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Networks have in recent years emerged as an invaluabledodétcribing and quantifying complex systems
in many branches of science. Recent studies suggest thabnkstoften exhibit hierarchical organization,
where vertices divide into groups that further subdivide groups of groups, and so forth over multiple scales.
In many cases these groups are found to correspond to knawetidoal units, such as ecological niches in
food webs, modules in biochemical networks (protein irtgéoa networks, metabolic networks, or genetic
regulatory networks), or communities in social networkserélwe present a general technique for inferring
hierarchical structure from network data and demonstize the existence of hierarchy can simultaneously
explain and quantitatively reproduce many commonly olegrwopological properties of networks, such as
right-skewed degree distributions, high clustering cogfits, and short path lengths. We further show that
knowledge of hierarchical structure can be used to predissing connections in partially known networks
with high accuracy, and for more general network structtines competing techniques. Taken together, our
results suggest that hierarchy is a central organizingjplie of complex networks, capable of offering insight
into many network phenomena.

Supplementary Information Many other models with inhomogeneous edge probabilities
have, of course, been studied in the past. One example is a
structured random graph in which there are a finite number
of types of vertices with a matrix; giving the connection
probabilities between them.

Appendix A: Hierarchical random graphs

Our model for the hierarchical organization of a network
is as follows! Let G’ be a graph witm vertices. Adendro-
gram D is a binary tree with leaves correspondingto the ver-  appendix B: Fitting the hierarchical random graph to data
tices of G. Each of then — 1 internal nodes oD corresponds
to the group of vertices that are descended from it. We asso-
ciate a probabilityp,. with each internal node. Then, given
two verticesi, j of G, the probabilityp;; that they are con-
nected by an edge js; = p, wherer is their lowest common
ancestor inD. The combinatioD, {p, }) of the dendrogram

and the set of probabilities then defindserarchical random Bayes’ theorem, proportional to the posterior probabiity

graph. . : ..._likelihood £ with which that model generates the observed
Note that if a community has, say, three subcommunities

ith | orobability of . b h network® Our goal is to maximizeC or, more generally, to
with an equal probability of connections between them, we sample the space of all models with probability proportiona
can represent this in our model by first splitting one of thes ol
subcommunities off, and then splitting the other two. The tw i

internal nodes corresponding to these splits would be giveas

the same probabilities, = p. This yields three possible bi- respectively, be the numbers of leaves in the left and right

nary dendrograms, which are all considered equally likely. g, irees rooted at Then the likelihood of the hierarchical
We can think of the hierarchical random graph as a variazangom graph is

tion on the classical Erd6s—Rényi random gréfin, p). As

in that model, the presence or absence of an edge between L(D,{p,}) = H pE (1 _pT)L,‘RT—E,‘ (B1)
any pair of vertices is independent of the presence or absenc "
of any other edge. However, whereasGiin, p) every pair

of vertices has the same probabilityof being connected, in  with the convention thai® = 1.

the hierarchical random graph the probabilities are inhomo | we fix the dendrogranD, it is easy to find the proba-
geneous, with the inhomogeneities controlled by the tapolo pilities {5, } that maximizeC (D, {p, }). For eachr, they are
ical structure of the dendrogram and the parametef, }.

Now we turn to the question of finding the hierarchi-
cal random graph or graphs that best fits the observed real-
world network G. Assuming that all hierarchical random
graphs ara priori equally likely, the probability that a given
model(D, {p.-}) is the correct explanation of the data is, by

Let £, be the number of edges@nwhose endpoints have
their lowest common ancestor in, and letL,. and R,

reD

2 F. McSherry, “Spectral Partitioning of Random GrapHgroc. Founda-

1 Computer code implementing many of the analysis methodsrities in tions of Computer Science (FOCS), pp. 529-537 (2001)
this paper can be found online at 3 G. Casella and R. L. Berger, “Statistical Inference.” DuxbBress, Bel-
ww. sant af e. edu/ ~aar onc/ r andongr aphs/ . mont (2001).
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We now use a Markov chain Monte Carlo method to sam-
ple dendrogram® with probability proportional to their like-
lihood £(D). To create the Markov chain we need to pick a
set of transitions between possible dendrograms. The tran-
sitions we use consist of rearrangements of subtrees of the
dendrogram as follows. First, note that each internal node
of a dendrogran® is associated with three subtrees: the sub-
treess, t descended from its two daughters, and the suhtree
descended from its sibling. As Figure 2 shows, there are two
ways we can reorder these subtrees without disturbing any of
their internal relationships. Each step of our Markov chain
consists first of choosing an internal nadaniformly at ran-

FIG. 1. An example networky consisting of six vertices, and the dom (other than the root) and then choosing uniformly at ran-
likelihood of two possible dendrograms. The internal nodesf 45 m petween the two alternate configurations of the subtrees
each dendrogram are labeled with the maximum-likelihomb@r <o ciated with that node and adopting that configuratiba. T

bility p,., i.e., the fraction of potential edges between their left an . , . !
right subtrees that exist i@. According to Eq. (B3), the likelihoods result is a new dendrografiy’. Itis straightforward to show

of the two dendrograms a( D) = (1/3)(2/3)2-(1/4)%(3/4)® = t_ha_lt transitions of this type am¥godic, i.e., tha_t any pair of
0.00165. .. and£(D2) = (1/9)(8/9)° = 0.0433... The second finite dendrograms can be connected by a finite series of such
dendrogram is far more likely because it correctly divides met-  transitions.

work into two highly-connected subgraphs at the first level.

Once we have generated our new dendrogf2nwe ac-
. cept or reject that dendrogram according to the standard
Metropolis—Hastings rulé.Specifically, we accept the transi-
tion D — D' if Alog £ = log L(D') — log L(D) is nonneg-
A A A ative, so thaD’ i_s at least as likely aB; otherwise we accept
the transition with probabilitgxp(log AL) = L(D’)/L(D).
If the transition is not accepted, the dendrogram remaies th
FIG. 2: Each internal nodeof the dendrogram has three assqciatedsame on this step of the chain. The Metropolis-Hastings rule
subtreiﬁ, f atl':]dtut'hWTCh <|:an bef ?rllaczd 'r(‘j any of tgree cg;flgulra- ensures detailed balance and, in combination with the ergod
lons. (vote that the fopology of the dendrogram Cependss ol jqin, of the transitions, guarantees a limiting probabititis-
EE2;;?';“3%?&:;[:?rtr;?;igﬂgfh'ps’ the order, left ttjign which tribution over dendrograms that is proportional to thellike
hood,P(D) «x L£(D). The quantityA log £ can be calculated
easily, since the only terms in Eq. (B4) that change frbm
to D’ are those involving the subtreest, andu associated
given by with the chosen node.

ﬂ (B2)

LR, The Markov chain appears to converge relatively quickly,
the fraction of potential edges between the two subtrees of with the likelihood reaching a plateau after rougliln?)

that actually appear in the graghh The likelihood of the steps. This is not a rigorous performance guarantee, haweve

P, =

dendrogram evaluated at this maximum is then and indeed there are mathematical results for similar Marko
LR chains that suggest that equilibration could take expaalent
L(D) = H [ﬁ?r (1 fﬁr)l’pr} . (B3) time in the worst case. Still, as our results here show, the

reD method seems to work quite well in practice. The algorithm

Figure 1 shows an illustrative example, consisting of a net!s able to handle networks with up to afew thousand vertices
S . in a reasonable amount of computer time.
work with six vertices.
Itis often convenient to work with the logarithm of the like-

linood, We find that there are typically many dendrograms with

log £(D) = — Z L.R.h(p,), (B4)  roughly equal likelihoods, which reinforces our contentio
that it is important to sample the distribution of dendragsa
rather than merely focusing on the most likely one.

reD

whereh(p) = —plogp — (1 — p)log(1 — p) is the Gibbs-

Shannon entropy function. Note that each terth,. R,.h(p,.)

is maximized wherp,. is close to0 or to 1, i.e., when the en-

tropy is minimized. In other words, high-likelihood denéro 4, £ ; Newman and G. T. Barkema. (Clarendon Press, Oxf@@B)1
grams are those that partition the vertices into groups@etw s g mossel and E. Vigoda, “Phylogenetic MCMC Are MisleadinmgMix-
which connections are either very common or very rare. tures of Trees.’Science 309, 2207 (2005)
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FIG. 3: Application of our hierarchical decomposition te thetwork of grassland species interactiamgOriginal (blue) and resampled (red)
degree distributions, Original and resampled distributions of vertex-vertestaices.

Appendix C: Resampling from the hierarchical random graph Appendix D: Predicting missing connections
The procedure for resampling from the hierarchical random Our algorithm for using hierarchical random graphs to pre-
graph is as follows. dict missing connections is as follows.

1. Initialize the Markov chain by choosing a random start-

\ 1. Initialize the Markov chain by choosing a random start-
ing dendrogram.

ing dendrogram.

2 ri:rghtgde Monte Carlo algorithm until equilibrium is 2. Run the Monte Carlo algorithm until equilibrium is
' reached.
3. Sample dendrograms at regular intervals thereafter from )
those generated by the Markov chain. 3. Sample dendrograms at regular intervals thereafter from

those generated by the Markov chain.
. For each sampled dendrogrdm create a resampled

graphG’ with n vertices by placing an edge between
each of then(n — 1)/2 vertex pairs(i, j) with inde-
pendent probability;; = p,, wherer is the lowest
common ancestor af andj in D andp, is given by

. For each pair of verticeis j for which there is not al-

ready a known connection, calculate the mean probabil-
ity (p;;) that they are connected by averaging over the
corresponding probabilitigs;; in each of the sampled

Eq. (B2). (In principle, there is nothing to prevent us dendrogramg.
from generating many resampled graphs from a den- o )
drogram, but in the calculations described in this paper - Sortthese pairs j in decreasing order dp;;) and pre-

dict that the highest-ranked ones have missing connec-

we generate only one from each dendrogram.) i
ions.

After generating many samples in this way, we can compute
averages of network statistics such as the degree distnihut In general, we find that the top 1% of such predictions are
the clustering coefficient, the vertex-vertex distancérithis-  highly accurate. However, for large networks, even the @ép 1
tion, and so forth. Thus, in a way similar to Bayesian modelcan be an unreasonably large number of candidates to check
averaging we can estimate the distribution of network statis- experimentally. In many contexts, researchers may want to
tics defined by the equilibrium ensemble of dendrograms.  consider using the procedure interactively, i.e., préuica

For the construction of consensus dendrograms such as tsenall number of missing connections, checking them exper-
one shown in Fig. 2a, we found it useful to weight the mostimentally, adding the results to the network, and runnire th
likely dendrograms more heavily, giving them weight prepor algorithm again to predict additional connections.
tional to the square of their likelihood, in order to extract The alternative prediction methods we compared against,
coherent consensus structure from the equilibrium set @mo which were previously investigated’irconsist of giving each
els. pairi, j of vertices a score, sorting pairs in decreasing order of

6 T. Hastie, R. Tibshirani and J. Friedman, “The Elements aftiStcal
Learning.” Springer, New York (2001).

7 D. Liben-Nowell and J. KleinbergProc. Internat. Conf. on Info. and
Know. Manage. (2003).
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FIG. 4: Further comparison of link prediction algorithmsatB® points represent the average ratio between the prababdt the top-ranked
pair of vertices is in fact connected and the correspondiabability for a randomly-chosen pair, as a function of treefion of the connections
known to the algorithm. For each networla, Terrorist associationdy, T. pallidum metabolites; and, Grassland species interactions), we
compare our method with simpler methods such as guessihgwbavertices are connected if they share common neightharg a high
degree product, or have a short path between them.

their score, and predicting that those with the highestexcor chosen pair of vertices, which do not have an observed con-
are the most likely to be connected. Several different tgfes nection between them, are connected. Figure 4 shows the av-
scores were investigated, defined as follows, wh#jg isthe  erage value of this ratio as a function of the percentageeof th
set of vertices connected jo network shown to the algorithm, for each of our three net-
works. Even when fullys0% of the network is missing, our
method predicts missing connections about ten times better
than chance for all three networks. In practical terms, this
means that the amount of work required of the experimenter
to discover a new connection is reduced by a factarigpfan
enormous improvement by any standard. If a greater fraction
of the network is known, the accuracy becomes even greater,
rising as high ag00 times better than chance when only a few
connections are missing.

1. Common neighbors: scdiej) = |I'(s) N IT'(j)|, the
number of common neighbors of verticeandj.

2. Jaccard coefficient:  scdiej) = |T'(d) N
T'(y)|/IT(#) U T'(4)], the fraction of all neighbors af
and; that are neighbors of both.

3. Degree product: scafej) = |T'(¢)| |T'(5)|, the product
of the degrees ofandj.

We note, however, that using this ratio to judge prediction
algorithms has an important disadvantage. Some missing con
nections are much easier to predict than others: for instanc
if a network has a heavy-tailed degree distribution and we re

One way to quantify the success of a prediction methodmove a randomly chosen subset of the edges, the chances are
used by previous authors who have studied link predictiorexcellent that two high-degree vertices will have a missing
problems, is the ratio between the probability that the top- connection and such a connection can be easily predicted by
ranked pair is connected and the probability that a randomlgimple heuristics such as those discussed above. The AUC

4. Short paths: scofg j) is 1 divided by the length of the
shortest path through the network frano ;5 (or zero
for vertex pairs that are not connected by any path).
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statistic used in the text, by contrast, looks at an algorith dent random events and there is no structure to discover. We
overall ability to rank all the missing connections over exn also tested each algorithm on a graph with a power-law degree
istent ones, not just those that are easiest to predict. distribution generated according to the configuration rh8de
Finally, we have investigated the performance of each of thén this case, guessing that high-degree vertices are lilcely
prediction algorithms on purely random (i.e., Erdés—REn be connected performs quite well, whereas the method based
graphs. As expected, no method performs better than chanoa the hierarchical random graph performs poorly sincegthes

in this case, since the connections are completely indepemraphs have no hierarchical structure to discover.
8 M. Molloy and B. Reed, “A critical point for random graphs wia given
degree sequenceRandom Structures and Algorithms 6, 161-179 (1995)
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