
Estimation is based on the method of moments. The models arise
from the notion that individuals optimize a utility function given con-
straints determined by the network. Snijders' intention is to combine
statistical and theoretical modeling, and he derives his models from a
rational choice framing of social network evolution.

Given that much of the work on non-dyadic models occurs within
a specific theoretical framework, little has been done on the more
general forms that a sociotemporal neighborhood may take in network
change. Yet, under a p* approach, it is important that careful thought
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RANDOM GRAPH MODELS FOR NETWORKS 11

be given to dependence structures, for without an hypothesized
dependence structure, a p* model cannot be formulated. Additional
complexity is presented by sociotemporal neighborhoods, as we are
dealing with two different types of dependencies: within time and
across time. The form of temporal dependence embodied in a socio-
temporal neighborhood needs to be premised on an argument about
the appropriate processes to test in the models.

In the following section, we set out the theory for a p* temporal
model of network change across two measurement points, through
the graphical modeling results of Robins et al. (in press). In Section 3,
we return to a discussion of dependence structures, prefaced by con-
sideration of some general network change processes that we might
expect to observe. Based on these processes, we develop some sug-
gestions for plausible sociotemporal neighborhoods, using versions of
Markov random graph assumptions, but incorporating certain aspects
of the partial conditional dependence approach of Pattison and
Robins (2000). We provide three empirical examples in Section 4.
In conclusion, in Section 5 we discuss generalizations of the models
to multiple time points and to the inclusion of attributes.

2 P* MODELS FOR SOCIAL NETWORKS

2.1 The P* Model for a Univariate Binary Network

For a set of « persons or actors, we represent a relational tie between
persons / andy as a binary random variable Ytj where Yjj = 1 if person
i considers person j as a partner under the relationship, and where
Yij = 0, otherwise. The matrix Y=[Yy] can also be regarded as
corresponding to a random (directed) graph with the fixed node
set N = {1,2,..., n} and a (random) edge directed from node i to node
j if Yij = \. Let y = [yy] denote the matrix of realizations of the vari-
able Yij. Some of the cells in Fmay be undefined, as relations between
certain ordered pairs of individuals may be impossible (for instance,
individuals are usually assumed not to have ties with themselves). An
ordered pair of individuals for which a tie is possible is referred to as a
couple.

Hypothesized dependencies among network variables are repres-
ented in a dependence graph. A vertex in the dependence graph can
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12 G. ROBINS AND P. PATTISON

represent a couple (/,/) or equivalently a network variable, Yij. The
presence of an edge in the dependence graph between Yy and 1^
signifies dependence between these two variables, conditional on all
other network variables. For a single dichotomous network, the Ham-
mersley-Cliflbrd theorem (Besag, 1974) then leads to the joint form
of the p* model

IJ (1)
(j,r)er

where: (i) each T is a subset of C, the set of all couples;
(ii) 7r is a parameter corresponding to T and is non-zero only

if T is a clique in the dependence graph (that is, T com-
prises a single couple, or there is an edge between (i,j) and
(s, t) for all pairs of couples in T); and

Oii) « = I
Y \TCC

This model was introduced by Frank and Strauss (1986) and more
fully explicated in three papers that dealt with a single dichotomous
relation (Wasserman and Pattison, 1996), networks of multiple rela-
tions (Pattison and Wasserman, 1999) and valued relations (Robins
et al., 1999).

For an identifiable model, the order of terms needs to be restricted
and homogeneity constraints applied (see below). Even so, maximum
likelihood estimation of parameters is computationally intractable for
network models with complex dependence graphs (e.g., those that are
connected). Following Besag (1975; 1977), Strauss and Ikeda (1990)
proposed the use of maximum pseudo-likelihood estimation as an
approximate technique, a suggestion adopted by Wasserman and
Pattison (1996). Strauss and Ikeda showed that pseudo-likelihood estima-
tion can be conducted using standard logistic regression procedures.
Wasserman and Pattison described how to set up a data set for this
estimation procedure. The technique is based on converting equation
(1) to a conditional form where the normalizing constant k is not pre-
sent. In this case, with appropriate homogeneity constraints, the model
parameters represent the contribution of various network configurations
(sub-graphs of various types) to the probability of an observed network.
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RANDOM GRAPH MODELS FOR NETWORKS 13

Pseudo-likelihood estimation is used in this article as a convenient
approximate estimation procedure to illustrate the models. We inter-
pret the models using the pseudo-likelihood estimates, but the reader
needs to bear in mind that the behavior of the estimation procedure is
not well understood. We see these interpretations as interim, depend-
ing on the further development of alternative estimation techniques,
for example, using Monte Carlo maximum likelihood estimation
procedures (Corander, Dahmstrom and Dahmstrom, 1998; Crouch
and Wasserman, 1998; Snijders, 2000). As Pattison and Robins (2000)
point out, much work is required to develop these techniques further if
they are to be applicable to models of the level of complexity that
social theory is likely to demand.

2.2 The Two Block Chain Graph

To develop social influence models, Robins et al. (in press) introduced
a form of directionality into the dependence graph, so that certain sets
of variables could become predictors of others. This approach was
informed by the graphical modeling literature (Lauritzen, 1996). A
directed graph may represent dependencies in probability models for
one set of variables (the child block of variables), given the values of
another set of variables (the parent variables).

Graphs including both directed and non-directed edges can repres-
ent a coherent probability structure when the vertex set satisfies a
particular partial ordering, such that the vertices are partitioned into
blocks, with non-directed edges within a block, and with only directed
edges from one block to another, such that all arrows are pointed in
the one direction. (Here, as is common, we take directed edges as
depicted by arrows, and non-directed edges as depicted by lines in the
graph.) A graph satisfying this condition is termed a chain graph
(Wermuth and Lauritzen, 1990). Robins et al. (in press) utilized a two-
block chain graph, which can be defined as a graph containing two sets
of vertices - which may be termed parent and child vertices, respect-
ively - with the only edges between the two sets being directed from
parent vertices to child vertices, these being the only arrows in the
graph. Lines may occur within blocks.

In general, a non-directed graph can be derived from a chain graph
with equivalent conditional independence properties (in graphical
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14 G. ROBINS AND P. PATTISON

modeling, these are referred to as Markov properties - see Lauritzen,
1996, or Whittaker, 1990, for a summary of the various results). The
non-directed graph derived from a directed dependence graph is often
referred to as a moral graph (Lauritzen and Spiegelhalter, 1988)
because it involves introducing lines between parents of the same child
(the so-called marrying of the parents).

It is straightforward to use this framework for modeling network
transition between two time points, which we shall designate as t = 1
and 2. Let (i,/)' refer to the couple (i,j) at time t, and let C refer to the
set of couples at time t. We assume that the set of actors and their
possible ties do not change from time 1 to time 2 (although the frame-
work below could be generalized to allow change in the couples, for
instance, if a person left or joined the group. So if (i,j)1 e C1 then
(i,jf € C2. (Even though the set of couples is unchanging, it is con-
venient at this stage to retain the superscript that labels each couple
by time - we will dispense with this labeling later.)

Let the random variable Y® with realization ^ be a binary variable
denoting the presence (yty = 1) or absence 0 $ = 0) of a network tie on
couple (i,/)'. Within time (non-directed) dependencies may occur amongst
the sets of variables pertaining to couples in C for constant t. Across-time
(directed) dependencies may occur from variable yj^ to variable 1$
with yjjl considered a parent of 1$. It follows from the version of the
Hammersley-Clifford theorem proved in Robins et al. (in press):

RcC*Qcpii{R) (ttfeR (,,,)'g

(2)

where: (i) R is a subset of C2, the set of couples at time 2;
(ii) Q is a subset of C1 with each network variable indexed by

Q being a parent of a network variable indexed in R -
hence the notation Q C pa(/?);

(iii) 7/ajg is a parameter corresponding to R U Q and is non-
zero*>nly if R U Q is a clique in the moral graph, where the
morp graph is derived from the directed dependence
grapn by replacing all arrows with lines and by adding
lines between any two couples in C1 that are both parents
of the one couple in C2; and
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RANDOM GRAPH MODELS FOR NETWORKS 15

Given a particular dependence graph, equation (2) describes a
family of probability distributions for random graphs. It is the most
general version of a discrete time temporal p* model with two time
points. Of course, as discussed immediately below, further restrictions
are needed on the terms in (2) to achieve an identifiable model. In
general, however, we use (2) as the basis for model development by
specifying a directed dependence graph, which then determines the
non-zero parameters through the cliques of the moral graph.

Equation (2) is the joint form of the model. There is an equivalent
conditional form (Robins et al., in press), which expresses the model in
terms of the conditional log-odds of a particular tie, and removes the
troublesome normalizing quantity K.

- V V V -v 2 TT vPl TT i

where I*J 2 denotes the observed network at time 2 excluding the
time 2 tie on \i,J), (,(i,j)2 represents those maximal cliques of the moral
graph that include Y$, and J — (i,j)2 is a set of couples excluding

2.3 Homogeneity Constraints

To achieve identifiable models, suitable restrictions on the order of
the terms chosen for investigation, and homogeneity constraints, may
be imposed.

Frank and Strauss (1986) assumed a Markov condition for condi-
tional dependence among network variables. In a Markov directed
graph, possible ties are assumed to be conditionally dependent when-
ever they have an actor in common: that is, the variables Yy and Yst are
conditionally dependent if and only if {i,j} n {s, i] ^ <j>. By assuming
that these are the only dependencies, Frank and Strauss (1986) showed
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16 G. ROBINS AND P. PATTISON

that sufficient statistics for the model are confined to indicators of
certain network configurations: ties, reciprocal ties, in-stars, out-stars,
mixed-stars, and all possible triadic configurations.

Following the homogeneity strategy originally introduced by Frank
and Strauss (1986), Pattison and Wasserman (1999) discussed a gen-
eral strategy of assuming that parameters corresponding to certain
isomorphic configurations of array entries of Y are equal. For Markov
directed graphs, sufficient statistics then become counts of various
stars and triads. In the models below, we take a similar approach to
homogeneity. In this case, however, the isomorphism classes represent
various types of configurations that can involve two types of possible
tie, those at time 1 and those at time 2. We illustrate this below.

3 SOCIOTEMPORAL NEIGHBORHOODS: PROPOSALS
FOR TEMPORAL DEPENDENCE STRUCTURES

Specification of the dependence graph is crucial in specifying a model.
With the Markov graph assumption of Frank and Strauss (1986) and
the various other proposals discussed by Pattison and Robins (2000),
we have precedents for possible dependence structures among the
couples in C2 (although in temporal contexts within-time dependencies
may take on different meanings). Proposals for within time depend-
encies can be seen as specifying what we term a local social neigh-
borhood. Where there is little theoretical guidance, on the other hand,
is in the specification of appropriate cross-time dependencies, that is,
in the determination of the form of pa(/?) in equation (2). It is the
inclusion of couples from both C1 and C2 in equation (2) that leads us
to express these dependencies as reflecting sociotemporal neighborhoods.
In this section we advance some simple broad proposals for possible
forms of sociotemporal neighborhoods. We begin by discussing some
general processes that we might expect to see in network transition.

3.1 Different Processes of Network Change

We distinguish three types of effect that can shape network evolution
over time. First, particular patterns of relational ties may be likely to
emerge over time, either because patterns develop from simpler con-
figurations or because more complicated patterns decay. We envisage
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RANDOM GRAPH MODELS FOR NETWORKS 17

this evolution as a property of the network as a whole, even though
the process is instantiated across the network as change in particular
relational ties. Shared cultural understandings or behavioral norms
could underlie such processes. For instance, if the shared under-
standing of friendship among a group of people is that friendship is
normally reciprocated, then we would expect to see the emergence of
mutual friendship ties over time. Because such as evolution is a
property of the system (the network) as a whole, we term it a sys-
tematic temporal process. As a system-wide property, a systematic
temporal process is homogeneous across the social space, indifferent to
the identity of the individuals whose actions nevertheless collectively
generate the process.

Systematic temporal processes reflect any tendency inherent in a
relationship towards some form of equilibrium structure. This notion
is consistent with the idea of Doreian and Stokman (1997) that
the study of network evolution involves the modeling of change via
some identifiable process. As they put it, the goal is to understand
the "rules" governing the sequence of changes through time, not just
to observe change. A systematic temporal processes encapsulates the
idea that a network may evolve according to such "rules". Systematic
temporal processes create the recurrent patterns that both Abbot
(1997) and Emirbayer (1997) see at the centre of the temporal model-
ing challenge.

Perhaps the most basic systematic process is the extent to which a
network tie is present at both times 1 and 2, that is, the extent to which
y{y' can be predicted from yjj'. As Doreian and Stokman (1997) point
out, processes can sustain structures as well as change them, and the
observation of no change does not make the idea of process less relevant.

At the same time, however, non-systematic processes may reshape
parts of a network. These are effects that are not network-wide, may
be more localized in social space and may pertain to the changing
nature of relations among particular individuals. If actor i has reason
no longer to trust actor j , perhaps through some act of disloyalty byj,
then obviously this is likely to change a tie between i and j in a trust
network. But if trust ties tend to be stable (a systematic process), the
change in tie between / andy will appear as noise against a background
of generally stable ties. In that sense, non-systematic processes can be
modeled as random, non-homogeneous occurrences. Even so, we need
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18 G. ROBINS AND P. PATTISON

to recognize that this source of "randomness" is not necessarily
inherent (there is no randomness necessarily arising from the norm
that disloyal individuals are not to be trusted). Non-systematic pro-
cesses arise because of the necessary limitations of our measurement,
both across and within time. With a broader measurement focus, we
can always capture more fine-grained systematicity, and what con-
stitutes the system is determined by what we attempt to measure.

Our construal of systematic and non-systematic processes is
informed by the use of homogeneity in identifying p* models. For
instance, it is standard to include a parameter for mutuality in a (non-
temporal) p* model. Typically there is usually one such parameter,
although if there is some form of blocking structure, then multiple
parameters might be appropriate (e.g., mutuality effects might be
different for boys and girls in a school friendship network - see
Wasserman and Pattison, 1996). With one mutuality parameter, the
researcher is investigating the presence of a homogeneous mutuality
effect across the entire network, and if such a parameter is large and
positive, the inference might be that mutuality is a property of the
entire social system as represented by the network. The homogeneity
constraint assumes a system-wide property. Nevertheless, the only
intentionality in the system is at the level of the actor, that is, locally.
Accordingly, a global property of mutuality has to be generated
locally. We might then argue that such a systemic property reflects
shared norms or behaviors across actors, norms or behaviors that
could be construed as inherent in the particular social relation for this
group of people. Moreover, we might expect such norms or behaviors
to shape the network dynamically, so that the system-wide effect may
also reflect a form of network evolution. Accordingly, it is helpful to
model such processes dynamically when we have data available.

At the same time, not all local action need have network-wide
consequences. A particular subset of actors at a particular time (i.e.,
in effect a particular sociotemporal neighborhood) may behave in
ways idiosyncratic to themselves for whatever reason. In this case, the
homogeneous parameters cannot capture what is behavior peculiar to
that neighborhood. If we suspect the "reason" (e.g., perhaps they have
a distinctive pattern of individual attributes) we might seek to include
relevant variables in the model (e.g., additional mutuality parameters
for boy-boy, boy-girl and girl-girl friendship choices), thus increasing

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
9:

49
 1

9 
M

ar
ch

 2
01

3 



RANDOM GRAPH MODELS FOR NETWORKS 19

our potential to investigate the nature of "systematicity". In this sense,
then, non-systematic processes can be seen as residual (or as noise) to
the systematic processes that we seek to observe. The point is, how-
ever, that the models cease to be identifiable unless we impose some
form of homogeneity. There is always a residue (possibly large) of non-
systematic local action. (For a more extended discussion of local
processes and global effects in the context of/)* models, see Mische
and Pattison, 2000; Mische and Robins, 2000; Pattison and Robins,
2000.)

In studying network evolution, we also impose measurement
restrictions by selecting a set of individuals as nodes of the network.
This sets an implicit network boundary, leading to the possibility of
external influences. We refer to exogenous events as those that occur
beyond the network but impact on network structure. In some con-
texts, it makes sense to envisage some higher order social entity that
imposes change. For instance, in a business organization an executive
decision to give an existing member of a workgroup new respons-
ibilities, perhaps through promotion or restructuring, has the potential
to reshape the pattern of advice ties within that particular workgroup.
Although in a broad sense, exogenous events are by their nature non-
systematic, we restrict the term non-systematic processes to those that
do not relate directly to observable external actions. Of course, an
exogenous event can also lead to various non-systematic processes
(in our sense of the term).

Because systematic processes are homogeneous across the network,
arising from common social behaviors when individuals face similiar
social circumstances, one individual cannot singly shape the overall
direction of social evolution. For instance, assuming that friendship
networks evolve according to certain "rules" - perhaps rules akin to
the axioms postulated by Zeggelink (1994; 1995) - then individuals
within a friendship network cannot control the way the network
evolves. Simply by having (or not having) friends, individuals particip-
ate in an evolving group structure.

Non-systematic processes, however, relate to actions that are not
homogeneous across the network. They may pertain to an individual's -
or a subgroup of individuals' - attempts to reshape their immediate
social environment in ways that do not follow the commonly shared
"rules" of a systematic process. These local deviations from the overall
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20 G. ROBINS AND P. PATTISON

trend of network evolution need not "break the rules", but merely be a
change to a tie that is not the result of an underlying systematic process.

3.2 Possible Forms for Sociotemporal Neighborhoods

In a given case, there may be reasons for postulating particular directed
dependencies across time, but it would be an unusual model in which
yjjJ was not a parent of 3 ^ . This dependence reflects a simple propo-
sition, that in the absence of other effects, there is a tendency for ties to
persist across time. If there is little or no tie stability across time, then the
implication is that non-systematic processes are playing a major role.

A simple extension of non-temporal dependence structures is to
assume that the mutual dependencies postulated at time 2 will also be
reflected in the directed dependencies across time. This assumption
implies that if there is a conditional dependence between Y$ and
yPj, then if,1 will be a predictor of lfv

] and I™ will be a predictor of
yf,. For instance, assume a dyadic independence model, so that 3$
and Yy are mutually conditionally dependent. Then this across-time
dependence assumption implies that the parents of 3^' will include not
only j | | ' but also 3J!'. The across-time dependence assumption
becomes more plausible if we assume that the within-time dependence
structure does not change from one time period to the next, so that 3'jJ1

and yj!' are mutually conditionally dependent. In this case, the parents
of the same child are already connected in the time 1 block. That is, the
parents are already "married" and no additional edges have to be
added to the dependence graph to create the moral graph. Lauritzen
(1996) termed a chain graph in which no edges have to be added to
create the moral graph as perfect, so this assumption can be termed a
perfect dependence assumption. Note that a perfect dependence does
not have to mirror fully the time 2 dependencies. Any set of directed
dependencies that are a subset of the time 2 dependencies will also be
perfect. To differentiate the two situations, the situation when the
directed dependencies mirror all the mutual dependencies is referred to
as complete perfect dependence. For dyadic independence, the directed
complete perfect dependence graph is presented in Figure 1.

Complete perfect dependence assumptions seem a reasonable
approach to exploring network evolution when the network involves
relations such as friendship or trust, where the duration of ties is
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RANDOM GRAPH MODELS FOR NETWORKS 21

vIU ytfl

FIGURE 1 Directed dependence graph for complete perfect dyadic independence.
Note: To create the moral graph, only arrows need to be replaced by lines; no additional
lines are required.

changeable but open-ended. There may be other contexts where such
assumptions are not so reasonable, for instance, when the network
involves sequences of short term transactions, or perhaps when exo-
genous events might disrupt dependence structures from one time
period to another. More generally, the assumption seems reasonable
when the network is in dynamic equilibrium, with dependence struc-
tures not changing over time. As a result it seems reasonable that the
time between observations should not be excessive in relation to the
time scale of network change.1

For complete perfect dependence, the sets of parents at time 1 mir-
ror the cliques of neighbours at time 2. If T$ and Y$ are conditionally
dependent at time 2, then 7^} and T/^j are also conditionally dependent
and both are parents of T$ and Y$. By specifying within time
dependencies (such as dyadic independence or Markov graph depend-
encies) with a set of maximal cliques £, and dropping the distinction
between couples at time 1 and time 2, equation (2) then becomes:

(s,t)eQ

1We are indebted to Tom Snijders for thoughts on perfect dependence.
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22 G. ROBINS AND P. PATTISON

So these models are now determined fully by a set of maximal
cliques £ from a dependence graph with non-temporal form. The
complete perfect dependence assumption allows us to derive a tem-
poral dependence graph. The non-temporal form can be construed as
representing a dynamic equilibrium, with an underlying dependence
structure that does not change across time.

3.3 Complete Perfect Bernoulli Graph Models

For Bernoulli graph models, maximal cliques are single network
variables, so that £ is simply the set of variables indexed by C. We
impose homogeneity by assuming that effects in the model are equal
for all ties (i.e., isomorphic configurations are a time 2 tie and a stable
tie that is present across both time periods). With this homogeneity
assumption, equation (4) then becomes:

where 70 is a density parameter and 71 is a parameter expressing a
tendency for ties to persist from t\ to t^.

Given the independence of network variables, the conditional form
of this model - equation (3) - is as follows:

so that the conditional log-odds of a tie being observed at time 2 is 70 if
no tie is observed at time 1, and is 70 + 71 if a tie is observed at time 1.

When we include higher order effects in the models below, parti-
cularly the Markov models, we might examine the behavior of the two
Bernoulli graph parameters with a view to considering non-systematic
processes. For most observed networks where ties tend to be relatively
sparse, we would expect a negative 70 parameter in the presence of
higher order parameters. In a temporal model with higher order
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RANDOM GRAPH MODELS FOR NETWORKS 23

parameters, a 70 parameter close to zero or even positive suggests that
individuals are forming time 2 ties in ways that cannot be explained
by higher order structures, or by time 1 ties. Across time, in most
circumstances we would also expect a positive 71 parameter to reflect a
tendency for ties to persist. A 71 parameter close to zero (or even
negative) suggests that unless they are part of higher order config-
urations, ties are not stable. While these considerations are somewhat
speculative, in particular circumstances they could be interpreted
as giving some indication as to the relevance of non-systematic
processes.

3.4 Complete Perfect Dyadic Independence Models

For dyadic independence models, with homogeneity applied across
isomorphic cliques of the moral graph, (4) becomes:

y] + 7,

Here parameters 70 and 71 have the same interpretation as for the
Bernoulli graph model. The p parameters reflect a variety of recipro-
city effects. The parameter p represents a tendency for ti ties to be
reciprocated, while pn represents the propensity for a tie to be present
at time 2 with a reciprocated tie in place at time 1. The suffix "c" has
been used to label the other p parameters to represent a tie that persists
across time (a constant tie). So p\c refers to the stability of a tie when it
is reciprocated at t\. The various network configurations associated
with these parameters are depicted in Figure 2.
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24 G. ROBINS AND P. PATTISON

Parameters based on density

Parameters based on reciprocity

P12

Pic Pic

Pec

FIGURE 2 Parameters and associated configurations for complete perfect dyadic
independence model.
Note: Ties are numbered depending on whether they occur at time 1 or 2; "c" refers to
a constant tie, where both time 1 and time 2 ties are present. Under the constant tie
assumption, parameters p\2 and p\c are removed from the model.

The conditional form expresses the model in terms of the log-odds
of a tie being observed conditional on the observation of other ties in
the dyad at each time point.

log
P]_0Lp]

so, for instance, the log-odds of a new tie being observed at time
2 given reciprocal ties at both time points is 70 + p + pn, while the
log-odds of a new tie being observed at time 2 given a new reciprocal
tie at time 2 is simply 70 + p. The log-odds of a tie being observed,
given other states of the dyad at the two time points, can similarly be
calculated.

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
9:

49
 1

9 
M

ar
ch

 2
01

3 



RANDOM GRAPH MODELS FOR NETWORKS 25

3.5 Complete Perfect Markov Models

For Markov random graphs, the maximal cliques of the dependence
graph relate to triads - that is, sets of couples of the form {(/,/), (j, t),
(/, k), (k, 0, 0', &)» (Kj)} - and to star configurations - that is, for each
node i there is a clique of all couples involving i, {(/,/), (i, k), (/, / ) , . . . ,
(J, 0, (&,0, (*>0. • • •}» (Robins, 1998; see also Pattison and Wasserman,
1999, where these maximal cliques are defined for multivariate net-
works). This results in a very large number of parameters, even
allowing for the imposition of homogeneity, and the strategy typically
adopted is to limit the order of the interactions, equivalent to
restricting the number of edges in a configuration. For illustrative
purposes, we restrict the models below to 2-stars and to transitive and
cyclic triads, in addition to reciprocity and density effects.

For a complete perfect temporal model, with homogeneity imposed
across isomorphic configurations, we then have parameters for 2-star,
and transitive and cyclic, triadic configurations that involve at least
one tie at time 2, as well as the parameters from the dyadic independ-
ence model. This is a relatively large number of parameters, many of
which are difficult to interpret (Robins, 1998). In any event, there are
substantive reasons for wishing to restrict the number of parameters,
especially if we are primarily investigating systematic effects.

The assumption that we make below is that systematic processes
come into play among ties that persist through time. The argument is
that, as a systematic process concerns evolution from less stable to more
stable network configurations, it will be most pronounced among ties
that persist across time periods. (This argument is of course context-
dependent, and has force in situations where relational ties are
changeable but open-ended in duration. Friendship might be taken as
an example. Where we are dealing with, say, transactions of a limited
duration, the argument has less force.) For instance, if there is a tendency
towards transitivity - say, that friends of friends are likely in time to
become friends - then this effect will only be apparent if the original
friendships persist across a sufficient time period. Effects that are based
on ties that exist only at time 1 may be too ephemeral to influence ties at
time 2. We refer to this assumption as the constant tie assumption.

What the constant tie assumption does, in effect, is to define a
period of measurement for each configuration that involves three
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26 G. ROBINS AND P. PATTISON

actors. For instance, suppose we are trying to predict a new tie from
i to j given constant ties on (i, k) and (k,j) (that is, a constant tie
transitivity effect). At time 1, the observed configuration comprises
ties on (t,k) and (fc,/); at time 2, the observed configuration comprises
ties on (i,k) and (k,J) and possibly on (/,/). In equation (4) in this
circumstance we are considering a parameter 7^5 where Q = {(i, fc),
( M } and i? = {(i,k), {k,j), (i,J)}.

Suppose, however, that by time 2 an earlier tie on (k,j) had dis-
appeared. Then the constant tie assumption does not consider the time
1 configuration as a path of length two that might be completed into a
transitive triad, but rather a path of length 1, that is a tie on (i,k).
In other words, with the tie on (k,j) absent by time 2, we suppose that
1R,Q = 0. On the other hand, the parameter 7*,$, with S = {{i, k)} is
still present in the model. What we are in effect doing here is pre-
supposing that the ephemeral (k,j) tie disappeared before it could
influence a possible (/,/) tie. We are implicitly setting a period of
measurement for that triad, such that the observation of a time 2 tie on
(i,j) is deemed to have occurred after the ephemeral tie vanished. Any
effects arising from ephemeral ties are construed as non-systematic
effects arid do not explicitly enter the model.

The constant tie assumption has been presented here as arising from
substantive concerns dealing with systematic, as opposed to non-
systematic, effects. Formally, it is a version of partial conditional
independence (Pattison and Robins, 2000). In technical terms, para-
meters for configurations of ties from both times 2 and 1 are set to zero
unless a tie from time 1 is accompanied by a time 2 tie. (Note that a
constant tie dyadic independence model would not include the para-
meters P12 and pic from (6). Note also that the "constant ties" are
composed of both time 2 and time 1 ties, so that it is not a simple
matter that "constant ties" are predictors of other time 2 ties. Rather,
the time 1 ties involved in constant ties provide the only couples at
time 1 that are parents of couples at time 2.)

Figure 3 presents the parameters and associated configurations -
additional to those of the dyadic independence model of Figure 2 - for
the Markov model with the constant tie assumption. Here the fol-
lowing parameter labelling is used: 00, 07, and OM for parameters asso-
ciated with 2-out-star, 2-in-star and 2-mixed-star effects, respectively,
tp for cyclic triad parameters, and r for transitive triad parameters,

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
9:

49
 1

9 
M

ar
ch

 2
01

3 



RANDOM GRAPH MODELS FOR NETWORKS 27

Parameters based on 2-ht-stars

Parameters based on 2-mixed stars

P«2

«jej

Parameters based on 2-out-stars

Parameters based on cyclic triads

r -

Poro/nttcrs hosed on tronsitivc triads

-A

«•

A
FIGURE 3 Additional parameters and associated configurations for complete perfect
Markov graph model with constant tie assumption.

with the suffices describing various patterns of constant and time 2 ties
in the respective configurations.
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28 G. ROBINS AND P. PATTISON

4 EMPIRICAL EXAMPLES

4.1 Freeman EIES Data

The Freeman EIES data set analyzed here involves an acquaintance
relationship among 32 academics measured at two time points
(Freeman and Freeman, 1979; see also Wasserman and Faust, 1994).
Originally, the network data had five categories: "close personal
friend", "friend"; "person I've met"; "person I've heard of, but not
met", and "person unknown to me". For the purposes of this analysis,
we have dichotomized the data so that the first two friendship cate-
gories are coded as " 1 " and the remaining three categories as "0".
Accordingly, the dichotomized data represents a friendship relation.

Our strategy for fitting models follows that of Robins et al. (in
press), in that we remove parameters if they do not contribute at least
four to the pseudo-likelihood deviance. We use the pseudo-likelihood
deviance and mean absolute residual as heuristic guides to compar-
ative model fit. However, in the models fitted below, we have not
insisted on hierarchical models whereby insubstantial lower order
effects are retained in the presence of substantial higher order effects.
Pattison and Robins (2000) show that non-hierarchical models can
arise from certain partial conditional independence assumptions. Our
non-hierarchical modeling approach here, however, has a somewhat
simpler motivation. In fitting hierarchical models to small networks,
we find that important effects can be lost to models because the con-
tribution made by a higher order parameter may also be shared across
a number of insubstantial lower order parameters. Non-hierarchical
models allow identification of such effects. In interpretation, we do not
suggest that small lower order effects are not present; rather, we
assume that they are not of sufficient size to alter basic interpretation,
and so we use the non-hierarchical model as a parsimonious inter-
pretative device.

4.1.1 Markov Graph Model for Time 2 Network
We begin by fitting a non-temporal Markov random graph model
solely to the time 2 network. The parameters fitted are those from
Figures 2 and 3 relating to configurations comprising only time 2 ties.
The purpose is to provide a basis for comparison to see what addi-
tional explanatory power the temporal models provide. The cyclic
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RANDOM GRAPH MODELS FOR NETWORKS 29

triad parameter dropped out of the model, resulting in a pseudo-
likelihood deviance of 585.4 and a mean absolute residual of 0.18 with
6 parameters. Pseudo-likelihood parameter estimates are provided in
the top panel of Table 1, together with standard errors as calculated
for standard logistic regression. These standard errors are approx-
imate at best and are provided only as a guide.

We restrict interpretation to a few broad comments. There is clearly
a strong reciprocity effect; moreover, the positive transitive triad
estimate, especially in conjunction with a negative mixed-star effect,
suggests some clustering within the network. The absence of a cyclic
triadic effect suggests there is little evidence for exchange effects that
go beyond the dyadic level (i.e., beyond reciprocity).

4.1.2 Bernoulli Model
Parameter estimates for the model of equation (5) are presented in the
second panel of Table 2. The two parameter model had a pseudo-
likelihood deviance of 511.1 with a mean absolute residual of 0.133.
The model suggests that ties are likely to persist from time 1 to time 2.
Comparison of the mean absolute residual with the time 2 Markov
graph model suggests that temporal effects are quite strong in this
network, for even the simplest cross time dependence assumption
seems to result in a better fit.

4.1.3 Dyadic Independence Model
For the model represented in Figure 2, but with a constant tie
assumption, the only parameter removed was pec- Parameter estimates
are presented in the third panel of Table 1. The four parameter model
had a pseudo-likelihood deviance of 457.2 with a mean absolute
residual of 0.121. The model again demonstrates the persistence of ties
across time with a large 71 estimate.

The positive p parameter suggests that new ties are likely to be
reciprocated by other new ties. In interpreting the cross-time p2c
parameter, however, we need to bear in mind that interpretations of
higher order parameters are marginal to those of lower order para-
meters. Robins et ah (1999) presented a useful heuristic approach to
detailed interpretation of p* models. They pointed out that various
summations of parameter estimates can be interpreted as the (condi-
tional) log-odds of a tie "completing" a sub-configuration, assuming
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30 G. ROBINS AND P. PATTISON

TABLE 1
Parameter Estimates for Models for Freeman EIES Data

Parameter

Time 2 Markov random graph model
7o (density)
p (reciprocity)
c\ (in-stars)
(TM (mixed-stars)
co (out-stars)
T (transitive triads)

Complete perfect Bernoulli temporal model
To
7i

Complete perfect dyadic independence
temporal model

70
71
P
P2c

Pseudo-likelihood
estimate

-3.57
3.11
0.15

-0.17
0.13
0.25

-2.56
5.21

-3.07
5.35
2.56

-0.99

Standard error
(approx.)

0.35
0.28
0.03
0.02
0.03
0.04

0.13
0.35

0.18
0.42
0.34
0.32

that no other effects are present (that is, that the sub-configuration is
the only one completed by that tie). Of course, in relation to observed
ties, such an interpretation may well be "hypothetical" in that other
effects will often be present. The idea, however, is to disentangle vari-
ous effects by considering the implications of the model for (possibly
hypothetical) cases where particular network configurations are
isolated.

For instance, we might ask what is the estimated probability that
an unreciprocated tie at time 1 from j to i becomes a reciprocated tie
at time 2, assuming that no other ties involve i and j . The question can
be rephrased: what is the estimated probability of an (i,j) time 2
tie "completing" a p2c configuration, given a constant tie on 0,0?
In completing a p2c configuration in the constant tie model, however, a
time 2 (i,J) tie also completes a p configuration and a 70 configuration
(both of which are lower order configurations to the p2c configura-
tion). The conditional log-odds then is a sum of the estimates of the
associated parameters, in this case —3.07 + 2.56 — 0.99 = —1.50. So in
the absence of any other effects, we would not expect that a large
number of unreciprocated ties at time 1 would become reciprocated
at time 2. When a tie is reciprocated at time 1, however, the strong
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71 effect comes in to play, so that generally we would expect recipro-
cated ties to remain reciprocated.

Overall, then, the model gives a strong impression of stability, with
ties tending to persist through time, and the status of reciprocation
within a dyad tending to remain the same. The model seems to
improve the Bernoulli model in terms of fit, with a change in pseudo-
likelihood deviance of 53.9 for a difference of two parameters. There
is evidence here that the reciprocation effects give additional explana-
tory power. What the model cannot account for, however, is the
evidence of clustering suggested by the time 2 Markov graph model
above.

4.1.4 Markov Graph Model
A model with all 27 constant tie parameters from Figures 2 and 3 had
a pseudo-likelihood deviance of 329.3 and a mean absolute residual of
0.091. With 18 parameters removed, the resulting model had a pseudo-
likelihood deviance of 351.9 and a mean absolute residual of 0.098.
Parameter estimates for the reduced Markov model are presented in
Table 2.

TABLE 2
Freeman EIES Data: Parameter Estimates for Complete Perfect Markov

Random Graph Model with Constant Tie Assumption

Parameter

Density parameters
to
7!

Reciprocity parameters
P

In-star parameters

Mixed-star parameters
CM_2c

Transitive triad parameters
T

T22c

T2C2

Pseudo-likelihood
estimate

-4.60
7.11

2.10

0.19
-0.38

-0.19

0.33
-0.49

0.28

Standard error
(approx.)

0.39
0.79

0.35

0.05
0.14

0.05

0.07
0.12
0.11
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32 G. ROBINS AND P. PATTISON

As expected, we see similar effects for ties to persist across time
and for a time 2 reciprocity effect as in the dyadic dependence
model. The pattern of Bernoulli parameter estimates are as expected
for a network in which non-systematic processes are not playing
a major role.

For interpretation of the other parameters, again it is important to
consider parameter effects simultaneously when one of the related
configurations includes others as a sub-graph. For instance, in con-
sidering the in-star parameter estimates, the negative O\JX parameter,
if interpreted without considering other related parameters, might
suggest a tendency for in-stars with constant ties not to be present, that
is, for individuals who are popular at time 1 to be less so at time 2. In
this case, stable ties are less likely to form star-like structures. However,
a time 2 tie that completes a (constant tie) <TI.CC in-star also completes a
CTI_2C in-star which, on the basis of the parameter estimates, is in
the opposite direction to the oijx effect, and hence moderates it. This
moderated effect needs to be seen in relation to the strong tendency for
ties to persist (71) so that, for the most part, popularity at time 1 is
likely to be sustained to time 2. The positive cruc estimate also sug-
gests that there are propensities for new in-stars to occur at time 2, that
is, for popular actors at time 1 to attract new "fans" at time 2.

Triadic effects of course also involve the 2-star effects as sub-
configurations. In interpreting the triadic parameters, we investigate
whether the model provides evidence for any processes involved in
triadic formations over time, especially given the suggestions of clust-
ering from the non-temporal Markov graph model.

A triad at time 2 may emerge from a two-star configuration at
time 1 if the relevant new tie is observed at time 2. For transitive triads,
the three possibilities are presented in the first three rows of Figure 4,
whereby a time 2 transitive triad can evolve from a time 1 mixed-star,
out-star and in-star. The fourth row of the Figure depicts the emer-
gence of a cyclic triad from a mixed-star. The Figure also includes a
summation of the relevant triadic and star parameter estimates. These
summations represent changes to the conditional log-odds of the new
tie emerging (assuming no other effects), over and above the density
effect for a new tie (70). For instance, a new time 2 tie that completes a
triadic configuration from a time 1 mixed-star (the first line of Figure 4)
completes: a new time 2 triadic configuration (r - as the constant ties
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Time I configuration Time 2 configuration Summation of relevant non-zero triadic and star

parameter estimates

152c = 0.03

Ok|_2e + r + «it2 + t&c " -0-07

FIGURE 4 Emergence of new triads across time.
Note: Summation of parameter estimates assumes that no other conflgurations are
involved in completion of the tie.

imply the presence of time 2 ties); a new T2& transitive triad; a new
in-star (<ruc and o\ but the latter parameter is not included in the
summation as the parameter has been removed from the model); and a
new out-star {poaz - not included in the summation). The total is 0.8,
relatively small compared to the large new tie density effect (—4.60).
Suppose, however, at time 1 there are several paths of length 2 (mixed-
stars) from i toj, but no direct tie. Suppose these two-paths persist to
time 2. Then, in the absence of other effects, to estimate the condi-
tional probability of a time 2 tie emerging from i to j , the transitive
triad effect needs to be multiplied by the number of two-paths. This
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34 G. ROBINS AND P. PATTISON

product when added to the density effect provides an estimate of the
conditional log-odds of a tie being observed. The resulting probability
estimate for a new tie to emerge from only one two-path is around
0.02, but for six two-paths, the estimated probability of a new transi-
tive triad at time 2 increases to around 0.55.

A two path in this context is a friend of a friend. The conclusion we
draw is that there is some tendency for friends of friends to become
friends but this effect is only of import if the two individuals are
connected by multiple friends. The same effect enhances the persist-
ence of ties. The tendency for ties to remain in place is enhanced if the
two individuals are connected by a two-path. The implication is that
where friends of friends are friends, the structure is particularly stable.

The above description can be contrasted with the emergence of a
transitive triad from a time 1 out-star and an in-star (second and third
lines of Figure 4). Here the small values of the summation suggest no
particular triadic effect over and above the new tie density effect. So if
an individual at time 1 nominates two others as friends, there is no
notable impetus for those two others to become friends at time 2.
Similarly, there is no strong effect for or against two individuals who
nominate the same friend at time 1 to become friends at time 2. There
appears to be a slight tendency against new cyclic triads (fourth line of
Figure 4 - this effect arises from the negative two-mixed star effect, as
cyclic parameters themselves do not appear in the model).

In summary, this triadic analysis provides good examples of what
we have termed systematic processes that go beyond the dyadic level.
The model provides evidence for an increasing clustering of individuals
as friends of friends become friends, and evidence for the decay of
cyclic structures.

4.2 Training Group: Trust and Friendship Networks

This data set was collected as part of a larger project examining the
efficacy of in-house training by a large Australian government
instrumentality. The training group of 14 participants came from dif-
ferent parts of the organization and did not necessarily know each
other beforehand. The training course lasted for four days. At the
mid-point and at the end-point of the course, participants completed
a number of network questionnaires. Two networks are examined
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here: trust and friendship. As this group was newly formed and existed
for only four days, non-systematic processes are likely to play an import-
ant part in determining the network changes from the first time point
(after two days of training) to the second time point (after four days).

We present below parameter estimates for the Markov random
graph temporal models for these two networks, restricting our dis-
cussion of simpler dependence models principally to matters of fit as a
basis of comparison for the Markov graph model. With these relat-
ively small networks, given the large number of parameters that are
present, particularly in the Markov graph model, occasional estima-
tion problems result. When we observe evidence of collinearity, we fit
models with certain of the problematic parameters removed. For
instance, in the Markov model for the trust network, the pec parameter
was removed, given that it was collinear with a group of other parameters.

4.2.1 Trust Network
For the trust network at time 2, the star parameters were retained in a
three parameter non-temporal Markov graph model, resulting in a
pseudo-likelihood deviance of 111.2 and a mean absolute residual of
0.18. The dyadic independence model for the trust network, on the
other hand, reduced to the two-parameter Bernoulli model with a
pseudo-likelihood deviance of 174.9 and a mean absolute residual of
0.30. These results suggest that reciprocity effects do not play a major
role and that dyadic effects have little explanatory power.

Parameter estimates for the Markov graph temporal model are
presented in Table 3. With seven parameters, the model had a pseudo-
likelihood deviance of 72.4 with a mean absolute residual of 0.11.

The first point to note is a very strong estimated effect (71) for a
trust tie that exists at time 1 to continue to time 2, in the absence of any
higher order effects. However, in this non-hierarchical model, the time
2 density parameter (70) drops out, suggesting that given the higher
order effects included in the model, there are no tendencies against the
emergence of new time 2 ties. We thus have evidence for some non-
systematic processes, not in terms of original ties changing, but in
terms of new ties emerging.

The 2-out-star effect (<TO) is readily interpreted. The positive time 2
estimate suggests that if a person sends many trust ties, the conditional
log-odds of additional trust ties is increased; in other words, some
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36 G. ROBINS AND P. PATTISON

TABLE 3
Training Group Trust Network: Parameter Estimates for Complete

Perfect Markov Random Graph Model with Constant
Tie Assumption

Parameter

Density parameters
71

In-star parameters
o\
O\J2c

Mixed-star parameters
CM
CM-2c

Out-star parameters

Transitive triad parameters
Tccc

Pseudo-likelihood
estimate

4.05

-0.60
-1.46

-0.29
0.73

0.60

1.91

Standard error
(approx.)

1.48

0.20
0.47

0.09
0.25

0.12

1.22

people in the network are particularly trusting. But no temporal out-
star parameters remain in the model, suggesting that the expansiveness
of individuals at time 2 cannot be explained by expansiveness at time 1
(unless of course the 2-out-stars are completed into triads, as then Tccc
comes into play). The negative in-star parameter estimates (<TI, ̂ J C

suggest, on the other hand, that there is a ceiling on popularity, and in
fact that those who were popular at time 1 may be somewhat less so at
time 2. The negative mixed star effect at time 2 (CTM) in the presence of
a positive across time mixed star effect (CTM_2C) suggests a tendency
against new two-paths at time 2 unless they take the form of a new tie
connecting to a constant tie. In other words, there seems to be some
propensity for those who are particularly trusting across time to be
themselves more trusted at time 2, but there is a tendency against those
who are trusted across time to become more trusting.

As noted above, these various star interpretations assume that the
star is not part of a transitive triad, for then the constant tie transitive
effect (Tccc) needs to be considered. The parameter estimate is large and
positive, suggesting that transitive triads, once formed, are very stable
(the estimate has a large approximate standard error but nevertheless
contributes substantially to the pseudo-likelihood deviance according
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to our criterion, so is retained in the model). A summation of relevant
parameter estimates shows that this is particularly so when we con-
sider two individuals who continue to trust the same third party: there
is a particularly strong tendency for such a pair of individuals to
continue to have a trust tie across time. Similarly, a summation of
appropriate star parameters (along the lines of Figure 4) reveals quite
strong tendencies against mixed stars and out-stars being completed
into transitive triads, but - on the other hand - a tendency for in-stars
to evolve into a transitive triad, that is, a propensity for those who
trust the same third party to develop a trust tie. There is little tendency
for or against the emergence of new cyclic triads.

In summary, we see some evidence of non-systematic processes in
the possible emergence of new ties not associated with existing higher
order structures. This is hardly surprising in a network of trust within
a new group. Nevertheless, initial choices of trust partners tend to be
sustained, particularly so, if those choices are clustered into transitive
triadic structures which remain highly stable. New transitive triads are
most likely to emerge from two individuals who both trust the same
people. Interestingly, there is no evidence of reciprocity in trust, and
no particular tendencies for cyclic triads.

4.2.2 The Friendship Network
For the friendship network at time 2, the density, out-star and reci-
procity parameters were retained in a non-temporal Markov graph
model, resulting in a pseudo-likelihood deviance of 128.1 and a mean
absolute residual of 0.22. The dyadic independence model, as with the
trust network, reduced to the two-parameter Bernoulli model with
a pseudo-likelihood deviance of 177.6 and a mean absolute residual
of 0.31.

Parameter estimates for the Markov graph temporal model are
presented in Table 4. With five parameters, the model had a pseudo-
likelihood deviance of 107.6 with a mean absolute residual of 0.17.

The striking point of the model is that friendship at time 1 is not
included as a predictor of friendship at time 2. It appears that non-
systematic processes are important to understanding the changes in
this network, with those friendships sustained across time needing to be
explained by the maintenance of higher order configurations. A friend-
ship tie at time 1 that is not part of such a higher order configuration
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38 G. ROBINS AND P. PATTISON

TABLE 4
Training Group Friendship Network: Parameter Estimates for

Complete Perfect Markov Random Graph Model with
Constant Tie Assumption

Parameter

Density parameters
to

Reciprocity parameters
Pec

Out-star parameters

Transitive triad parameters
Tb2c

Ted

Pseudo-likelihood
estimate

-4.81

4.31

0.49

1.51
-0.86

Standard error
(approx.)

0.79

1.49

0.08

0.49
0.38

is not very likely to survive to time 2, given the negative density (70)
estimate.

However, a tie is more likely to be sustained across time if it remains
reciprocated across time (p<x)- This effect almost cancels out the time 2
density effect (70), suggesting that, in the absence of other effects, there
is no particular tendency for originally reciprocated ties to dissipate
across time, in contrast to unreciprocated ties. The positive out-star
effect (CTO) suggests that some individuals have high expansiveness at
time 2, although expansiveness does not seem predictable across time.
The two transitive triad effects explain different aspects of triadic
evolution. The strongly positive rC2c effect suggests that (similar to the
trust network) there is a tendency for a friendship to develop between
two individuals who select the same person as a friend. The negative
Tcc2 effect, on the other hand, suggests a tendency against friends of
friends becoming friends in this network.

5 CONCLUSIONS

It is not conceptually difficult to generalize the approach of this article
to multiple time points. The generalization from a two-block to multi-
block chain graph is well understood in the graphical modeling lit-
erature. The difficulties with multi-time point network models again
relate in part to specifying appropriate dependence structures. It would
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of course be simple enough to split the time points into adjacent pairs
and to utilize the procedures of this paper on a pair by pair basis. This
would involve the Markov-type assumption that network observations
at time t depend only on observations at time t — 1 but not at time
t — 2, nor at earlier time points. The pairs of time points could even be
regarded as multiple observations of the same cross-time process, in
effect imposing homogeneity across time points. This assumption,
although not atypical, would be a strong one, implying that the sys-
tematic processes are unchanged in effect size and in direction across
the entire measurement period. Nevertheless, such a model could
identify whether some such constant systematic change is present.

It is also possible to generalize the models by relaxing the constant tie
assumption. The additional parameters for a complete perfect Markov
model can be fitted if data sets are of adequate size. Nevertheless,
replacement of the constant tie assumption might best be decided after a
substantive consideration of the likely bases of cross-time dependencies.

An important next step is to combine these temporal models with
the attribute-related p* models of Robins et al. (in press) and Robins
et al. (2000). As Robins et al. (in press) noted, following Leenders
(1997a), a full understanding of the distribution of attributes within a
social structure requires a temporal framework. The chain graph
structure provides the methodological basis for this advance.
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