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Networks have in recent years emerged as an invaluable tool for describing and quantifying complex systems
in many branches of science. Recent studies suggest that networks often exhibit hierarchical organization,
where vertices divide into groups that further subdivide into groups of groups, and so forth over multiple scales.
In many cases these groups are found to correspond to known functional units, such as ecological niches in
food webs, modules in biochemical networks (protein interaction networks, metabolic networks, or genetic
regulatory networks), or communities in social networks. Here we present a general technique for inferring
hierarchical structure from network data and demonstrate that the existence of hierarchy can simultaneously
explain and quantitatively reproduce many commonly observed topological properties of networks, such as
right-skewed degree distributions, high clustering coefficients, and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing connections in partially known networks
with high accuracy, and for more general network structuresthan competing techniques. Taken together, our
results suggest that hierarchy is a central organizing principle of complex networks, capable of offering insight
into many network phenomena.

Supplementary Information

Appendix A: Hierarchical random graphs

Our model for the hierarchical organization of a network
is as follows.1 Let G be a graph withn vertices. Adendro-
gram D is a binary tree withn leaves corresponding to the ver-
tices ofG. Each of then− 1 internal nodes ofD corresponds
to the group of vertices that are descended from it. We asso-
ciate a probabilitypr with each internal noder. Then, given
two verticesi, j of G, the probabilitypij that they are con-
nected by an edge ispij = pr wherer is their lowest common
ancestor inD. The combination(D, {pr}) of the dendrogram
and the set of probabilities then defines ahierarchical random
graph.

Note that if a community has, say, three subcommunities,
with an equal probabilityp of connections between them, we
can represent this in our model by first splitting one of these
subcommunities off, and then splitting the other two. The two
internal nodes corresponding to these splits would be given
the same probabilitiespr = p. This yields three possible bi-
nary dendrograms, which are all considered equally likely.

We can think of the hierarchical random graph as a varia-
tion on the classical Erdős–Rényi random graphG(n, p). As
in that model, the presence or absence of an edge between
any pair of vertices is independent of the presence or absence
of any other edge. However, whereas inG(n, p) every pair
of vertices has the same probabilityp of being connected, in
the hierarchical random graph the probabilities are inhomo-
geneous, with the inhomogeneities controlled by the topolog-
ical structure of the dendrogramD and the parameters{pr}.

1 Computer code implementing many of the analysis methods described in
this paper can be found online at
www.santafe.edu/∼aaronc/randomgraphs/.

Many other models with inhomogeneous edge probabilities
have, of course, been studied in the past. One example is a
structured random graph in which there are a finite number
of types of vertices with a matrixpkl giving the connection
probabilities between them.2

Appendix B: Fitting the hierarchical random graph to data

Now we turn to the question of finding the hierarchi-
cal random graph or graphs that best fits the observed real-
world network G. Assuming that all hierarchical random
graphs area priori equally likely, the probability that a given
model(D, {pr}) is the correct explanation of the data is, by
Bayes’ theorem, proportional to the posterior probabilityor
likelihood L with which that model generates the observed
network.3 Our goal is to maximizeL or, more generally, to
sample the space of all models with probability proportional
toL.

LetEr be the number of edges inG whose endpoints haver
as their lowest common ancestor inD, and letLr and Rr,
respectively, be the numbers of leaves in the left and right
subtrees rooted atr. Then the likelihood of the hierarchical
random graph is

L(D, {pr}) =
∏

r∈D

pEr

r (1 − pr)
LrRr−Er (B1)

with the convention that00 = 1.
If we fix the dendrogramD, it is easy to find the proba-

bilities {pr} that maximizeL(D, {pr}). For eachr, they are

2 F. McSherry, “Spectral Partitioning of Random Graphs,”Proc. Founda-
tions of Computer Science (FOCS), pp. 529–537 (2001)

3 G. Casella and R. L. Berger, “Statistical Inference.” Duxbury Press, Bel-
mont (2001).
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FIG. 1: An example networkG consisting of six vertices, and the
likelihood of two possible dendrograms. The internal nodesr of
each dendrogram are labeled with the maximum-likelihood proba-
bility p

r
, i.e., the fraction of potential edges between their left and

right subtrees that exist inG. According to Eq. (B3), the likelihoods
of the two dendrograms areL(D1) = (1/3)(2/3)2 ·(1/4)2(3/4)6 =
0.00165 . . . andL(D2) = (1/9)(8/9)8 = 0.0433 . . . The second
dendrogram is far more likely because it correctly divides the net-
work into two highly-connected subgraphs at the first level.
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FIG. 2: Each internal noder of the dendrogram has three associated
subtreess, t, andu, which can be placed in any of three configura-
tions. (Note that the topology of the dendrogram depends only on
the sibling and parent relationships; the order, left to right, in which
they are depicted is irrelevant).

given by

pr =
Er

LrRr

, (B2)

the fraction of potential edges between the two subtrees ofr
that actually appear in the graphG. The likelihood of the
dendrogram evaluated at this maximum is then

L(D) =
∏

r∈D

[

p p
r

r (1 − pr)
1−p

r

]LrRr

. (B3)

Figure 1 shows an illustrative example, consisting of a net-
work with six vertices.

It is often convenient to work with the logarithm of the like-
lihood,

logL(D) = −
∑

r∈D

LrRrh(pr), (B4)

whereh(p) = −p log p − (1 − p) log(1 − p) is the Gibbs-
Shannon entropy function. Note that each term−LrRrh(pr)
is maximized whenpr is close to0 or to 1, i.e., when the en-
tropy is minimized. In other words, high-likelihood dendro-
grams are those that partition the vertices into groups between
which connections are either very common or very rare.

We now use a Markov chain Monte Carlo method to sam-
ple dendrogramsD with probability proportional to their like-
lihoodL(D). To create the Markov chain we need to pick a
set of transitions between possible dendrograms. The tran-
sitions we use consist of rearrangements of subtrees of the
dendrogram as follows. First, note that each internal noder
of a dendrogramD is associated with three subtrees: the sub-
treess, t descended from its two daughters, and the subtreeu
descended from its sibling. As Figure 2 shows, there are two
ways we can reorder these subtrees without disturbing any of
their internal relationships. Each step of our Markov chain
consists first of choosing an internal noder uniformly at ran-
dom (other than the root) and then choosing uniformly at ran-
dom between the two alternate configurations of the subtrees
associated with that node and adopting that configuration. The
result is a new dendrogramD′. It is straightforward to show
that transitions of this type areergodic, i.e., that any pair of
finite dendrograms can be connected by a finite series of such
transitions.

Once we have generated our new dendrogramD′ we ac-
cept or reject that dendrogram according to the standard
Metropolis–Hastings rule.4 Specifically, we accept the transi-
tion D → D′ if ∆logL = logL(D′) − logL(D) is nonneg-
ative, so thatD′ is at least as likely asD; otherwise we accept
the transition with probabilityexp(log ∆L) = L(D′)/L(D).
If the transition is not accepted, the dendrogram remains the
same on this step of the chain. The Metropolis-Hastings rule
ensures detailed balance and, in combination with the ergod-
icity of the transitions, guarantees a limiting probability dis-
tribution over dendrograms that is proportional to the likeli-
hood,P (D) ∝ L(D). The quantity∆logL can be calculated
easily, since the only terms in Eq. (B4) that change fromD
to D′ are those involving the subtreess, t, andu associated
with the chosen node.

The Markov chain appears to converge relatively quickly,
with the likelihood reaching a plateau after roughlyO(n2)
steps. This is not a rigorous performance guarantee, however,
and indeed there are mathematical results for similar Markov
chains that suggest that equilibration could take exponential
time in the worst case.5 Still, as our results here show, the
method seems to work quite well in practice. The algorithm
is able to handle networks with up to a few thousand vertices
in a reasonable amount of computer time.

We find that there are typically many dendrograms with
roughly equal likelihoods, which reinforces our contention
that it is important to sample the distribution of dendrograms
rather than merely focusing on the most likely one.

4 M. E. J. Newman and G. T. Barkema. (Clarendon Press, Oxford, 1999).
5 E. Mossel and E. Vigoda, “Phylogenetic MCMC Are Misleading on Mix-

tures of Trees.”Science 309, 2207 (2005)
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FIG. 3: Application of our hierarchical decomposition to the network of grassland species interactions.a, Original (blue) and resampled (red)
degree distributions.b, Original and resampled distributions of vertex-vertex distances.

Appendix C: Resampling from the hierarchical random graph

The procedure for resampling from the hierarchical random
graph is as follows.

1. Initialize the Markov chain by choosing a random start-
ing dendrogram.

2. Run the Monte Carlo algorithm until equilibrium is
reached.

3. Sample dendrograms at regular intervals thereafter from
those generated by the Markov chain.

4. For each sampled dendrogramD, create a resampled
graphG′ with n vertices by placing an edge between
each of then(n − 1)/2 vertex pairs(i, j) with inde-
pendent probabilitypij = pr, wherer is the lowest
common ancestor ofi andj in D andpr is given by
Eq. (B2). (In principle, there is nothing to prevent us
from generating many resampled graphs from a den-
drogram, but in the calculations described in this paper
we generate only one from each dendrogram.)

After generating many samples in this way, we can compute
averages of network statistics such as the degree distribution,
the clustering coefficient, the vertex-vertex distance distribu-
tion, and so forth. Thus, in a way similar to Bayesian model
averaging,6 we can estimate the distribution of network statis-
tics defined by the equilibrium ensemble of dendrograms.

For the construction of consensus dendrograms such as the
one shown in Fig. 2a, we found it useful to weight the most
likely dendrograms more heavily, giving them weight propor-
tional to the square of their likelihood, in order to extracta
coherent consensus structure from the equilibrium set of mod-
els.

6 T. Hastie, R. Tibshirani and J. Friedman, “The Elements of Statistical
Learning.” Springer, New York (2001).

Appendix D: Predicting missing connections

Our algorithm for using hierarchical random graphs to pre-
dict missing connections is as follows.

1. Initialize the Markov chain by choosing a random start-
ing dendrogram.

2. Run the Monte Carlo algorithm until equilibrium is
reached.

3. Sample dendrograms at regular intervals thereafter from
those generated by the Markov chain.

4. For each pair of verticesi, j for which there is not al-
ready a known connection, calculate the mean probabil-
ity 〈pij〉 that they are connected by averaging over the
corresponding probabilitiespij in each of the sampled
dendrogramsD.

5. Sort these pairsi, j in decreasing order of〈pij〉 and pre-
dict that the highest-ranked ones have missing connec-
tions.

In general, we find that the top 1% of such predictions are
highly accurate. However, for large networks, even the top 1%
can be an unreasonably large number of candidates to check
experimentally. In many contexts, researchers may want to
consider using the procedure interactively, i.e., predicting a
small number of missing connections, checking them exper-
imentally, adding the results to the network, and running the
algorithm again to predict additional connections.

The alternative prediction methods we compared against,
which were previously investigated in7, consist of giving each
pairi, j of vertices a score, sorting pairs in decreasing order of

7 D. Liben-Nowell and J. Kleinberg.Proc. Internat. Conf. on Info. and
Know. Manage. (2003).
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FIG. 4: Further comparison of link prediction algorithms. Data points represent the average ratio between the probability that the top-ranked
pair of vertices is in fact connected and the corresponding probability for a randomly-chosen pair, as a function of the fraction of the connections
known to the algorithm. For each network, (a, Terrorist associations;b, T. pallidum metabolites; andc, Grassland species interactions), we
compare our method with simpler methods such as guessing that two vertices are connected if they share common neighbors,have a high
degree product, or have a short path between them.

their score, and predicting that those with the highest scores
are the most likely to be connected. Several different typesof
scores were investigated, defined as follows, whereΓ(j) is the
set of vertices connected toj.

1. Common neighbors: score(i, j) = |Γ(i) ∩ Γ(j)|, the
number of common neighbors of verticesi andj.

2. Jaccard coefficient: score(i, j) = |Γ(i) ∩
Γ(j)| / |Γ(i) ∪ Γ(j)|, the fraction of all neighbors ofi
andj that are neighbors of both.

3. Degree product: score(i, j) = |Γ(i)| |Γ(j)|, the product
of the degrees ofi andj.

4. Short paths: score(i, j) is 1 divided by the length of the
shortest path through the network fromi to j (or zero
for vertex pairs that are not connected by any path).

One way to quantify the success of a prediction method,
used by previous authors who have studied link prediction
problems7, is the ratio between the probability that the top-
ranked pair is connected and the probability that a randomly

chosen pair of vertices, which do not have an observed con-
nection between them, are connected. Figure 4 shows the av-
erage value of this ratio as a function of the percentage of the
network shown to the algorithm, for each of our three net-
works. Even when fully50% of the network is missing, our
method predicts missing connections about ten times better
than chance for all three networks. In practical terms, this
means that the amount of work required of the experimenter
to discover a new connection is reduced by a factor of10, an
enormous improvement by any standard. If a greater fraction
of the network is known, the accuracy becomes even greater,
rising as high as200 times better than chance when only a few
connections are missing.

We note, however, that using this ratio to judge prediction
algorithms has an important disadvantage. Some missing con-
nections are much easier to predict than others: for instance,
if a network has a heavy-tailed degree distribution and we re-
move a randomly chosen subset of the edges, the chances are
excellent that two high-degree vertices will have a missing
connection and such a connection can be easily predicted by
simple heuristics such as those discussed above. The AUC
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statistic used in the text, by contrast, looks at an algorithm’s
overall ability to rank all the missing connections over nonex-
istent ones, not just those that are easiest to predict.

Finally, we have investigated the performance of each of the
prediction algorithms on purely random (i.e., Erdős–Rényi)
graphs. As expected, no method performs better than chance
in this case, since the connections are completely indepen-

dent random events and there is no structure to discover. We
also tested each algorithm on a graph with a power-law degree
distribution generated according to the configuration model.8

In this case, guessing that high-degree vertices are likelyto
be connected performs quite well, whereas the method based
on the hierarchical random graph performs poorly since these
graphs have no hierarchical structure to discover.

8 M. Molloy and B. Reed, “A critical point for random graphs with a given
degree sequence”,Random Structures and Algorithms 6, 161–179 (1995)
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