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Abstract

A class of statistical models is proposed for longitudinal network data.
The dependent variable is the changing (or evolving) relation network,
represented by two or more observations of a directed graph with a
fixed set of actors. The network evolution is modeled as the con-
sequence of the actors making new choices, or withdrawing existing
choices, on the basis of functions, with fixed and random components,
that the actors try to maximize. Individual and dyadic exogenous
variables can be used as covariates. The change in the network is
modeled as the stochastic result of network effects (reciprocity, tran-
sitivity, etc.) and these covariates. The existing network structure
is a dynamic constraint for the evolution of the structure itself. The
models are continuous-time Markov chain models that can be imple-
mented as simulation models. The model parameters are estimated
from observed data. For estimating and testing these models, statis-
tical procedures are proposed which are based on the method of mo-
ments. The statistical procedures are implemented using a stochastic
approximation algorithm based on computer simulations of the net-
work evolution process.

1. INTRODUCTION

Social networks represent relations (e.g., friendship, esteem, collaboration,
etc.) between actors (e.g., individuals, companies, etc.). This paper is con-
cerned with network data structures in which all relationships within a given
set of n actors are considered. Such a network can be represented by an n×n
matrix x = (xij), where xij represents the relation directed from actor i to
actor j (i, j = 1, ..., n) . Only dichotomous relations are considered here: the
relation from i to j either is present, denoted xij = 1, or absent, denoted
xij = 0. Self-relations are not considered, so that the diagonal values xii are
meaningless. They are formally defined as xii = 0. This x is the adjacency
matrix of the directed graph by which the network can be represented, and
it is also called the sociomatrix.

More specifically, we consider longitudinal data on entire networks. It is
supposed that the data available is a time-series x(t), t ∈ {t1, ..., tM} of social
networks for a constant set {1, ..., n} of actors. The observation times are
ordered, i.e., t1 < t2 < ... < tM . The number M of time points is at least 2.
The purpose of the statistical analysis is to obtain an insight in the evolution
of the network, where the initial state x(t1) is taken for granted.

Longitudinal social network data are a complex data structure, requir-
ing complex methods of data analysis for a satisfactory treatment. Holland
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and Leinhardt (1977a, 1977b) and Wasserman (1977) already proposed to
use continuous-time Markov chains as a model for longitudinal social net-
works. In a continuous-time model, time is assumed to flow on continuously,
although observations are available only at the discrete time points t1 to tM ,
and between the observations the network is assumed to change unobserved
at random moments as time progresses. Continuous-time models offer, in
principle, greater flexibility than the discrete-time Markov chain models elab-
orated, e.g., by Katz and Proctor (1959), Wasserman (1987), and Wasserman
and Iacobucci (1988).

A basic continuous-time Markov chain model for dichotomous social net-
works, the reciprocity model, was elaborated by Wasserman (1977, 1979,
1980) and further investigated by Leenders (1995a, 1995b) and Snijders
(1999). This model is limited because it assumes dyad independence. A
dyad is defined as the pair (xij, xji) of relations between two actors i and j.
Dyad independence means that the dyads (Xij(t), Xji(t)) evolve as mutually
independent Markov chains. This assumption effectively allows to change the
analysis from the level of the network to the level of the dyad. This is com-
putationally attractive, but does not leave much room for realistic statistical
modeling. Effects related to dependence in the relations between sets of three
or more actors, e.g., transitivity (“a friend of my friend is my friend”), cannot
be represented by models with dyad independence. Other continuous-time
models for social network evolution were proposed by Wasserman (1980) and
Mayer (1984), but to allow parameter estimation these models also were very
restrictive.

Markov chain Monte Carlo (“MCMC”) methods can be used to develop
statistical procedures for quite general probability models for the evolution of
social networks, provided that these models can be implemented as stochas-
tic simulation models. This was proposed by Snijders (1996) for data defined
by sociometric rankings. Snijders and Van Duijn (1997) sketched how this
approach can be used for dichotomous social network data. They also indi-
cated how such an actor-oriented model must be specified in order to obtain
the dyad-independent models of Wasserman and Leenders. Empirical appli-
cations of these stochastic actor-oriented models were presented in Van de
Bunt (1999) and Van de Bunt, Van Duijn, & Snijders (1999). The present
paper extends this method to data observed at more than two time points,
specifies a more efficient and simpler stochastic approximation algorithm,
and presents a wider array of effects that can be included in the model.

The basic idea for our model for social network evolution is that the ac-
tors in the network may evaluate the network structure and try to obtain
a “pleasant” (more neutrally stated, “positively evaluated”) configuration
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of relations. The actors base their choices in the network evolution on the
present state of the network, without using a memory of earlier states. How-
ever, they are assumed to have full knowledge of the present network. This
represents the idea that actors pursue their own goals under the constraints
of their environment, while they themselves constitute each others’ changing
environment (cf. Zeggelink, 1994). It is immaterial whether this “network
optimization” is the actors’ intentional behavior; the only assumption is that
the network can be modeled as if each actor strives after such a positively
evaluated configuration. This evaluation is defined as a function of the net-
work as regarded from the perspective of the focal actor, and depends on
parameters which are to be estimated from the data. This approach to net-
work evolution is in line with the theoretical sociological principle of method-
ological individualism, and was referred to by Snijders (1996) as a stochastic
actor-oriented model. The evaluation includes a random element to account
for the deviation between theoretical expectation and observed reality, which
leads to a kind of random utility model (cf. random utility models commonly
used in econometrics and treated, e.g., in Maddala, 1983). The models can
be implemented as stochastic simulation models, which is the basis for the
MCMC procedure for parameter estimation. This is a frequentist procedure,
using the method of moments. The MCMC implementation of the method
of moments uses a stochastic approximation algorithm which is a descendant
of the Robbins-Monro (1951) algorithm.

2. CONTINUOUS-TIME MARKOV CHAINS

This section gives a brief introduction to continous-time Markov chains. Kar-
lin and Taylor (1975) and Norris (1997) give general treatments of this kind
of stochastic process models. More elaborate introductions to continuous-
time Markov chain models for social networks are given by Leenders (1995b)
and Wasserman (1979, 1980).

The available data are assumed to be two or more observations of social
networks; but the present section is phrased, more generally, in terms of an
arbitrary finite outcome space Y . The finitely many observation times t1 to
tM are embedded in a continuous set of time points T = [t1, tM ] = {t ∈ IR |
t1 ≤ t ≤ tM}. Thus it is assumed that changes can take place unobserved
between the observation moments. This is not unrealistic and allows a more
versatile and natural mathematical treatment.

Suppose that {Y (t) | t ∈ T } is a stochastic process where the Y (t) have a
finite outcome space Y and the time parameter t assumes values in a bounded
or unbounded interval T ⊂ IR. Such a stochastic process is a Markov process
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or Markov chain if for any time ta ∈ T , the conditional distribution of the
future, {Y (t) | t > ta} given the present and the past, {Y (t) | t ≤ ta}, is
a function only of the present, Y (ta). This implies that for any possible
outcome x ∈ Y , and for any pair of time points ta < tb,

P{Y (tb) = x | Y (t) = y(t) for all t ≤ ta}

= P{Y (tb) = x | Y (ta) = y(ta)} .
(1)

The Markov chain is said to have a stationary transition distribution if the
probability (1) depends on the time points ta and tb only as a function of the
elapsed time in between, tb − ta . It can be proven that if {Y (t) | t ∈ T } is a
continuous-time Markov chain with stationary transition distribution, then
there exists a function q : Y2 → IR such that

q(x, y) = lim
dt↓0

P{Y (t+ dt) = y | Y (t) = x}
dt for y 6= x

q(x, x) = lim
dt↓0

1− P{Y (t+ dt) = x | Y (t) = x}
dt .

(2)

This function q is called the intensity matrix or the infinitesimal generator.
The element q(x, y) is referred to as the rate at which x tends to change into
y. More generally, an event is said to happen at a rate r, if the probability
that it happens in a very short time interval (t, t+dt) is approximately equal
to r dt.

The simultaneous distribution of the Markov chain {Y (t) | t ≥ ta} with
stationary transition distribution is determined completely by the probability
distribution of the initial value Y (ta) together with the intensity matrix.
Specifically, the transition matrix

P (tb − ta) =
(

P{Y (tb) = y | Y (ta) = x}
)
x,y ∈Y

is defined by

P (t) = eQt ,

where Q is the matrix with elements q(x, y) and the matrix exponential is
defined by

eQt =
∞∑
h=0

Qhth

h!
.

The reasons for specializing the model to Markov processes with station-
ary transition distributions are that such models often are quite natural,
and that they lend themselves well for computer simulation. The resulting
dynamic computer simulation models can be regarded as a type of discrete
event simulation models as discussed by Fararo and Hummon (1994).
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3. STOCHASTIC ACTOR-ORIENTED MODELS FOR NETWORK
EVOLUTION: SIMPLE SPECIFICATION

The specification of the model developed in this paper has three ingredients:
the rate function, the objective function, and the gratification function. A
simple specification is determined by only the objective function, with a
constant rate function and a gratification function equal to zero. The model
is explained first for this simple specification. The rate and gratification
functions are treated in a later section.

3.1. Basic model ingredients

The class of all sociomatrices, i.e., of all n×n matrices of 0-1 elements with a
zero diagonal, is denoted by X . Note that X has 2n(n−1) elements, a number
which is so huge that analytical calculations based on the intensity matrix
will be out of the question for most purposes.

It is assumed that each actor “controls” his outgoing relations, which are
collected in the row vector (Xi1(t), ..., Xin(t)) of the sociomatrix. Each actor
has the opportunity to change his outgoing relations at stochastic times; in
the interval between the observation moments tm and tm+1 these opportuni-
ties occur at a rate ρm. When an actor changes his outgoing relations, he is
assumed to strive after a rewarding configuration for himself in the network.
This goal is modeled in the so-called objective function f discussed below,
to which a random component is added, representing the actor’s drives that
are not explicitly modeled. The actors are assumed to have all information
required to calculate their own objective function. This information can be
extensive or limited, depending on the model.

At any single time point, at most one actor may change his outgoing
relations. Furthermore, he may change only one relation at the time. Of
course, many small changes between two observation times can result in a
big difference between the two observed networks. The fact that the model
specification focuses on changes of single relations is the major reason why
continuous time modeling is relatively straightforward. (An example of a
continuous-time model for social networks where more than one relation can
change at one time point is given by Mayer, 1984.) It should be noted that
the fact that the actors take into account the present network structure which
is common to them all, introduces a high degree of interdependence between
them (when one marginalizes out, rather than conditions upon, the current
network structure).
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3.2. Objective function

The objective function for actor i is denoted by

fi(β, x) , x ∈ X , (3)

and indicates the degree of satisfaction for actor i inherent in the relational
situation represented by x. This function depends on a parameter vector
β. In the simple model specification of this section, the parameter of the
statistical model is θ = (ρ, β), where ρ = (ρ1, ..., ρM−1) is the vector of
change rates during the time periods from tm to tm+1 (m = 1, ...,M − 1).

Suppose that at some moment t, actor i has the opportunity to change
his outgoing relations. At this moment, actor i determines the other actor
j with whom he will change his relation xij. If immediately before time t
actor i does have a relation to actor j, then a change implies withdrawing
the relation; if immediately before time t actor i does not have a relation
to actor j, then a change implies initiating the relation. Given the present
state x of the network, the network that results when the single element
xij is changed into 1 − xij (i.e., from 0 to 1 or from 1 to 0), is denoted by
x(i ; j). Note that x(i ; j) refers to an entire adjacency matrix. When the
current network is x, actor i has the choice between x(i ; j) for all possible
j = 1, ..., n, j 6= i. It is assumed that actor i chooses the j that maximizes
the value of his objective function fi(β, x(i ; j)) plus a random element,

fi(β, x(i ; j)) + Ui(t, x, j) . (4)

The term Ui(t, x, j) is a random variable, indicating the part of the actor’s
preference that is not represented by the systematic component fi . It is
assumed that these random variables are independent and identically dis-
tributed for all i, t, x, j. The assumption that the actor tries to maximize
(4), which refers to the state obtained immediately after making this sin-
gle choice, can be regarded as an assumption of myopia: the actor does not
consider the longer-term, or indirect, effects of his choices.

3.3. Markov chain with random utility component

These functions are used in the following way to define a continuous-time
Markov chain X(t) with the finite outcome space X .

Events, i.e., changes of the network structure, take place at discrete time
points; in between these points, the network structure remains constant. The
process is modeled as being right-continuous: if a change takes place from
state x0 to state x1 at time t0, then there is an ε > 0 such that X(t) = x0

for t0 − ε < t < t0, while X(t) = x1 for t0 ≤ t < t0 + ε.

7



The actions of the n actors depend only on the current state of the net-
work, not on the history of how this network came into being. Each actor
changes his relations one-at-the-time at stochastic moments at a rate ρm.
This means that at each time point t ∈ (tm, tm+1), the time until the next
change by any actor has the negative exponential distribution with parame-
ter nρm and the expected waiting time until the next change by any actor is
1/(nρm). When an event occurs, all actors have the same probability 1/n to
be the one to change one of his outgoing relations. Given that actor i may
change an outgoing relation, he chooses to change his relation to that actor
j (j 6= i) for whom the value of (4) is highest.

It is convenient to let the Ui(t, x, j) have the type 1 extreme value distri-
bution (or Gumbel distribution) with mean 0 and scale parameter 1 (Mad-
dala, 1983). This assumption is commonly made in random utility modeling
in econometrics. When this distribution is used, the probability that the
given actor i chooses the other actor j for changing the relation xij, is the
multinomial logit expression, cf. Maddala (1983, p. 60),

pij(θ, x) =
exp(fi(β, x(i ; j)))∑n

h=1,h 6=i exp(fi(β, x(i ; h)))
(j 6= i). (5)

3.4. Intensity matrix

It was mentioned in Section 2 that stationary transition distributions of
continuous-time Markov chains are characterized by their intensity matrix.
In our case, where relations are allowed to change only one at a time, the
intensity matrix can be represented by functions qij(x), indicating the change
rates of x to x(i ; j) for j 6= i. All other change rates are 0. These functions
are defined for i, j = 1, ..., n, i 6= j, as

qij(x) = lim
dt ↓ 0

P{X(t+ dt) = x(i ; j) | X(t) = x}
dt

. (6)

The intensity matrix q(x, y) defined in (2) is related to qij(x) by

q(x, y) =


qij(x) if y = x(i ; j)
0 if x and y differ in more than one element
−∑i6=j qij(x) if x = y.

(7)

Note that directed graphs x and y differ in exactly one element (i, j) if and
only if y = x(i ; j) and x = y(i ; j).

For the Markov chain in the simple model specification of the present
section, qij(x) is given for time period (tm, tm+1) by

qij(x) = ρm pij(θ, x) . (8)
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3.5. Specification of the model

The objective function must contain the substantive ingredients of the model,
including, e.g., actor attributes and structural properties of the directed
graph. Since the actor has direct control only of his outgoing relations,
only the dependence of fi on row i of the adjacency matrix has an influence
on the behavior of the model.

A convenient choice for the objective function is to define it as a sum

fi(β, x) =
L∑
k=1

βk sik(x) , (9)

where the weights βk are statistical parameters indicating the strength of the
corresponding effect sik(x), controlling for all other effects in the model, and
the sik(x) are relevant functions of the digraph that are supposed to play a
role in its evolution. All formulae given below for possible components sik
refer to a contribution to the objective function of actor i, while the other
actors to whom i could be related are indicated by j.

Effects can be distinguished according to whether they depend only on the
network x – in which case they can be regarded as endogenous network effects
– or also on covariates, which are supposed to be determined exogenously.
Covariates can be of two kinds: actor-dependent covariates V with values
vi for actor i, or pair-dependent (dyadic) covariates W with values wij for
the ordered pair (i, j). Only constant (i.e., time-independent) covariates are
considered.

The following list is a collection of network effects, as possibilities for the
functions sik in (9).

1. density effect, defined by the out-degree
si1(x) = xi+ =

∑
j xij ;

2. reciprocity effect, defined by the number of reciprocated relations
si2(x) =

∑
j xij xji ;

3. popularity effect, defined by the sum of the in-degrees of the others to
whom i is related,
si3(x) =

∑
j xij x+j =

∑
j xij

∑
h xhj

4. activity effect, defined by the sum of the out-degrees of the others to
whom i is related,
si4(x) =

∑
j xij xj+ =

∑
j xij

∑
h xjh
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5. transitivity effect, defined by the number of transitive patterns in i’s
relations (ordered pairs of actors (j, h) to both of whom i is related,
while also j is related to h),
si5(x) =

∑
j,h xij xih xjh ;

6. indirect relations effect, defined by the number of actors to whom i is
indirectly related (through one intermediary, i.e., at sociometric dis-
tance 2),
si6(x) = #{j | xij = 0, maxh(xih xhj) > 0};

7. balance, defined by the likeness between the out-relations of actor i to
the out-relations of the other actors j to whom i is related,

si7(x) =
n∑
j=1

xij
n∑
h=1
h 6=i,j

(b0 − |xih − xjh|) , (10)

where b0 is a constant included for convenience. If the density effect is
included in the model (which normally will be the case), the number
b0 can be chosen so as to obtain the clearest interpretation without
essentially changing the model specification.

E.g., to have a balance effect that is not too strongly correlated with
the density effect, the number b0 in (10) can be chosen so that the
average of the second sum in this equation over all actors and over the
first M − 1 time points is 0, i.e.,

b0 =
1

(M − 1)n(n− 1)(n− 2)

M−1∑
m=1

n∑
i,j=1

n∑
h=1
h 6=i,j

|xih(tm)− xjh(tm)| . (11)

This list can be extended, in principle, indefinitely. Potentially important
additional types of effect are non-linear effects, i.e., non-linear functions of
sik defined above, the out-degree xi+ being the primary candidate for such
a non-linear transformation; and other subgraph counts in which actor i is
involved, of which the reciprocity and transitivity effects are examples.

In practically all applications it will be advisable to include the density
effect, because the other effects listed above should be controlled for the
density effect. The reciprocity effect is so fundamental in social relations
that it is advisable also to include this effect in most applications.

The transitivity and balance effects, and the indirect relations effect when
it has a negative weight, all are different mathematical specifications of the
intuitive idea that actor i has a ‘closed’ or transitive personal network, i.e.,
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the others to whom i is related tend to have comparatively many relations
among themselves. Verbal theories will not often be detailed enough to dis-
tinguish between these effects. It can be determined empirically if one or
some of these three effects succeed better than the others in accounting for
the observed degree of closure, or transitivity, in the data.

For each actor-dependent covariate V there are the following three ba-
sic potential effects. (The notation for the functions sik does not explicitly
indicate their dependence on the covariate values vj.)

8. covariate-related popularity, defined by the sum of the covariate over
all actors to whom i has a relation,
si8(x) =

∑
j xij vj;

9. covariate-related activity, defined by i’s out-degree weighted by his co-
variate value,
si9(x) = vi xi+;

10. covariate-related dissimilarity, defined by the sum of absolute covariate
differences between i and the others to whom he is related,
si10(x) =

∑
j xij |vi − vj |.

Positive covariate-related popularity or activity effects will lead to associ-
ations between the covariate and the in-degrees and out-degrees, respectively.
A negative covariate-related dissimilarity effect will lead to relations being
formed especially between actors with similar values on the covariate.

This list can be extended, e.g., by including covariate values in the defini-
tions of the network effects listed above. This represents interactions between
the covariate and the network effect.

The main effect for a pair-dependent covariate is

11. covariate-related preference, defined by the sum of the values of wij for
all others to whom i is related,
si11(x) =

∑
j xij wij .

Here also, the list can be extended by including covariate values in the defi-
nition of network effects.

Theoretical insights in the relational process and experience with model-
ing this type of data have to determine the effects that are included.
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4. MOMENT ESTIMATORS

Let the objective function be given by (9), so that the parameter of the
statistical model is θ = (ρ, β). The dimensionality of β is denoted L and
the total number of dimensions for θ is K = M − 1 + L. Analogous to
what was proposed for a similar model by Snijders (1996), this parameter
can be estimated by the method of moments (explained for general statistical
models, e.g., by Bowman and Shenton, 1985). This means that a statistic
Z = (Z1, ..., ZK) is used, for which θ is determined as the solution of the
K-dimensional moment equation

EθZ = z , (12)

where z is the observed outcome. This moment equation will be specified fur-
ther by certain ways of conditioning on the initial and intermediate outcomes
x(t1) to x(tm−1).

First the choice of the statistic Z is discussed, and then a MCMC algo-
rithm that can be used to approximate the solution of the moment equation.

For the estimation, no assumptions whatsoever are made about the initial
state x(t1). Therefore, the estimation is carried out conditional on this initial
state, and this state is not used to obtain any information about the value
of the parameter.

In the absence of a formal method such as a reduction to sufficient statis-
tics, the statistics Zk should be chosen so that they are relevant for the
components of the parameter θ in the sense that the expected values of
Zk (k = 1, ..., K) are sensitive to changes in the components of θ. One way
to specify this is to require that

∂EθZk
∂θk

> 0 for all k.

A more stringent specification is to require that this property hold not only
for all separate coordinates of the parameter vector, but also for all linear
combinations:

a′
(
∂EθZ
∂θ

)
a > 0 for all a ∈ IRK , a 6= 0, (13)

where (∂EθZ/∂θ) is the matrix of partial derivatives. This requirement is
far from implying the statistical efficiency of the resulting estimator, but
it confers a basic credibility to the moment estimator and it ensures the
convergence of the stochastic approximation algorithm mentioned below.
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The components of θ = (ρ, β) are the rates of change ρm in the time
interval (tm, tm+1) and the weights βk in the objective function (9). The
motivation for the statistics Zi, at this moment, is of a heuristic nature, based
on their obvious connection to the parameters and supported by sufficiency
considerations in certain special cases.

For ρm , a relevant statistic is the total amount of change in the m’th
time period measured by the number of differences between two consecutive
observation moments,

Cm =
n∑

i,j=1
i6=j

|Xij(tm+1)−Xij(tm)| . (14)

This choice for the statistic relevant for ρm can be supported by noting that
if β = 0, which reduces the model to the trivial situation where the Xij(t)
are randomly changing 0-1 variables, Cm is a sufficient statistic for ρm.

For βk , a relevant statistic is the sum over all actors i of the digraph
statistics sik , observed at time tm+1 ,

Smk =
n∑
i=1

sik(X(tm+1)) . (15)

This statistic has an immediate intuitive appeal: if βk is larger, then the
actors strive more strongly to have a high value of sik , so that it may be
expected that Smk will be higher for all m. The statistics Smk are combined
over the M − 1 time intervals by an unweighted sum.

Combining all these proposals, the moment estimator for θ is defined as
the solution of the system of equations

Eθ{Cm |X(tm) = x(tm)} = cm (m = 1, ...,M − 1) (16)
M−1∑
m=1

Eθ{Smk |X(tm) = x(tm)} =
M−1∑
m=1

smk (k = 1, ..., L), (17)

where cm and smk are the observed outcomes of the statistics Cm and Smk.
Although in our experience these equations mostly seem to have exactly

one solution, they do not always have a solution. This can be seen as follows.
For a fixed value of β, the left-hand side of (16) is an increasing function of
ρm , tending to an asymptote which is lower than the maximum possible value
of cm, this maximum being n(n−1). This implies that the method proposed
here is not suitable for observations x(tm) and x(tm+1) which are too far
apart in the sense of the metric (14). For such observations the dependence
of x(tm+1) on the initial situation x(tm) is practically extinguished, and it
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may be more relevant to estimate the parameters of the process generating
x(tm+1) without taking this initial situation into account.

For the trivial submodel where all Xij(t) are independent, the existence
of maximum likelihood and moment estimators is discussed in Snijders and
Van Duijn (1997).

4.1. Covariance matrix of the estimator

The delta method (see, e.g., Bishop, Fienberg, and Holland, 1973, section
14.6) can be used to derive an approximate covariance matrix for the moment
estimator θ̂. (This holds generally for moment estimators, see Bowman and
Shenton, 1985, formula (5).) For a homogeneous notation for the parameters
ρm and β, denote Cmm = Cm and formally define Cmk = 0 for k 6= m, and
denote

Zm = (Cm1, ..., Cm,M−1, Sm1, ..., SmL) .

Then the moment equations (16, 17) can be written as

M−1∑
m=1

Eθ{Zm |X(tm) = x(tm)} =
M−1∑
m=1

zm . (18)

Further denote

Σθ =
M−1∑
m=1

cov{Zm |X(tm) = x(tm)} (19)

Dθ =
∂

∂θ

M−1∑
m=1

E{Zm |X(tm) = x(tm)} . (20)

Then it follows from the delta method, combined with the implicit function
theorem and the Markov property for the X(t) process, that the approximate
covariance matrix of θ̂ is

cov(θ̂) ≈ D−1
θ ΣθD

′
θ
−1
. (21)

It is plausible that these estimators have approximately normal distri-
butions, although a proof is not yet available. Based on the assumption
of normally distributed estimates, the parameters can be tested using the
t-ratios defined as the parameter estimate divided by its standard error, re-
ferred to a standard normal null distribution. (In other words, the test is
carried out as a t-test with infinite degrees of freedom; this test should be
regarded as a rough approximation, since no definite results are yet available
on the distribution of this test statistic.)
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4.2. Conditional moment estimation

The method of moments can be modified by conditioning on the outcomes cm
of Cm (m = 1, ...,M−1) rather than using moment equations involving these
statistics. This provides a more stable and efficient algorithm and reduces
the parameter estimated by the method of moments to the L-dimensional β.
This can be helpful especially for larger values of M .

The modified method is based on the property that the distribution of a
continuous-time Markov chain X(t) remains invariant when the time param-
eter is divided by some constant value while the rate parameter is multiplied
by the same value. Specifically, when the rate parameter ρm obtains for all
t ≥ tm , then the distribution of X(tm + t), conditional on X(tm) and for
t > 0, depends on ρm and t only through their product, tρm. The modified
method can be loosely described as follows. For each period m independently,
the Markov chain is started at time t = 0 with the initial value x[m] = x(tm)
and a rate parameter equal to 1. The process is stopped at the first moment
t when

∑
ij |Xij(t) − x[m]

ij |= cm . This value of t is expected to be close to
the product ρm(tm+1 − tm) and the statistics observed at this moment are
compared with the statistics calculated from observation x(tm+1).

To explain this more formally, denote by X(1)(t) a Markov chain evolving
according to our model with a fixed and constant rate parameter ρ = 1 and
a given value of β, and denote by S

(1)
k (t) the corresponding statistics (15).

Independent replications of this stochastic process, starting at t = 0 with
X(1)(0) = x(tm), are used as models for the M − 1 periods. Define the
statistic

C(1)(t) =
n∑

i,j=1
i6=j

|X(1)
ij (t)−X(1)

ij (0)| (22)

and the stopping time

T fin
m = min{t ≥ 0 | C(1)(t) ≥ cm} . (23)

The conditional moment estimator for β is defined as the solution of

M−1∑
m=1

Eβ{S(1)
k (T fin

m ) | X(1)(0) = x(tm)} =
M−1∑
m=1

smk (k = 1, ..., L) (24)

and, given the resulting estimate β̂, ρm is estimated by

ρ̂m = (tm+1 − tm)−1 E β̂{T
fin
m | X(1)(0) = x(tm)} . (25)

It follows from the general theory of Markov chains that for all possible
values of cm the stopping time T fin

m is finite with probability 1, and even has

15



a finite expected value. Therefore the difficulties with the definition of the
estimator for large values of cm , as discussed for the unconditional moment
estimator, do not arise here. However, this consolation is only theoretical,
because in practice, for large t the value of C(1)(t) fluctuates randomly about
an asymptote lower than the maximum possible value of n(n − 1), and the
stopping time T fin

m is indeed finite but horribly large. The simulation-based
algorithm, explained below, is not practically feasible for values of cm larger
than this asymptote.

5. STOCHASTIC APPROXIMATION

The moment equations for the two estimation methods are defined by (18)
and (24), but the conditional expectations which are central in these equa-
tions cannot be calculated explicitly (except for some special and rather
trivial cases, as discussed in Snijders and Van Duijn, 1997). However, it is
rather straightforward to simulate random digraphs with the desired distribu-
tions. Therefore, stochastic approximation methods, in particular, versions
of the Robbins-Monro (1951) procedure, can be used to approximate the mo-
ment estimates. Introductions to stochastic approximation and the Robbins-
Monro algorithm are given, e.g., by Ruppert (1991) and Pflug (1996).

The algorithm to solve the equation (12) is based on a sequence θ̂N gen-
erated according to the iteration step

θ̂N+1 = θ̂N − aN D
−1
0 (ZN − z) , (26)

where ZN is generated according to the probability distribution defined by
the parameter value θ̂N . For aN , a sequence is used that converges slowly
to 0. D0 is a positive diagonal matrix. In principle, the optimal choice of
D0 might be non-diagonal. However, Polyak (1990), Ruppert (1988), and
Yin (1991) (as discussed also by Pflug, 1996, Section 5.1.3, and Kushner and
Yin, 1997) showed that if all eigenvalues of the matrix of partial derivatives,
(∂EθZ/∂θ), have positive real parts and certain regularity conditions are
satisfied, then convergence at an optimal rate can be achieved when D0 is
the identity matrix, with aN a sequence of positive numbers converging to 0
at the rate N−c, where 0.5 < c < 1. To obtain this optimal convergence rate,
the solution of (12) must be estimated not by the last value θ̂N itself, but
by the average of the consecutively generated θ̂N values. This algorithm is a
Markov chain Monte Carlo algorithm because the iteration rule (26) indeed
defines a Markov chain.

The convergence properties of this algorithm hold asymptotically for
N → ∞. To have good properties already for relatively low values of N
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it is important to specify the algorithm in such a way that it quickly comes
close to the target value. This can be achieved by applying a result due to
Pflug (1990), who showed that the limiting first order autocorrelation of the
sequence (ZN − z) generated by (26) is negative. This means that as long
as the partial sums of successive values of the product (ZN − z)′(ZN−1 − z)
are positive, it must be assumed that the sequence θ̂N still is drifting toward
the limit point rather than wandering around the limit point, so that it is
not desirable to decrease the step sizes aN . Therefore aN remains constant
as long as there still seems to be such a drift going on, except that when N
gets too large aN is decreased anyway, in order to retain the convergence rate
N−c for the sequence aN .

These ideas are combined in the specification of the algorithm as given in
the appendix. The algorithm provides an arbitrarily accurate approximation
to the solution of (12) as well as an estimate of the covariance matrix (21). It
is available in the freeware PC program SIENA (see the discussion section).

6. AN EVOLVING NETWORK OF UNIVERSITY FRESHMEN

As an illustration, data are used of a study by Van De Bunt (1999) which
were analyzed also by Van De Bunt, Van Duijn, and Snijders (1999). For a
more extensive description of this data set we refer to these publications. In
the present paper, this data set is used only as an illustration without paying
much attention to the theoretical interpretations.

The actors in this network are a group of 32 university freshmen who
were following a common study program in a Dutch university. This group
comprised 24 female and 8 male students. The number of observations used
here is M = 3. The data used here are those for the time points labeled
t2, t3, and t4 in Van De Bunt, Van Duijn, and Snijders (1999). There are
3 weeks between time points t2 and t3, and also between t3 and t4. For the
purpose of this illustration, the time points are relabeled t1, t2, and t3. The
relation studied is defined as ‘at least a friendly relationship’, referred to here
as a positive relation (xij = 1). The absence of a positive relation is referred
to as a null relation (xij = 0).

There is missing data due to non-response, increasing from 9% at t1 to
19% at t3. This incompleteness of data is treated in the estimation procedure
in the following ad hoc fashion. (It will be important to conduct further
studies to evaluate this way of dealing with incomplete data, and compare it
with potential alternatives.)

Missing data are treated in a simple way, trying to minimize their in-
fluence on the estimation results. The simulations are carried out over all
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n = 32 actors. In the initial observation x(tm) for each period, missing entries
xij(tm) are set to 0. In the course of the simulations, however, these values
are allowed to become 1 like any other values xij(t). For the calculation of
the statistics Smk and Cm , the values of xij(tm) as well as of Xij(tm+1) are
set to 0 whenever at least one of the two observations xij(tm) and xij(tm+1)
is missing.

To get a basic impression of the data, it may be noted that densities
(calculated over the available data) at the three observation moments increase
from 0.15 via 0.18 to 0.22. The number of observed changes between the
observations at t1 and t2 was 60 (out of 744 directed pairs (i, j) for which the
value of xij was observed at observations t1 and t2); between t2 and t3 this
was 51 (out of 679 observations).

The first model estimated includes the basic effects of density and reci-
procity, together with the three basic triadic effects: transitivity, indirect
relations, and balance. The purpose of this stage in the analysis is to investi-
gate which of these triadic effects are empirically supported by these network
evolution data. The number b0 in (10) is defined by (11). The conditional
moment estimator was used and the algorithm was specified as described
in the appendix, except that to increase precision 5 subphases were carried
out in phase 2 and n3 = 1000 steps were made in phase 3. The results are
displayed as Model 1 in Table 1.

Table 1: Parameters for models estimated using observations at t1, t2, t3.

Model 1 Model 2 Model 3
Effect par. (s.e.) par. (s.e.) par. (s.e.)
Rate (period 1) 3.87 3.78 3.91
Rate (period 2) 3.10 3.14 3.07
Density -1.48 (0.30) -1.05 (0.19) -1.13 (0.22)
Reciprocity 1.98 (0.31) 2.44 (0.40) 2.52 (0.37)
Transitivity 0.21 (0.11) – –
Balance -0.33 (0.66) – –
Indirect relations -0.347 (0.074) -0.557 (0.083) -0.502 (0.084)
Gender activity – – -0.60 (0.28)
Gender popularity – – 0.64 (0.24)
Gender dissimilarity – – -0.42 (0.24)

The estimated rate parameters, ρ̂1 = 3.87 and ρ̂2 = 3.10, indicate that
on average the actors made 3.87 changes of relationships between the first
two observations, and 3.10 changes between the last two observations. (This
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includes two-way changes between two observations which remained unob-
served because they canceled each other.)

As suggested in Section 4.1, the effects are tested by t-statistics defined
by the ratio of parameter estimate to standard error, referred to a stan-
dard normal distribution. There is a strongly significant reciprocity effect
(t = 1.98/0.31 = 6.39). Of the three triadic effects, the indirect relations
effect is significant (t = −0.347/0.074 = −4.69), but the other two are not
significant at the 5% level, although the transitivity effect comes close. When
the balance effect was deleted from the model, the t-value for the transitivity
effect became 1.94 (results not shown here), just short of significance at the
5% level. The results obtained when deleting the two non-significant effects
from the model are shown as Model 2 in Table 1. The indirect relations effect
becomes larger, and the density and reciprocity effects change, because these
effects now also must represent the effects represented by transitivity and
balance in Model 1. It can be concluded that there is evidence of a tendency
to have closed networks in the sense of a relatively low number of indirect
relations; controlling for this effect and for reciprocity, there is no significant
tendency toward a high number of transitive triplets or toward balanced re-
lationships. No significant evidence was found for other structural network
effects (estimation results not shown here).

As a next step, the three basic effects of gender were included in the
model. In the original dataset gender was represented by a dummy variable
equal to 0 for women and 1 for men. The means were subtracted from this
variable as well as from the dissimilarity variable | vi − vj |. Given that the
proportion of women was 75%, this leads to the variable vi being -0.25 for
women and +0.75 for men, and the dissimilarity variable being -0.387 for
equal-gender pairs and 0.613 for unequal-gender pairs. The results for the
model including the structural effects of reciprocity and indirect relations as
well as the three covariate effects of gender are presented in Table 1 as Model
3. It can be concluded that women are more active in creating positive rela-
tions than men (t = −0.60/0.28 = −2.14), while men receive more positive
choices (t = 0.64/0.24 = 2.67), but there are no significant (dis)similarity
effects associated with gender. The control for gender does not have an
important influence on the reciprocity or indirect relations effects.

The results based on the observations at these three moments can be
compared to results based on only two of these observations. This can be
used to check the model assumption that the parameter values βk are in the
time interval between t1 and t2 the same as between t2 and t3. Further, for
the analysis of the evolution of the network from t1 to t3 this illustrates the
greater precision obtainable by including the information about the network
at t2. The comparison is made only for Model 3, and reported in Table 2.
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Table 2: Parameter estimates for Model 3, estimated from two observations.

Observations t1, t2 t2, t3 t1, t3
Effect par. (s.e.) par. (s.e.) par. (s.e.)
Rate 3.64 3.21 5.29
Density -0.99 (0.32) -1.30 (0.28) -0.78 (0.31)
Reciprocity 2.36 (0.52) 2.89 (0.67) 2.40 (0.48)
Indirect relations -0.432 (0.113) -0.653 (0.140) -0.536 (0.146)
Gender activity -0.75 (0.40) -0.39 (0.42) -0.77 (0.36)
Gender popularity 0.40 (0.31) 1.03 (0.44) 0.36 (0.26)
Gender dissimilarity -0.35 (0.35) -0.58 (0.43) -0.22 (0.31)

None of the estimates are significantly different between the periods t1–t2
and t2–t3. This supports the use of a common model for the entire period
t1–t3.

To compare the ‘Model 3’ column of Table 1 with the ‘t1, t3’ column of
Table 2, the estimates in the former column are called ‘three-observation’
and those in the latter column ‘two-observation’ estimates. It appears that
the corresponding estimates differ at most by about one ‘two-observation’
standard error; for all parameters but one, the ‘three-observation’ estimates
are closer than the ‘two-observation’ estimates to the mean of the sepa-
rate estimates for the t1–t2 and t2–t3 periods. The ‘three-observation’ stan-
dard errors all are clearly smaller than the ‘two-observation’ standard errors.
This provides some support for the expected greater reliability of the ‘three-
observation’ as compared to the ‘two-observation’ estimates.
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7. EXTENDED MODEL SPECIFICATION

The general model specification contains, in addition to the objective func-
tion, two other elements: the rate function, representing that actors may
differ in the rate at which they change their relations; and the gratification
function, representing that various effects may operate differently for the cre-
ation of a relation (where xij goes from 0 to 1) than for its dissolution (xij
changing from 1 to 0).

7.1. Rate function

The rate function for actor i is denoted

λi(ρ, α, x,m) for x ∈ X , (27)

and indicates the rate at which actor i is allowed to change something in
his outgoing relations in the time period tm ≤ t < tm+1. In the simple
specification given above, this rate function depended only on m and not on
i or x, and was defined as λi(ρ, α, x,m) = ρm. The roles of the statistical
parameters ρ and α are discussed below.

These rate functions and the conditional independence of the actors imply
that at each time point t, the time until the next change by any actor has
the negative exponential distribution with parameter

λ+(ρ, α, x,m) =
n∑
i=1

λi(ρ, α, x,m) , for x = x(t), tm ≤ t < tm+1 (28)

(provided that this next change still is before time tm+1). The parameter of
the negative exponential distribution is taken here as the reciprocal of the
expectation, so the expected waiting time until the next change after time t
is 1/λ+(ρ, α, x(t),m) (where a possible change to the following time interval
is not taken into account). Given that a change occurs, the probability that
it is actor i who may change his out-relations is

λi(ρ, α, x,m)

λ+(ρ, α, x,m)
. (29)

Non-constant rate functions can depend, e.g., on actor-specific covariates
or on network statistics expressing the degree to which the actor is satisfied
with the present network structure. Of course the rate function must be
restricted to positive values. In order not to burden the specification with
too many complications, it is proposed to define the rate function as a product

λi(ρ, α, x,m) = λi1λi2λi3
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of factors depending, respectively, on period m, actor covariates, and the
actor’s personal network. The corresponding factors in the rate function are
the following:

1. The dependence on the period can be represented by a simple factor

λi1 = ρm

for m = 1, ...,M − 1.

2. The effect of actor covariates with values vhi can be represented by the
factor

λi2 = exp(
∑
h

αh vhi) . (30)

3. The dependence on the network can be modeled, e.g., as a function of
the actor’s out-degree, in-degree, and number of reciprocated relations.
Define these by

xi+ =
∑
j

xij, x+i =
∑
j

xji, xi(r) =
∑
j

xijxji

(recalling that xii = 0 for all i).
Snijders and Van Duijn (1997) investigated how the rate function should
be specified in order to obtain Wasserman’s (1979) reciprocity model
as a special case. Denoting the corresponding parameter by α1, for the
dependence on the out-degree this led to the factor

λi3 =
xi+
n− 1

exp(α1) + (1− xi+
n− 1

) exp(−α1). (31)

This defines a linear function of the out-degree, parametrized in such
a way that it is necessarily positive.
For a general dependence on the out-degree, in-degree, and number of
reciprocated relations, one can use an average of such terms, the second
and third one depending on x+i and xi(r), respectively.

It would be interesting to explore other specifications of the rate function,
expressing in a theoretically more satisfactory way the circumstances and
characteristics upon which it depends how quickly actors change their rela-
tions.
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7.2. Gratification function

The basic motivation for the third model ingredient, the gratification func-
tion, is that a given effect may operate more strongly, or less strongly, for
the creation than for the dissolution of relations. E.g., it is conceivable that
although actors prefer to establish reciprocated relations, they are quite will-
ing to initiate as yet unreciprocated relations; but that, once they have a
reciprocated relationship, they are very reluctant to let it go, e.g., because
of the investments accumulated in this relation, cf. Van De Bunt (1999).
This would mean that the reciprocity effect is greater for dissolution than
for creation of ties. Such a difference cannot be represented by the objective
function alone. Therefore the model includes also a gratification function

gi(γ, x, j) , defined for i, j = 1, ..., n, i 6= j, x ∈ X , (32)

which indicates the instantaneous gratification experienced by actor i when,
from the given network configuration x, element xij is changed into its op-
posite, 1− xij .

When a gratification function is included in the model, expression (4) for
the momentary objective function maximized by i is replaced by the sum of
the actor’s preference for the new state, the gratification experienced as a
result of the change, and a random element:

fi(β, x(i ; j)) + gi(γ, x, j) + Ui(t, x, j) . (33)

Using the same assumptions for the random term Ui(t, x, j) as above, the
probabilities of the various possible new states x(i ; j) now are given by

pij(θ, x) =
exp(r(θ, i, j, x))∑n

h=1,h 6=i exp(r(θ, i, h, x))
(j 6= i). (34)

where

r(θ, i, j, x) = fi(β, x(i ; j)) + gi(γ, x, j) .

These probabilities do not change when to r(θ, i, j, x) a term is added that
does not depend on j. It is often more convenient to work with

r(θ, i, j, x) = fi(β, x(i ; j))− fi(β, x) + gi(γ, x, j) . (35)

The instantaneous effect gi is a more general model component than the
objective function fi , because the objective function depends only on the
new state x(i ; j), whereas the gratification function depends arbitrarily on
the new state as well as the old state x. The reason for not working with just
the gratification function is that the objective function, attaching a value to
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each network configuration, often is conceptually more attractive and better
interpretable than the instantaneous gratification effect.

The gratification function can be specified by a weighted sum,

gi(γ, x, j) =
H∑
h=1

γh rijh(x) (36)

for certain statistics rijh(x), each containing either a factor xij (if it reflects
the gratification involved in withdrawing a relation, i.e., changing xij from 1
to 0) or a factor (1− xij) (if the effect is about the gratification involved in
creating a relation). Some examples of such terms are the following.

1. γ1 xij xji : indicator of a reciprocated relation; a negative value of γ1

reflects the costs associated with breaking off a reciprocated relation.

2. γ2 (1−xij)
∑
h xihxhj : the number of actors through whom i is indirectly

related to j; a positive value of γ2 reflects that it is easier to establish
a new relation to another actor j if i has many indirect relations to j
via others who can serve as an introduction;

3. γ3 xij wij : the value wij for another actor to whom i has a relation; e.g.,
a negative value of γ3 reflects the costs for i associated with breaking
off an existing relation to other actors j with a high value for wij .

7.3. Intensity matrix and simulation

The model that includes an arbitrary rate function λi(ρ, α, x,m), an objective
function, and a gratification function, still is a continuous time Markov chain.
The intensity matrix q(x, y) still is given by (7), now with

qij(x) = λi(ρ, α, x,m) pij(θ, x) , (37)

where pij now is given by (34).
Note that it is straightforward to define an algorithm that simulates this

stochastic process. Schematically, this can be done as follows. Suppose that
the present time point is t ∈ [tm, tm+1). The time until the next change by
any actor is generated by a negative exponential distribution with parameter
(28), provided that the moment so determined is before time tm+1. The actor
who is to change a relation (i.e., the row of the adjacency matrix in which
a change will occur) is actor i with probability (29). The other actor with
whom actor i will change the relation (column of the adjacency matrix) is
j with probability (34). When j is chosen, element xij is changed into its
opposite, 1− xij.
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7.4. Choice of statistics for estimation

The use of the method of moments requires also the selection of statistics
that are relevant for the parameters included in the rate and gratification
functions.

A tentative choice for statistics to estimate the parameters αh in (30) is
provided by the total amounts of change weighted by vhi ,

CM+h−1 =
M∑
m=1

n∑
i,j=1
i6=j

| Xij(tm+1)− xij(tm) | vhi . (38)

To estimate the parameter α1 in (31) for the effect of out-degree on rate of
change, the statistic

CM+H =
M∑
m=1

n∑
i,j=1
i6=j

| Xij(tm+1)− xij(tm) | xi+(tm) (39)

can be used (where H is the total number of covariates used for modeling the
rate function), and similarly for the effects of the in-degree and the number
of reciprocated relations. These choices are intuitively plausible and have led
to reasonable estimates in some trial data sets, but more research is required.

For the parameters γh included in the gratification function (36), a rele-
vant statistic is

Rh =
M−1∑
m=1

n∑
i,j=1
i6=j

| Xij(tm+1)− xij(tm) | rijh(x(tm)) , (40)

which is the sum of the rijh values of newly formed relations if rijh contains
a factor (1 − xij), and the sum of rijh values of disappeared relations if rijh
contains a factor xij.

These statistics CM+h and Rh are used in the method of moments in the
same way as

∑
m Smk in (17) and (25).

25



8. CONTINUATION OF THE EXAMPLE

Continuing the example of the network of university freshmen, the effect (31)
of the out-degrees on the rate of change is included, and the gratification
function is defined as the sum of the effect of breaking reciprocated relations
and the effect of gender difference on breaking a relation,

gi(γ, x, j) = γ1 xij xji + γ2 xij | vi − vj |

where vi indicates the gender of actor i.

Table 3: Parameter estimates for model with rate and gratification effects

Model 4
Effect par. (s.e.)
Rate (period 1) 5.05
Rate (period 2) 3.95
Out-degree effect on rate 0.90 (0.47)
Density -0.99 (0.20)
Reciprocity 2.82 (0.56)
Indirect relations -0.508 (0.091)
Gender activity -0.52 (0.31)
Gender popularity 0.55 (0.30)
Gender dissimilarity 0.08 (0.37)
Breaking reciprocated relation -0.58 (1.06)
Breaking relation with different-gender other 1.64 (0.62)

The results are given as Model 4 in Table 3. It can be concluded that the
tendency of actors with higher out-degrees to change their relations more
often is close to significance at the 5% level (t = 0.90/0.47 = 1.91), and
that relations with other actors of the other sex are terminated more quickly
than those with others of the same sex (t = 1.64/0.62 = 2.65). The effect of
reciprocity on breaking a relation is not different from what may be expected
from the main reciprocity effect (t = −0.58/1.06 = −0.55). Comparing these
results to those for Model 3 in Table 1, it can be concluded that the activity
and popularity effect for gender now are somewhat weaker (having lost their
significance at the 5% level), and the main gender dissimilarity effect has
vanished due to the inclusion of the effect of gender dissimilarity on breaking
a relation. Thus Model 4 suggests that friendly relations with others of
the other sex are less stable, and that there is no evidence (as one might
erroneously conclude from Model 3) that friendly relations are initiated less
with others of the different than with those of the same sex.
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9. ASYMPTOTIC DISTRIBUTION AND RELATION
WITH THE p∗ MODEL

If it is possible to reach every state from every given initial state in a finite
number of steps (as is the case here), the distribution of a Markov chain
with stationary intensity matrix on a finite outcome space tends to a unique
limiting distribution as t→∞, independent of the initial distribution. For a
certain specification of our model, this limiting distribution is the p∗ model
for social networks proposed by Wasserman and Pattison (1996), generalizing
the Markov graph distribution proposed by Frank and Strauss (1986). The
p∗ model is a family of probability distributions for a single observation x on
a stochastic directed graph X. The probability distribution for the p∗ model
is defined by

P{X = x} =
exp(β′z(x))

κ(β)
(41)

where z(x) is a vector of statistics of the digraph and κ(β) is a normaliza-
tion factor. The following proposition indicates a specification for the actor-
oriented model that yields the p∗ distribution as the limiting distribution.

Proposition 1. Define for all i the objective function by

fi(β, x) = β′z(x) (42)

and the gratification function by gi = 0. Furthermore, define the rate func-
tion by

λi(x) =
n∑
h=1
h 6=i

exp(β′z(x(i ; h))) . (43)

Then the limiting probability distribution of X(t) for t→∞ is the p∗ distri-
bution with probability function (41).

Proof. It follows from (34), (37), and (43) that

qij(x) = exp(β′z(x(i ; j))) .

Note that the symbol x(i ; j) can be understood as the result of taking
matrix x and applying the operation of changing xij into 1 − xij. Applying
this operation twice returns the original matrix x, which can be represented
as (x(i ; j))(i ; j) = x. Therefore,

qij(x(i ; j)) = exp(β′z(x))
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which implies

exp(β′z(x))qij(x) = exp(β′z(x(i ; j)))qij(x(i ; j))

and, for Q defined by (7), that

exp(β′z(x))q(x, y) = exp(β′z(y))q(y, x)

for all x, y. In terms of the theory of Markov chains (e.g., Norris, 1997, p. 124–
125), this means that the intensity matrix Q and the distribution (41) are in
detailed balance, which implies that (41) is the stationary distribution for Q.
Since all states communicate with one another, the stationary distribution is
unique and (41) also is the limiting distribution. Q.E.D.

An interpretation of the rate function (43) is that actors for whom changed
relations have a higher value, will indeed change their relations more quickly.

10. DISCUSSION

The procedure proposed in this paper provides a method for the analysis of
two or more repeated observations on a social network, in which network as
well as covariate effects are taken into account. In view of processes in the
real-life evolution of social networks, in which endogenous network effects
cumulate continuously over time, the continuous-time nature of this model
will be attractive in many applications. The procedure is available in the PC
program SIENA (“Simulation Investigation for Empirical Network Analysis”,
available free of charge from http://stat.gamma.rug.nl/snijders/siena.html),
which runs under Windows, and is comprised in the StOCNET package
(http://stat.gamma.rug.nl/stocnet).

The present article provides the basic procedure, but this methodology
could benefit from further elaborations and improvements, e.g., along the fol-
lowing lines. The algorithm has proven to work well in various applications,
but it is rather time-consuming and improvements may be possible. A proof
of the sufficient condition for its convergence (see the appendix: the eigen-
values of (D−1

0 ∂EθZ/∂θ) should have positive real parts) still is lacking. The
frequency properties of the standard errors and the hypothesis tests are based
on large sample approximations and should be investigated. The robustness
of the proposed estimates and tests to deviations from the model assumptions
is an interesting point for further study. The method of moments was chosen
because of its feasibility, but it may be possible to develop other estimation
methods for this model. As additions to the toolbox, it would be useful to
have measures for goodness of fit and some kind of standardized effect sizes.
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The present implementation contains an ad hoc way of dealing with missing
data which merits further investigation.

Although the model is presented as an actor-oriented model, it uses an
extremely simple and myopic behavioral model for the actors. This simplicity
is a strength because more complicated models for the behavior of actors in a
relational network would be more restrictive and less general in their domain
of applicability. On the other hand, for specific applications it could be
interesting to develop statistical network evolution models incorporating a
sociologically more interesting behavioral model.

Further extensions are possible. An extension to relations with ordered
outcome categories would increase the scope of the model. One could also
think of extending the model to include unobserved heterogeneity by means
of random effects, but this would lead the model outside of the realm of
complete observations of the state of a Markov process, and therefore require
more complex estimation methods.

APPENDIX: STOCHASTIC APPROXIMATION ALGORITHM

The purpose of the algorithm is to approximate the solution of the moment
equation (12). In this appendix, the solution is denoted by θ0. As mentioned
in the text above, the algorithm uses the idea of Polyak (1990) and Ruppert
(1988) to employ a diagonal matrix D0 in the iteration step (26) and estimate
the solution by partial averages of θ̂N rather than the last value; and it uses
the idea of Pflug (1990) to let the values of aN remain constant if the average
products of successive values (ZN − z)(ZN−1 − z) are positive, since this
suggests that the process still is drifting toward its limit value. However, the
specification used here deviates from Pflug’s proposal by requiring, for the
premature decrease of aN , that for each coordinate the partial sum of the
product of successive values be negative, rather than requiring this only for
the sum over the coordinates. Further, the number of steps for which aN is
constant is bounded between a lower and an upper limit to ensure that aN
is of order N−c.

A crucial condition for the Polyak-Ruppert result about the optimal con-
vergence rate of the partial sums of θ̂N to the solution of (12), is the assump-
tion that all eigenvalues of the matrix of partial derivatives, (D−1

0 ∂EθZ/∂θ),
have positive real parts; see Yin (1991), Pflug (1996), or Kushner and Yin
(1997). This condition is implied by condition (13) if D0 is the identity
matrix. For our model and the proposed statistics used in the moment es-
timators we conjecture that this condition is satisfied, but the proof still is
a matter of further research. Whether the algorithm yields an estimate that
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indeed solves the moment equation (12) to a satisfactory degree of precision
is checked in the ‘third phase’ of the algorithm below. The practical expe-
rience with the convergence of the algorithm is, for most models applied to
most data sets, quite favorable.

The reason for incorporating the matrix D0 is to achieve better compat-
ibility between the scales of Z and of θ. The diagonal elements of D0 are
defined as the estimated values of the derivatives ∂Eθ(Zk)/∂θk where θ is at
its initial value. To see that this leads to compatibility of the scales of Z and
θ note that in the extreme case where var(Zk) = 0 and the diagonal elements
of D0 are equal to ∂Eθ(Zk)/∂θk, (26) for aN = 1 is just the iteration step of
the Newton-Raphson algorithm applied to each coordinate of Z separately.
Thus, beginning the algorithm with aN in the order of magnitude of 1 will
imply that the initial steps have an approximately right order of magnitude.

The algorithm consists of three phases, which can be sketched as follows.
The number of dimensions of θ and of Z is denoted by p and the initial value
is denoted θ1.

Phase 1. In this phase a small number n1 of steps are made to estimate D(θ1) =
(∂Eθ(Z)/∂θ) |θ=θ1 , using common random numbers; the diagonal ele-
ments of this estimate are used to define D0.
This is described formally as follows. Denote by ej the j′th unit vector
in p dimensions. In step N , generate ZN0 ∼ θ1 and ZNj ∼ θ1 + εjej,
where all the p + 1 random vectors use a common random number
stream to make them strongly positively dependent and where εj are
suitable constants. For different N , the random vectors are generated
independently. Compute the difference quotients

dNj = ε−1
j (ZNj − ZN0) ;

for small values of εj the expected value of the matrix dN = (dN1, ..., dNp)
approximates D(θ1). However, εj must be chosen not too small because
otherwise the variances of the dNj become too large.
At the end of this phase, estimate Eθ1Z and D(θ1) by

z̄ =
1

n1

n1∑
N=1

ZN0 and D̂ =
1

n1

n1∑
N=1

dN ,

respectively, make one estimated Newton-Raphson step,

θ̂n1 = θ1 − D̂−1 (z̄ − z) ,

and use the diagonal matrix D̃ = diag(D̂) in phase 2.
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Phase 2. This is the main phase. It consists of several subphases. The number
of iteration steps per subphase is determined by a stopping rule, but
bounded for subphase k by a minimum value n−2k and a maximum value
n+

2k . In each subphase, aN is constant. The only difference between
the subphases is the value of aN . The subphase is ended after less
than n+

2k steps as soon as the number of steps in this subphase exceeds
n−2k while, for each coordinate Zk, the sum within this subphase of
successive products (ZNk − zk)(ZN−1,k − zk) is negative. If the upper
bound n+

2k is reached, then the subphase is terminated anyway.
In each iteration step within each subphase, ZN is generated according
to the the current parameter value θ̂N and after each step this value is
updated according to the formula

θ̂N+1 = θ̂N − aN D̃
−1 (ZN − z) . (44)

At the end of each subphase, the average of θ̂N over this subphase is
used as the new value for θ̂N .
The value of aN is divided by 2 when a new subphase is entered. The
bounds n−2k and n+

2k are determined so that N3/4aN tends to a finite
positive limit.
The average of θ̂N over the last subphase is the eventual estimate θ̂.

Phase 3. Phase 3 is used only for the estimation of D(θ) and Σ(θ), using common
random numbers for the estimation of the derivatives; and as a check
for the (approximate) validity of (12). Therefore the value of θ̂N is
left unchanged in this phase and is equal to the value obtained after
last subphase of phase 2. The procedure further is as in phase 1. The
covariance matrix of Z, required for the calculation of (21), is estimated
in the usual way.

This algorithm contains various constants that can be adapted so as to
achieve favorable convergence properties. Experience with various data sets
led to the following values. The number of steps in phase 1 is n1 = 7+3p. The
values of εi are chosen at least 0.1, in most cases 1.0, because the variability
obtained by the use of small values of εi is more serious than the bias obtained
by the use of this large value. The minimum number of steps in subphase
2.k is n−2k = 24(k−1)/3(7 + p) and the maximum number is n+

2k = n−2k + 200.
The initial value of aN in phase 2 is 0.2. The default number of subphases is
4; more or less subphases can be used to obtain smaller or larger precision.
The default number of steps in phase 3 is n3 = 500. Phase 3 takes much
time because each step requires p+ 1 simulations; but the variance estimate
is rather unstable if the number of steps is much smaller.
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