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Abstract

A class of models is proposed for longitudinal network data. These models
are along the lines of methodological individualism: actors use heuristics to
try to achieve their individual goals, subject to constraints. The current net-
work structure is among these constraints. The models are continuous time
Markov chain models that can be implemented as simulation models. They
incorporate random change in addition to the purposeful change that follows
from the actors’ pursuit of their goals, and include parameters that must be
estimated from observed data. Statistical methods are proposed for estimat-
ing and testing these models. These methods can also be used for parameter
estimation for other simulation models. The statistical procedures are based
on the method of moments, and use computer simulation to estimate the
theoretical moments. The Robbins-Monro process is used to deal with the
stochastic nature of the estimated theoretical moments. An example is given
for Newcomb’s fraternity data, using a model that expresses reciprocity and
balance.

Keywords: methodological individualism; Markov process; Newcomb data;
balance; Robbins-Monro process; simulation models; method of moments;
simulated moments; random utility.



1 Introduction: the integration of theoretical

and statistical model

Empirical tests of sociological theories are usually based on the following line
of procedure: (1) verbal (sometimes mathematical) representations of the
theory; (2) deductions of associations between certain variables that express
crucial concepts in the theory, or of other qualitative relations; (3) the em-
pirical test of these qualitative relations within a statistical framework. The
latter incorporates (if it is adequate) the operationalisation of the focal and
other relevant variables as well as the data collection methods, but does not
make direct reference to the tested theory. E.g., the theory is shown to imply
that within population P , variables A and B are positively associated when
controlling for variables C to F, and a partial correlation is tested within
the explicit or implicit statistical framework of a random sample from a
population in which several variables are observed, having an approximately
multivariate normal distribution.

This approach is useful but not the only possibility. It would be preferable
that the verbal or mathematical deductions of the theory’s implications be
integrated with the statistical model that is used for the empirical test. Such
an integration leads to a statistical model that is itself a direct expression of
the sociological theory. Econometric models of choice among a finite set of
possibilities, proposed by McFadden and others since the 1970’s (see McFad-
den 1973, Maddala 1983, Pudney 1989), provide an example. Other examples
are the models of optimizing agents presented by Chow (1983, Chapter 12)
and the model of the production of collective goods proposed by Snijders,
Van Dam and Weesie (1994). The integration of theoretical and statistical
model is more complicated but it can lead to more stringent theory develop-
ment because it requires a completely explicit theory and provides a much
more direct test of the theory.

This paper presents the outline, and a relatively simple example, of such
theoretical-cum-statistical models for evolution of networks. These models
refer to the evolution of the relation network and of individual behavior in
a (non-changing) set of actors, and are based on the assumption that each
actor has his or her own goals which he/she tries to advance in accordance
to his/her constraints and possibilities. Delopment of networks is consid-
ered rather than observations of networks at a single time point, because
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single observations of networks will usually contain too little information for
a substantial empirical test of a theory. The approach is methodologically
individualistic: the driving force behind the network dynamics is constituted
by the actors’ actions; each actor takes actions in order to further his own
goals; these actions are in the domain of his own behavior or of the directed
relationships from him to others; the actors are constrained by their social
environment.

In order that theoretical models can be empirically tested, they must
(implicitly or explicitly) contain a stochastic, or random, element; after all,
human behavior and social phenomena are so complex that any theory can
explain such phenomena only partially, or approximately, and the inclusion
in the model of a stochastic element is desirable to account for the non-
explained part of empirical observations. Therefore, probabilistic models
and, more specifically, random utility models, are needed for the integration
of theoretical and empirical modeling.

In the following we mention some approaches to dynamical network mod-
eling that have been presented in the literature. This is far from an exhaustive
review, but merely serves to point out some of the work that has provided
inspiration for this paper.

Most network models for which statistical inference procedures have been
developed (a review is given by Wasserman and Faust, 1994), are almost triv-
ial from the point of view of sociological theory. The reason is the need to
keep these models mathematically tractable in order to apply conventional
statistical methods. E.g., the p1 model proposed by Holland and Leinhardt
(1981) (see Wasserman and Faust, op. cit., for further literature on this
model), which may be the most extensively developed network model to
date as far as procedures for statistical inference are concerned, is a model
in which dyads (i.e., the constellation of relations between pairs of actors)
are statistically independent of each other. The assumption of independence
between dyads excludes a priori almost all sociologically interesting interac-
tions.

Conditionally uniform models, of which a great variety was mentioned by
Holland and Leinhardt (1976), do allow a modicum of dependence between
dyads; but they take into account only the total number and the degree of
mutuality of choices, in some models combined with in- and out-degrees (see
Snijders, 1991). As a consequence, conditionally uniform models can serve at
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best as null models against which to test sociological theories. This is exactly
what Holland and Leinhardt (1976 and later publications) propose. Their
procedure to test a given theory is the following: use as the null hypothesis
the conditionally uniform U |M, A, N model, which considers a network with
given total number of choices and a given number of mutual choices; express
the theory in the test statistic (such as Holland and Leinhardt’s τ -statistic,
which is a linear function of the triad census). Such a testing procedure is
epistemologically weak. A rejection of the null hypothesis (which is all the
researcher can hope for within the framework of this procedure) indicates
that either the test statistic is larger than expected under the null hypothesis
(defined by the U |M, A, N distribution), or something rather improbable
(an error of the first kind) has happened. However, this implies quite weak
support for the substantive theory, because the null hypothesis is so crude
that it would contradict any non-trivial sociological theory. What is needed is
a mathematical model for the alternative rather than for the null hypothesis.

The dynamic Markov models for networks (Holland and Leinhardt 1977,
Wasserman 1977, 1981, Mayer 1984, Leenders 1994) offer more scope for ex-
pressing sociological theories. Except for Mayer (1984), these models assume
conditional independence between dyads. The assumption of conditionally
independent dyads is a strong restriction. Most serious sociological theories
will imply some kind of dependence structure between different dyads. These
models can be seen as statistical models, not directly derived from a socio-
logical theory, but in other aspects closely related to the models proposed in
this paper.

The research tradition on biased nets that started with Rapoport (1951,
1957) and was continued, a.o., by Fararo (1981), Fararo and Skvoretz (1984,
1994), and Skvoretz (1991), is an interesting approach to modeling various
substantively important effects in networks, such as transitivity, subgroup
formation, etc., but still leaves a gap between theoretical mathematical mod-
els and data analysis. These authors have developed theoretical models,
and used existing statistical models for data analysis. In the terminology of
Skvoretz (1991, p. 277), what the present paper aims to do is the integration
of theoretical and methodological models.

Zeggelink (1993, 1994, 1995) developed rational choice-based models for
friendship formation in networks. The dynamical part of these models is
rather weak in the sense that insights and ideas about dynamical network
evolution are used in view of yielding an acceptable equilibrium situation
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rather than in view of providing an acceptable description of the dynamical
process itself. Moreover, these models also still lack statistical estimation
and testing methods.

Stokman and Zeggelink (1993) proposed a model for the evolution of
policy positions of actors in policy networks and for the resulting collective
outcomes. The actors can exhibit policy positions and can establish rela-
tions with other actors. Their choice among the possible actions is based on
their expectation of the utility that will result from the actions. This model
is theoretically more sophisticated than the one presented in Section 4 of
the present paper, but it lacks procedures for statistical estimation and test-
ing. This is related to the fact that this model (like practically all available
models) does not allow for stochastic deviations between expected model out-
comes and observed outcomes. Admitting such deviations in the model is an
essential requirement for the development of statistical testing procedures.

The stochastic models for network dynamics that are meaningful as an
expression of substantive theory are so complicated that the development
for these models of statistical methods along classical lines (e.g., maximum
likelihood estimators, minimum variance unbiased estimators, likelihood ra-
tio tests) is difficult and in many cases seems to border on the impossible.
Computer simulation, on the other hand, of these models often is quite feasi-
ble. It will be shown below that computer simulation opens the possibility of
(computer-intensive) methods of statistical inference, although these meth-
ods are not necessarily optimal in a statistical sense. The focus of this paper
is on the presentation of a class of theory-based stochastic dynamic models
for networks, and of simulation-based statistical methods to estimate and
test the associated parameters. As an example, Newcomb’s (1961) fraternity
data will be used.

The models proposed in this paper are Markov chain models with a con-
tinuous time parameter, observed at discrete time points. Such models were
proposed for social networks by Holland and Leinhardt (1977), and elabo-
rated by Wasserman (1977, 1979, 1980), Mayer (1984), and Leenders (1994).
An obstacle in the development and application of continuous time Markov
models has been the difficulty of deriving statistical methods for models that
go beyond dyad independence. In the present paper this obstacle is overcome
by using non-traditional statistical methods, sacrificing some computer time
and some statistical efficiency, but providing possibilities for the statistical
analysis of a large class of dynamic network models.
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2 Elements of stochastic actor-oriented net-

work models

In this section we propose a class of dynamic network models. In these models
the evolution of the network is the result of the actions of the individual actors
in the network, each of whom is individually optimizing his or her own utility,
given the constraints determined by the network and, possibly, by external
influences. Such models can be used, e.g., in rational choice approaches to
social network evolution. These models combine utility theory and Markov
processes, and are close in theoretical spirit to the models for adaptively
rational action reviewed by Fararo (1989, Sections 3.5-3.6). What is new in
them is the incorporation of parameters that are not known a priori but can
be estimated from data, and the allowance for unexplained change. These
components are necessary for a fusion of theoretical with statistical modeling.

First, the ingredients for the model are conceptually introduced. Then
some of these ingredients are further specified. A concrete example will be
given in Section 4.

The outcome space for our dynamic network model has the following basic
components.

• The time parameter t. It is represented as a continuous parameter.
The time axis is denoted T .

• The set of actors. In this paper a fixed and finite set of actors is
considered; addition of new actors, or exit from the network, will not
be taken into consideration. The set of actors is denoted G, the number
of actors by g.

• The network of relations between the actors. All relations considered
are directed relations (e.g., liking, esteem or influence) because of the
approach of methodological individualism. Relations commonly con-
sidered as undirected relations, such as friendship or cooperation, will
be regarded as mutual directed relationships. Relations may be single,
but it is more interesting to consider multiple and/or valued relations.
(This will be elaborated in later papers.) Relationships between actors
may change over time, and may be determined by the social structure
(e.g., hierarchy or kinship constraints) but it is more interesting when

5



the relationships can be purposely changed by the authors. The rela-
tion network is indicated by the time-dependent matrix F (t) for t ∈ T .
If the relationship pattern is represented by a directed graph, F (t) can
be taken as the adjacency matrix. The space of possible relation net-
works is indicated by F ; this can be the space of directed graphs on g
vertices, but also a more complicated space.

• Attributes for the actors can be included in the model. These can
be stable (e.g., gender) or changeable (e.g., attitudes). Behavior or
behavior tendencies are also considered as changeable attributes. When
the number of attributes is q, with q ≥ 0, the values of the attributes
can be represented by a time-dependent g × q matrix Z(t) for t ∈ T .
For q = 0, there are no attributes.

The state of the model is the time-dependent value Y (t) = (F (t), Z(t)) of
network and attributes. The stochastic model for the evolution of the network
will be described using the following ingredients.

• The state of each actor, which is a function of the state of the model.
It must be defined so that the actor’s evaluation of the state of the
model, in terms of his well-being, is a function only of his actor state.
E.g., in a model of friendship networks, the state of an actor could
be the number of his friends and the vector of their attributes. This
concept is not necessary for the construction of the model, but it is
often convenient.

• The information available to an actor. The actor must be informed
in any case about his own state. It is possible, however, that the
information available to the actor includes more than his own state.
Just like the state of the actor, this is a model ingredient that is not
necessary but often convenient.

• Preference or utility functions for each actor, defined as a function of
the information available to the actor. In principle, the preference func-
tion is that which the actor tries to maximize. This is split in this paper
into a modeled component and a component that is known to the ac-
tor but not to the researcher; the latter will be modeled as a random
component.
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The modeled components of the utility functions can be the same for
all actors, but in more complicated models they may differ between ac-
tors. Sometimes it is convenient to work with tension functions rather
than preference functions. A tension function is a function which ac-
tors wish to minimize. It is considered in this paper as equivalent to a
constant minus the modeled component of the utility function. When
starting with a bounded utility function, the tension function can be
defined as the maximum of the modeled component of the utility func-
tion minus its present value. (Hoede (1990) and Zeggelink (1993) use
tension functions in this way.) The tension function for actor i ∈ G
can be represented as pi(Y ), where Y is the current state of the model.
(In practice, pi will depend on suitable functions of Y , which can be
interpreted in terms of state and / or information.) The stochastic
component of the preference function will be treated further below, in
the discussion of the choice made by the actor, and the heuristic used
by him for this purpose.
The tension function will usually not be completely known, but will
contain statistical parameters that have to be estimated from the avail-
able data. E.g., in friendship networks, each actor may derive utility
from each relation partner based on the degree of perceived recipro-
cation of positive affect and on the amount of support obtained; the
weights of these two components could be free parameters in the sta-
tistical model.

• The actions that an actor can take. Actions may refer to changeable
relations between the actors and others, and also to the changeable
attributes of the actor. E.g., an action can be a change of opinion, a
change of behavior tendency (such as to start smoking), a friendship
invitation to another actor, or the acceptance of another actor’s invita-
tion to a power contest. It is quite common that there exist constraints
in the social structure to the actions that an author can take.

• The time schedule indicating when it is possible to take certain actions.
There may be constraints in the social structure as to when certain ac-
tions are possible. In most cases, the model includes stochastic waiting
times to indicate times for action.
The rate of change over time will also be a statistical parameter in the
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model, and estimated from the data.

• The choice made by an actor to perform a certain action (or to refrain
from doing so when the opportunity is offered) depends on the actor’s
expectation of the utility of his state after the action. Ideally, the actor
chooses the alternative for action that offers him the highest expected
utility.
Two limitations to the principle of utility maximization are taken into
account, however. First, the modeled utility functions will not be a
perfect representation of the actors’ utilities. Therefore, the utilities
that propel the actors’ choices also contain a random, i.e., unexplained,
element. (Random utility models are commonly used in econometric
modeling; see, e.g., Maddala (1983) and Pudney (1989).) Second, an
actor’s future state may depend also on future actions of others or on
other things unknown to him; moreover, the actor’s capacity for strate-
gic foresight and general calculations is bounded. Therefore, instead of
strictly maximizing his expected utility, each actor uses a heuristic to
approximate the expected utility associated to each of the alternatives
for action available to him at a given moment. This heuristic is part of
the model specification.

Some of these ingredients may be unobservable, others may be observable or
observable with a random error. In this paper, it is assumed that all relevant
variables are observed at a number of given time points. Models with latent
variables or with observation errors will be considered in later research.

Analogous to linear regression modeling, these longitudinal models have
to account for a degree of unexplained, or random change; the various the-
oretical effects introduced must push back this random aspect and explain
the observed change to as large a degree as possible. In the process of model
building, a sequence of increasingly complicated models can be fitted to the
data, starting with a null model of random change.

The outline given above can be further specified in such a way, that
the resulting probability model is a Markov process in continuous time. We
do not give an exposition of basic features of Markov processes, but refer
to the literature such as Chung (1967) or Karlin and Taylor (1975); and,
for social network models, to Leenders (1994) and Wasserman (1977, 1979,
1980). We only recall that a stochastic process {Y (t) | t ∈ T } is a Markov
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process if for any time t0 ∈ T , the conditional distribution of the future,
{Y (t) | t > t0} given the present and the past, {Y (t) | t ≤ t0}, is a function
only of the present, Y (t0). Further, an event is said to happen at a rate
r, if the probability that it happens in a very short time interval (t, t + dt)
is approximately equal to r dt. The reasons for specializing the model to
Markov processes are that such models often are quite natural, and that
they lend themselves well for computer simulation. The resulting dynamic
computer simulation models can be regarded as a type of discrete event
simulation models as discussed by Fararo and Hummon (1994). In terms of
their classification (op cit., p. 29), these models can have a categorical or
continuous state space, they have a continuous parameter space and time
domain, the timing of events as well as the process generator are stochastic,
and the dynamics are governed by probabilistic transition rules.

This further specification defines the time axis as T = {t | t ≥ 0}, and
makes the following assumptions about the time schedule.

• When, at a given time t, the state of the model is Y (t), the next action
by actor i will take place at a rate λi(Y (t)). This means that the waiting
time until the next action by actor i, if the state Y (t) does not change
in the meantime, is a random variable with the negative exponential
distribution, with expected value 1/λi(Y (t)). The time schedules of the
actors are conditionally independent, given the state of the process; this
implies that the waiting time until the next action by any actor has
the exponential distribution with expected value 1/{∑i∈G λi(Y (t))}.

A second specification which is not necessary for the framework sketched
above, but which will be made in this paper, is about the heuristic used by
the actor to evaluate the expected consequences of his actions and to achieve
an optimal tension decrease, given, a.o., his cognitive limitations. In the
specification of this heuristic the actor has perfect information and a random
component in his utility; and he does not anticipate on others’ reactions,
but uses a myopic decision rule in the sense that he tries to optimize his
instantaneous utility, whenever he has the opportunity to action. Interesting
further elaborations of this model, to be treated in other research, are that
the actor could ‘calculate’ his expected utility on the basis of the expected
success of his potential ‘moves’ and other forms of strategic foresight (see,
e.g., Stokman and Zeggelink, 1993), and that the actor could learn from
experience. In the present paper, the myopic decision rule implies that there
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is no expectation calculated in any real sense. This extremely simple heuristic
is specified as follows.

Suppose that at a certain time point t, actor i has an opportunity to ac-
tion. Denote his tension pi(Y (t−)) immediately before time t by p(0), and the
set of permitted actions by A = Ai(Y (t−)). Each action a ∈ A is associated
with a tension change ∆pit(a). It is permitted to the actor to do nothing, so
that the null act, with associated tension change 0, is included in A. It is
assumed that the attractivity of each action is composed of the negative of
the associated tension plus other utility components that are not explicitly
modeled in the tension function (this can be related to incompleteness of the
theory and the data and also to the idiosyncratic behavior of the actor). The
second component is represented as a random variable denoted by Eit(a).
It is assumed that these stochastic utility components are independent and
identically distributed for all i, t, and a. Thus, actor i chooses the action
a ∈ A for which the value of

−∆pit(a) + Eit(a)

is highest. For convenience, and in accordance with random utility models
commonly used in econometrics (e.g. Maddala, 1983), it will be assumed
that Eit(a) has the type 1 extreme value distribution with mean 0 and scale
parameter σ. This yields the multinomial logit model: denoting pit(a) by
p(a), the probability of choosing action a is (cf. Maddala, op. cit., p. 60)
given by

exp(−∆p(a)/σ)∑
a′∈A exp(−∆p(a′)/σ)

. (1)

If the model includes a multiplicative statistical parameter that operates as
a multiplication factor for the whole tension function p(a), it is necessary to
restrict σ to 1, in order to obtain identifiability.

Summarizing, the proposed model is a continuous time Markov process
with time parameter t > 0, characterized by the following components:

• The set of actors G , the space F of possible relation networks, and
the number q of attributes. Together, these define the space of possible
states of the process, namely, F × IRg×q.

• Possibly exogenous changes in the matrix of attributes Z(t).
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• The tension functions pi(Y ), including some statistical parameters to
be estimated from data.

• The rates of action λi(Y ), also including some statistical parameters.

• The sets Ai(Y ) of permissible actions.
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3 Estimation and Testing

The models of the type sketched in the preceding section are Markov pro-
cesses (Y (t)) in continuous time of which the probability distribution is
parametrized by a k-dimensional parameter θ. It is not assumed that the dis-
tribution of Y (t) is stationary. For a discrete set of time points t = τ1, ..., τM ,
with M ≥ 2, observations on Y (t) are available. The situation where avail-
able data on Y (t) is incomplete, is more difficult and not treated in this
paper.

The likelihood function for this type of Markov processes is, in almost all
cases, too complicated to calculate. However, Monte Carlo computer simu-
lation of Y (t) is possible for t ≥ τ0, if the initial state y(τ0) is given: in other
words, a random drawing can be simulated from the conditional probabil-
ity distribution of Y (t) t≥τ0 , given Y (τ0) = y(τ0). Because of the intractable
likelihood function, estimation principles such as maximum likelihood are
inapplicable. Therefore we propose an unconventional estimation method:
the method of moments implemented with Monte Carlo simulation. A re-
lated approach to estimation, also based on simulated expected values, was
proposed by McFadden (1989) and Pakes and Pollard (1989). In this paper
a somewhat different procedure is proposed, using stochastic approximation
(the Robbins-Monro process) to solve the moment equations.

3.1 Method of moments

The method of moments is one of the traditional statistical approaches for
parameter estimation (e.g., Bowman and Shenton, 1985). It can be expressed
as follows. When the statistical model contains k parameters, the statisti-
cian chooses a set of k statistics that capture the variability in the set of
possible data that can be accounted for by the parameters (e.g. in the case
of a random sample from a normal distribution, suitable statistics are the
mean and the variance). The parameters then are estimated by equating the
observed and the expected values of these k statistics. This method usually
yields consistent estimates, but they are often not fully efficient; the relative
efficiency depends on the choice of the statistics.

The method of moments proposed here is based on the conditional distri-
butions of Y (τm+1) given Y (τm). Suppose first that observations at M = 2
time points are available. We propose conditional moment estimation based
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on k-dimensional statistics of the form S(Y (τ1), Y (τ2)). The function S shall
be chosen in such a way that its conditional expectation

Eθ{S(Y (τ1), Y (τ2)) | Y (τ1) = y(τ1)} (2)

is a coordinatewise increasing function of θ for given y(τ1). This is necessary
to obtain good convergence properties for the estimation algorithm.

(This property will not always be easy to prove; we may have to rely on
the intuitive plausibility of this monotonicity.) For given data y(τ1), y(τ2),
the estimate θ̂ is defined to be the solution of

Eθ̂{S(Y (τ1), Y (τ2)) | Y (τ1) = y(τ1)} = S(y(τ1), y(τ2)) . (3)

More generally, if observations on Y (t) are available for t = τ1, ..., τM for
M > 2 and constant parameters over this time period are assumed, we can
consider moment estimation based on statistics of the form

M−1∑
m=1

S(Y (τm), Y (τm+1)) . (4)

For given data y(τm), m = 1, ...,M , the estimate θ̂ is defined as the solution
of

M−1∑
m=1

Eθ̂{S(Y (τm), Y (τm+1)) | Y (τm) = y(τm)} =
M−1∑
m=1

S(y(τm), y(τm+1)) .

(5)
In terms of the Monte Carlo simulations, this means that the process is
simulated for t = τ1 to τM , but that at every observation time τm (m =
1, ...,M − 1) the outcome Y (τm) is reset to its observed value y(τm); the
Markov process then continues from this value.

The delta method (Bishop, Fienberg, and Holland, 1973, section 14.6)
can be used to derive an approximate covariance matrix for θ̂. Denote

Σθ =
M−1∑
m=1

Covθ{S(Y (τm), Y (τm+1) | Y (τm) = y(τm)} , (6)

Dθ =
∂

∂θ

M−1∑
m=1

Eθ{S(Y (τm), Y (τm+1)) | Y (τm) = y(τm)} ; (7)

then it follows from the delta method, combined with the implicit function
theorem, that the approximate covariance matrix of θ̂ is

Cov(θ̂) ≈ D−1
θ ΣθD

′
θ
−1

. (8)
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3.2 Stochastic approximation

We are in a situation where we wish to solve equation (3) or (5), while
we cannot evaluate the left-hand side explicitly, but we do have a means
to generate random variables with the desired distribution. Stochastic ap-
proximation methods, in particular variants of the Robbins-Monro (1951)
procedure, can be used to obtain approximate solutions. For an introduction
to stochastic approximation and the Robbins-Monro procedure, we refer to
Ruppert (1991).

The proposed procedure is represented here in abbreviated notation as a
recursive procedure to find the value of the k-dimensional parameter θ that
solves

EθZ = 0 (9)

for a k-dimensional random variable Z with probability distribution depend-
ing on θ. In our case, for M = 2 observations, Z is

S(y(τ1), Y (τ2))− S(y(τ1), y(τ2))

where the y-values are the given observations while Y is stochastic; the prob-
ability distribution is determined by the conditional distribution of Y (τ2),
given Y (τ1) = y(τ1). For M ≥ 3 observations, Z is

M−1∑
m=1

{S(y(τm), Y (τm+1))− S(y(τm), y(τm+1))}

where the y(τm+1) (m = 1, ...,M − 1) are the given observations and the
Y (τm+1) (m = 1, ...,M − 1) are independent random variables, having the
conditional distributions of Y (τm+1), given Y (τm) = y(τm).

The basic recursion formula for the Robbins-Monro (1951) procedure with
step-size 1/N (the multivariate version is from Nevel’son and Has’minskii,
1973) is

θ̂N+1 = θ̂N −
1

N
D−1

N ZN(θN) , (10)

where ZN(θ) is a random variable with expected value EθZ. The dependence
of EθZ on θ is assumed to satisfy differentiability conditions that can be
found in the literature (e.g., Ruppert, 1991). The optimal value of DN is the
derivative matrix Dθ = (∂EθZ/∂θ). In adaptive Robbins-Monro procedures
(Venter, 1967; Nevel’son and Has’minskii, 1973), this derivative matrix is
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estimated during the approximation process. If DN is a consistent estimator
for Dθ and if certain regularity conditions are satisfied, then the limiting
distribution of θ̂N is multivariate normal, with the solution of (9) as its
mean, and

1

N
D−1

θ ΣθD
′
θ
−1

(11)

as its covariance matrix. Note that this is just the covariance matrix (8)
of the moment estimator, divided by N . This implies that, provided the
Robbins-Monro method has converged, from the point of view of approxi-
mating the moment estimate defined by (9), a reasonable choice for N is
somewhere between 100 and 500. At least N = 100 is needed to ensure that
the error resulting from the stochastic approximation is small compared to
the standard error; a value N > 500 yields a precision in the approximation
of the solution of (9) that is irrelevant in view of the imprecision inherent to
the moment estimate itself.

In the context of Monte Carlo computer simulation, we cannot compute
Dθ, but we can approximate the derivatives by averages of difference quo-
tients of random variables. Such difference quotients will have huge variances
because of the small denominator, unless the two random variables of which
the difference is taken have a high positive correlation. Therefore, it is essen-
tial to use common random numbers in the estimation of the derivatives (see
also Ruppert, 1991, section 4.3). The common random numbers technique
operates by generating two or more random variables using the same stream
of random numbers, obtained by employing the same initialisation of the ran-
dom number generator. If random variables Z(θ) and Z(θ′) are generated
using common random numbers with a simulation procedure that changes
slowly as a function of θ, then Z(θ) and Z(θ′) will be highly correlated if
‖θ − θ′‖ is small.

We employ the following procedure for estimating Dθ. For element j
of parameter vector θ, a difference quotient will be taken with a parameter
increment ∆θj = cNrj for step N . The factor cN is a small positive number,
and cN+1 ≤ cN . The parameter increment also depends on j because different
parameters θj, j = 1, ..., k may have different ”natural scales”. The values
of cN and rj have an influence on the numerical properties of the algorithm.
Suitable values can be determined from earlier experience or by trial and
error. Define ej as the scaled j’th unit vector (ejj = rj, ejh = 0 for h 6= j).
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Generate random variables

ZN0 ∼ F (θ̂N)

ZNj ∼ F (θ̂N + cNej) (j = 1, ..., k)

(12)

using common random numbers. In order to obtain sufficient stability for the
resulting process (10), the estimated derivative matrix DN should be stable
from the first value of N for which (10) is used: an incidental small eigenvalue
of DN could otherwise move θN to a value far away from the true solution.
Therefore, the process is started by simulating random variables (12) for a
fixed value of θ, just to get a stable starting value for DN . This is expressed
formally by starting the process (10) with N = 1, but simulating (12) also
for N = 1 − n0, ..., 0, with θ̂N equal to the initial value θ̂1 . The derivatives
∂EθZi/∂θj are estimated by

DNij =
1

N + n0

N∑
n=1−n0

Znji − Zn0i

cnrj

, (13)

and the recursion process (10) is carried out for n ≥ 1. We used n0 = 10 and
N = 200 or 400.

In order to obtain standard errors of estimation from (8), an estimate of
the covariance matrix Σθ is required. This also can be obtained from the
random variables generated in the recursion process. If θ̂N is close to its
limiting value θ̂, ZN0 generated according to (12) will have approximately
the covariance matrix Σθ. The expected value EZN0−EθZ is approximately
Dθ(θ̂N − θ). As a consequence, the covariance matrix Σθ can be estimated
by

Σ̂θ =
1

N

N∑
n=1

HNnH
′
Nn (14)

where
HNn = (Zn0 − Z̄(N)0 −DN(θ̂N − θ̄(N)))

Z̄(N)0 =
1

N

N∑
n=1

Zn0 , θ̄(N) =
1

N

N∑
n=1

θ̂n .

Note that for N →∞ the influence of the first part of the iterative sequence
is swamped by the later parts. The resulting estimator for the covariance
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matrix of θ̂ is
Ĉov(θ̂) = D−1

N Σ̂θD
′
N
−1

. (15)

All nice properties of adaptive Robbins-Monro procedures that have been
mathematically proved in the literature (see Ruppert, 1991), are of an asymp-
totic nature for N →∞. In practice, a good starting value for the recursions
is important; from a poor starting value, it will take a very large number of
recursion steps (10) to reach the solution of (9). Therefore, we use a check
for drift early in the recursion process. If a considerable drift is present in the
start of the process, the process restarts from the current value of θ̂N as the
new initial value. Details about the implementation of the Robbins-Monro
procedure can be obtained from the author.

3.3 Tests

Two straightforward methods for testing are proposed in this section. They
are of an approximate nature; more research is needed to study their prop-
erties. The estimation procedure by the Robbins-Monro procedure yields
estimates θ̂ with estimated covariance matrix (15). Tests on parameter val-
ues can be directly based on these statistics. E.g., to test the significance of
the single coordinate θj, a t-test can be applied with test statistic

θ̂j

S.E.(θ̂j)
, (16)

the denominator being the square root of the diagonal element of (15). This
test statistic may be treated as having an approximate t-distribution, but
the approximation is of a somewhat uncertain nature and, at this moment,
nothing can be said about the degrees of freedom. We propose to use an ap-
proximate standard normal distribution, and consider absolute values greater
than 2 as significant at the 5% level, and absolute values greater than 2.5 as
significant at the 1% level.

When separate parameters θ are estimated independently for M differ-
ent time periods, a combined test can be based on the resulting estimates
θ̂(1), ..., θ̂(M). An obvious way to combine the t-tests (16) is to use the statistic

tcomb =

∑M
m=1 θ̂

(m)
j

{∑M
m=1 σ̂2(θ̂

(m)
j )}1/2

, (17)
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where σ̂2(θ̂
(m)
j ) is the diagonal element of (15) for the m’th time period.

Again, an approximate t-distribution may be assumed for the null distribu-
tion of (17).

(If one would be confident of the estimated standard errors, it would be

more efficient to use a test statistic in which the values θ̂
(m)
j are weighed in-

versely proportional to σ̂2(θ̂
(m)
j ) . This is not proposed because these rather

unstable variance estimates should not be allowed to influence the test statis-
tic too strongly.)

A second way of testing is not to base the test on the simulated values
obtained during the Robbins-Monro process, but first to obtain the esti-
mate θ̂ and then simulate the process Y (t) again, with parameter value θ̂.
The statistics S(Y (τm), Y (τm+1)) used for the method of moments, or their
sum (4), are natural test statistics. Their mean and standard deviation can
be estimated from the new simulations. These tests are of an approximate
nature, since no account is taken of the fact that estimated parameter values
θ̂ are plugged in. Which of these approaches to testing is better, will have to
be investigated in further research.
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4 A Model for Newcomb’s Fraternity

The book by Newcomb (1961), ”The Acquaintance Process”, and the study
by Nordlie (1958) report on an extensive longitudinal study of two groups
of students living together in a student fraternity house. In this section a
longitudinal model is proposed that expresses some of the theoretical mech-
anisms that, according to Newcomb’s analysis, govern the development of
the friendship network in these groups. This model is intended to give an
example of the way of modeling proposed in the preceding section, and as
a reconstruction of part of Newcomb’s theory. It does not pretend to be a
complete analysis of Newcomb’s fraternity data; such an analysis is beyond
the scope of this paper.

The set of actors is the set of g = 17 men living in the house in year
II; the data used are those reported in the UCINET program (Borgatti,
Everett and Freeman, 1992). Actors are indicated by i ranging from 1 to g.
The relational data are given, for each moment where they are available, by
sociometric rankings by each man of all 16 others. We interpret this relation
as liking. The ranking matrices are available for 15 almost consecutive weeks.
(Data for week 9 are missing.) The ranking of actor j by actor i is denoted
rij, where a value 1 indicates highest preference. The vector

ri∗ = (rij)j=1,...,g; j 6=i

thus is the permutation of the numbers 1 to g − 1 = 16 indicating the
preference ordering of actor i. The entire preference matrix is denoted r.
The diagonal of this matrix is meaningless, and will be conventionally defined
as 0. The weeks are indicated by the time parameter t = 1, ..., 16 (t 6= 9).
Ranks rij or matrices r referring to a specific time point t are denoted rij(t)
or r(t), respectively.

4.1 Model specification

The model does not specifically include actors’ attributes; the information
available to an actor, just as his state, consists of the complete preference
matrix. (For this simple model, the concepts of the actor’s state and infor-
mation are not separately needed; they are mentioned here only for the sake
of formal completeness in view of the list given in the preceding section.)
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The preference function is the crucial part of the model, and must ex-
press some principal parts of the sociological theory developed and used by
Newcomb. It will be convenient to work with a tension function rather than
a utility function. The principal effects proposed by Newcomb are reciprocity
of attraction and balance, where balance refers to the positive relation be-
tween, on one hand, interpersonal attraction between persons, and, on the
other hand, agreement in their orientation with respect to the shared envi-
ronment. Balance can be regarded as a special kind of similarity. It would
be interesting to formulate arguments for the reciprocity and balance effects,
and for other relevant effects, from a rational choice point of view; this is
beyond the scope of the present paper.

The ranks are treated in this paper as an interval scale: the model is for-
mulated as if differences between rank numbers refer to the same differences
in liking, irrespective of whether the ranks are in the high, the middle, or the
low range of liking. This is not realistic, and it can be argued that differences
between rank numbers in the middle ranges are less important than the same
differences in the high or low ranges (cf. Doreian, Kapuscinski, Krackhardt,
and Szczypula, 1994). This point could be investigated along the lines of the
method of the present paper by using parametrized functions (e.g., quadratic
functions) of the rank numbers rather than the raw rank numbers, and esti-
mating the parameters in these functions. The suitable scoring of the ranks
is not further considered in this paper.

We shall assume that each actor i wishes to minimize a tension function
pi(r) which is the weighted sum of a reciprocity and a balance component.
The reciprocity effect means that the actor prefers that others like him to the
same degree as he likes them. The corresponding component of the tension
function is defined as

p
(1)
i (r) =

g∑
j=1
j 6=i

(rij − rji)
2. (18)

The balance effect means that the actor prefers that others to whom he is
close, view ”the world” in the same way as he views it himself. The group
of other persons in the house is considered as a significant part of the world
that determines an important part of the balance effect. Accordingly, the
balance effect is understood more restrictively as the actor’s preference that
his friends in the fraternity house have the same preference order for the
various other persons in the house as he has himself. This comes very close
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to transitivity; we have chosen to model balance in this way, rather than to
model transitivity, trying to remain close to Newcomb’s theory. For defining
the balance component, we use a non-increasing function φ(k) defined for
k = 1, ..., g − 1 measuring the closeness to i of the actor whom he accords
rank rij = k. Assuming, somewhat arbitrarily, that especially the opinions
of actor i’s 5 closest friends in the house are important to him, this function
is defined as

φ(k) =

{
(6− k)/5 for k = 1, ..., 5;
0 for k > 5.

(19)

The difference between two actors’ views of their housemates is measured by
the sum of squared differences of rankings,

g∑
h=1
h 6=i,j

(rih − rjh)
2.

The balance component of the tension function is defined as

p
(2)
i (r) =

g∑
j=1
j 6=i

φ(rij)
g∑

h=1
h 6=i,j

(rih − rjh)
2. (20)

The entire tension function for actor i is

pi(r) = α1p
(1)
i (r) + α2p

(2)
i (r) . (21)

The parameters α1 and α2 indicate the importance of balance and reciprocity,
respectively.

We now come to the actions that can be taken by the actor, and the
time schedule for doing this. The actions that can be taken by the actor
are changes in his preference ordering. It is assumed that the changes in the
actors’ preferences occur in frequent small steps as time elapses, and that
each actor is immediately aware of the changes in the others’ preferences. The
observation is not continuous, but at discrete occasions; so observed changes
may be great jumps, but these are modeled as the result of many unobserved
little steps. The frequent but small changes are modeled as follows.

The week is the time unit, but time is regarded as a continuous parameter
within weeks. Each actor has opportunities for action, i.e., for changing his
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preference order, at random time points in the week. These opportunities
arise independently for the different actors, and follow for each actor a Pois-
son process with common and constant intensity parameter λ. The actions
that each actor may take on these moments are interchanges of preferences :
when actor i has an opportunity for action and if he has adjacent preferences
for j and h, i.e., rij = k, rih = k + 1 for some number k, 1 ≤ k ≤ g− 1, then
he may interchange these preferences leading to rij = k + 1, rih = k. When
the actor has an opportunity for action, he may carry out one interchange
of preferences, or leave his preference order the same. The total number of
possible actions hence is g. A sequence of many small changes of this kind
can change any rank order into any other order.

Given the preference orders of all the actors, the g actions available to
actor i at a given moment can lead to g different values for the preference
matrix r; indicate these values by r(1) to r(g). Their tension values for actor i
are pi(r

(1)) to pi(r
(g)). One of these values, associated with the ”no change”

alternative, is equal to his present tension. In accordance with (1) it is
assumed that the probabilities of taking each of these various actions are a
logistic function of the tension values:

P{change to r(k)} =
exp(−pi(r

(k)))∑g
h=1 exp(−pi(r(h)))

. (22)

The parameter σ in (1) is set to 1 because of the presence of the parameters
α1 and α2 in the tension function (21); inclusion of σ would lead to unidenti-
fied parameters. The probabilities (22) define the heuristic used by the actor
to arrive at a lower value of his tension function.

The general model of Section 2 has now been completely specified. The
set of actors is G = {1, ..., g} with g = 17. The space F of possible relation
networks is the set of all rank matrices r, while there are q = 0 attributes. The
tension functions are given by (21). The rates of action λi(Y ) are constant
and given by λ . The set Ai(Y ) of permissible actions for actor i consists of
interchanges of adjacent values in his preference order ri∗.

The three parameters in this model are λ, α1, and α2. A higher value of
λ leads to more rapid change. A higher value of α1 will tend to push rij to-
ward rji. A higher value of α2 will have two effects: friendship choices (lower
values of rij) of i are encouraged to those j who have similar preferences
as i; and changes of i’s preferences are encouraged into the direction of the
preferences of his closer friends.
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The probabilistic model for friendship development in the fraternity is
now complete. Mathematically speaking, it is a continuous time Markov
chain for the discrete matrix r. Special sub-models are:

• α1 = α2 = 0: purely random change;

• α2 = 0: change on the basis of reciprocity only.

The parameter λ cannot be set to 0, because that would imply that no change
occurs at all. It is possible to consider the model where α1 = 0, α2 > 0, where
changes occurs on the basis of balance only while reciprocity plays no role.
This sub-model seems, however, very implausible theoretically, so we will not
pay attention to this possibility.

4.2 Statistics for moment estimation

The first step to apply the estimation method of Section 3 is to choose statis-
tics that capture the effects of the three parameters in the model. The effects
of the parameters were indicated above: λ determines rate of change, α1 reci-
procity, and α2 balance. A statistic that is relevant for the amount of change
from time t to time t + 1, is the sum of squared differences

‖ r(t + 1)− r(t) ‖2 =
g∑

i,j=1
i6=j

(rij(t + 1)− rij(t))
2. (23)

Statistics that are relevant for the parameters α1 and α2 are the totals for
reciprocity and balance over the set of all actors:

Rec(r(t + 1)) =
2

g(g − 1)

∑
1≤i<j≤g

(rij(t + 1)− rji(t + 1))2, (24)

Bal(r(t + 1)) =
1

c

g∑
i,j=1
i6=j

φ(rij(t + 1))
g∑

h=1
h 6=i,j

(rih(t + 1)− rjh(t + 1))2,(25)

where c is a norming constant,

c = g(g − 2)
g−1∑
k=1

φ(k) .
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The constants before the summation signs in (24) and (25) are such that
these two statistics can be interpreted as mean squared differences of rank
numbers.

4.3 Null model: random change

The null model of random change (α1 = α2 = 0) is so simple, that some
explicit calculations can be performed without taking recourse to Monte
Carlo simulation. The g vectors ri∗, i = 1, ..., g, are independent under this
model, each following a continuous-time Markov process with λ expected in-
terchanges of preferences per unit of time. Indicate the random number of
interchanges in one time unit by L; then L has the Poisson distribution with
parameter λ , and conditionally on L, the continuous-time Markov chain is
equal to L steps of a discrete Markov chain. With some computations, it can
be concluded from the theory of discrete Markov chains that

E {
g∑

j=1
j 6=i

(rij(t + 1)− rij(t))
2 | L} =

g−1∑
i,j=1

(i− j)2(PL)ij ,

where P is the (g − 1)× (g − 1) transition matrix that applies to the single
numbers rij. The elements of P are

p11 = pg−1,g−1 = 1− 1/g ,
pii = 1− 2/g for i = 2, ..., g − 2 ,
pi,i+1 = pi+1,i = 1/g for i = 1, ..., g − 2 ,
pij = 0 for | i− j |≥ 2 .

It follows that

Eλ{
g∑

j=1
j 6=i

(rij(t + 1)− rij(t))
2} =

∞∑
h=0

g−1∑
i,j=1

e−λλ−h

h!
(i− j)2(P h)ij . (26)

The value of (26) can easily be computed numerically, and used for the
moment estimation of λ from the outcome of ‖ r(t + 1)− r(t) ‖2.

These expressions can also be used to calculate the asymptotic value,
which is also the upper bound, for (26). For λ → ∞, the asymptotic dis-
tribution of ri∗(t + 1) is the uniform distribution over the space of all per-
mutations of the numbers 1 to g − 1, irrespective of ri∗(t). Accordingly,
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(P h)ij → 1/(g − 1) for h →∞, for all i, j. It follows that

lim
λ→∞

Eλ{
g∑

j=1
j 6=i

(rij(t + 1)− rij(t))
2} =

1

g − 1

g−1∑
i,j=1

(i− j)2 =
g(g − 1)(g − 2)

6
.

(27)
Because this asymptotic value is known, we can replace the statistic
‖ r(t + 1)− r(t) ‖2 by its normed value,

Dist(t, t + 1) =
6

g2(g − 1)(g − 2)

g∑
i,j=1
i6=j

(rij(t + 1)− rij(t))
2 .

Under the null model, 0 ≤ Eλ(Dist(t)) ≤ 1, and limλ→∞ Eλ(Dist(t)) = 1 .
Figure 1 presents the graph of Eλ(Dist(t)).

=============================
Insert Figure 1 here.
=============================

The parameter λ was estimated separately for all weeks. This was done
using the exact expected values (26), which led to moment estimates λ̂,
and also using the Robbins-Monro procedure, yielding simulated moment
estimates λ̂RM. The results are presented in Table 1.

The differences λ̂RM − λ̂ are of the size of magnitude of less than 0.1
standard error, in accordance with the N = 400 iterations used. This is a
check on the implementation of the simulation model and the Robbins Monro
method. The estimates of λ quickly decrease from λ̂ = 177 at t = 1 to values
around 40 for t ≥ 5. This means that large changes in preferences occurred
in the beginning, while the rate of change stabilized around week 5. Contrary
to expectations, period 8, which due to the missing data for week 9 refers to
two weeks instead of one, does not yield a higher value for λ̂. To interpret
the numeric values of λ̂, note that λ is the expected number of interchanges
of adjacent preferences per week.
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Table 1. Null Model: Moment Estimates
and Robbins-Monro Moment Estimates

Period t Dist(t, t + 1) λ̂ λ̂RM S.E.(λ̂RM )

1 0.3538 177.1 178.4 22.7
2 0.1934 84.7 84.4 11.4
3 0.1500 63.4 62.8 7.7
4 0.1597 68.1 67.4 8.1
5 0.1199 49.5 48.8 5.8
6 0.0872 34.9 34.6 4.3
7 0.0810 32.2 32.3 4.0

8-9 0.0960 38.7 39.0 4.0
10 0.1067 43.5 43.6 5.8
11 0.1123 46.0 45.8 6.3
12 0.1062 43.3 43.1 6.1
13 0.0787 31.3 30.8 4.2
14 0.0948 38.2 38.1 5.7
15 0.1012 41.0 40.6 4.7

The exact standard error of λ̂ may be supposed to be an increasing func-
tion of λ . This is only approximately the case for the estimates of Table 1.
The deviations from strict increasingness are presumably a consequence of
deviations between (8) and (15), due to the stochastic nature of the estima-
tion by the Robbins Monro process.

4.4 Results for Models with Reciprocity and Balance

In this section we present estimation results for the model with only the
reciprocity effect, and for the model with reciprocity as well as balance ef-
fects. The interpretation of the numerical values of the estimated parameters
α1 and α2 will be discussed in a following paper.

We first present results where the assumption of constant parameter val-
ues over time is not made, and where separate estimates are obtained for each
period t = 1, ..., 15 , using moment estimation based on equation (3). The
estimates for the reciprocity model, where α2 = 0, are presented in Table 2.
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Table 2. Reciprocity Model: Robbins-Monro Moment Estimates

Period t Dist(t, t + 1) Rec(t + 1) λ̂ S.E.(λ̂ ) α̂1 S.E.(α̂1 )

1 0.3538 26.43 178.2 27.7 0.0068 0.0037
2 0.1934 24.34 86.4 12.9 0.0094 0.0022
3 0.1500 25.88 66.2 9.0 0.0050 0.0038
4 0.1597 27.23 68.9 7.3 0.0052 0.0027
5 0.1199 29.69 49.8 6.2 0.0022 0.0032
6 0.0872 30.69 34.8 5.0 0.0030 0.0048
7 0.0810 26.68 31.0 3.7 0.0196 0.0048

8-9 0.0960 27.53 38.8 4.7 0.0054 0.0035
10 0.1067 28.28 44.5 6.4 0.0054 0.0050
11 0.1123 30.22 46.8 6.8 0.0025 0.0030
12 0.1062 29.51 44.0 6.8 0.0071 0.0031
13 0.0787 31.03 31.1 4.5 0.0012 0.0047
14 0.0948 29.84 38.2 5.3 0.0081 0.0039
15 0.1012 30.94 41.0 6.4 0.0036 0.0033

The estimates for λ are hardly different from those under the null model.
The estimates for α1 are small, all positive, and quite variable. They exceed
twice their standard error in 4 out of 14 cases. This is more than expected by
chance, but to have a good test of reciprocity, a more sensitive combination
procedure is required than the mere count of the number of periods with a
significant parameter. This combination is given by the combined test (17)
and yields tcomb = 6.03 . This indicates a strong significance of the reciprocity
effect. The average estimate α̂1 equals 0.0060 . Period 7 stands out in Table 2,
the estimated reciprocity effect being considerably higher in this week. This
corresponds to the fact that the reciprocity tension function Rec(t) shows,
during period 7, its greatest decrease Rec(8)−Rec(7) = −4.01 . Independent
repetitions of the estimation procedure did not lead to considerably different
results, so this deviating result for period 7 cannot be attributed to a large
random error, or non-convergence, in the Robbins Monro procedure. Further
analysis will have to reveal whether this effect is real or an artifact of the
model.

For the model with α1 as well as α2 as free parameters, the results are
presented in Table 3.
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Table 3. Reciprocity with Balance Model: Robbins-Monro Moment Estimates

Period t Bal(t + 1) λ̂ S.E.(λ̂ ) α̂1 S.E.(α̂1 ) α̂2 S.E.(α̂2 )

1 29.89 192.1 32.1 0.0071 0.0015 0.0035 0.0008
2 28.83 93.8 15.7 0.0104 0.0042 0.0041 0.0023
3 26.57 67.0 11.4 0.0058 0.0023 0.0046 0.0009
4 22.11 72.6 14.4 0.0058 0.0024 0.0070 0.0011
5 19.91 53.0 9.9 0.0039 0.0037 0.0073 0.0013
6 21.25 37.0 4.7 0.0034 0.0053 0.0042 0.0017
7 20.16 31.5 3.6 0.0247 0.0062 0.0084 0.0016

8-9 20.39 42.5 5.9 0.0096 0.0035 0.0061 0.0019
10 18.02 45.0 7.6 0.0076 0.0060 0.0088 0.0027
11 20.64 50.3 6.9 0.0035 0.0032 0.0035 0.0016
12 20.59 46.7 6.7 0.0086 0.0029 0.0057 0.0011
13 21.49 32.9 4.1 0.0028 0.0055 0.0044 0.0018
14 18.58 38.7 10.5 0.0081 0.0044 0.0092 0.0041
15 17.39 44.3 5.7 0.0056 0.0083 0.0075 0.0054

The estimates for λ and α1 are similar to those of Tables 1 and 2. The
estimates for α2 are, again, quite variable; almost all of them are larger
than twice their standard error. The combined test (17) yields tcomb = 9.5 ,
indicating a strongly significant balance effect. The average estimate α̂2

equals 0.0060 .
The estimates for the three parameters λ , α1 , and α2 are roughly con-

stant from period 8 onward. Therefore, the model was also estimated for
periods 8-15, under the assumption of constant parameter values, using the
moment equation (5). The estimates are λ̂ = 43.3 (S.E. = 3.7), α̂1 =
0.0065 (S.E. = 0.0016), and α̂2 = 0.0064 (S.E. = 0.0007) . The associated
t-statistics are t = 4.02 for α1 and t = 8.90 for α2 . This indicates a strong
significance of the reciprocity and the balance effects, in tests of each effect
while the other is included in the model and, consequently, being controlled
for.
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5 Discussion

This paper has presented a statistical method to estimate parameters in
simulation models from empirical data, and a rational-choice based approach
to mathematical modeling of social network development.

Statistical estimation of parameters in simulation models is rare, presum-
ably because simulation models often are regarded to be far removed from
empirical applications, and because the statistical machinery has been lack-
ing. Hopefully, the presentation of some statistical machinery in this paper
will contribute to the mutual rapprochement between simulation models and
empirical research. The estimation method based on the Robbins-Monro
method is quite computer-intensive. This may be a restriction to its useful-
ness, but will be so to a decreasing extent. A disadvantage of the method is
its lack of full statistical efficiency, due to the use of the method of moments;
and the not quite satisfactory stability of the variance estimators (15). More
research is needed on the judicious choice of statistics S as used in Section 3
for the moment method, in view of the efficiency of the resulting estimators,
and on more stable variance estimators. However, the use of precise, and
theoretically well-founded mathematical models can imply an efficiency gain
that makes up for this lack of statistical efficiency. More research is also
needed to derive measures of how well the model represents the data, and of
the fit of the model.

The proposed class of models for social network development is based on
individually optimizing actors, bound by social, cognitive, and other con-
straints. Due to the limitations of the part of Newcomb’s data set that is
now accessible, the main constraints represented in the model of Section 4 are
the current structure of the network and the simple (one could say: trivial)
heuristic used by the actors to decrease their tension. Important constraints
for Newcombe’s freshmen students such as the occupation and spatial lay-
out of the rooms, as well as characteristics of the students (background,
attitudes), were collected by Nordlie and Newcombe but seem to have been
lost.

Models of the type presented in Section 2 can be used in a statistical
analysis of observational data on network evolution especially if important
constraints are known in the data set. The model specification will have to
be based in part on theoretical modeling, in part on arbitrary or mathemat-
ically convenient assumptions. Examples of the latter are the precise form
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of the tension function (21), and of the probabilities (22) in Section 4. This
theoretically arbitrary part of the model specification may be based, to some
extent, on empirical results; for the rest, the results of the statistical analysis
should preferably be insensitive to this part of the model specification. More
research is needed also on these points.

Our treatment of Newcomb’s fraternity data in this paper is not more
than an example of the proposed approach to modeling and estimation. In
future work, we plan to have a more thorough look at the specification of
mathematical models for Newcomb’s data, and to apply our approach also
to other empirical studies. An example is given by Van De Bunt, Van Duijn,
and Snijders (1995).
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