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An Exponential Family of Probability Distributions

PAUL W. HOLLAND and SAMUEL LEINHARDT*

for Directed Graphs

Directed graph (or digraph) data arise in many fields,
especially in contemporary research on structures of so-
cial relationships. We describe an exponential family of
distributions that can be used for analyzing such data. A
substantive rationale for the general model is presented,
and several special cases are discussed along with some
possible substantive interpretations. A computational al-
gorithm based on iterative scaling procedures for use in
fitting data is described, as are the results of a pilot sim-
ulation study. An example using previously reported em-
pirical data is worked out in detail. An extension to mul-
tiple relationship data is discussed briefly.

KEY WORDS: Random digraphs; Networks; Sociome-
try; Generalized iterative scaling.

1. INTRODUCTION

A directed graph or ‘‘digraph’’ (Harary, Norman, and
Cartwright 1965) is specified by a (finite) set of points,
or nodes, which we shall index by 1,2, ..., g, (g =
total number of nodes) and a set of directed lines, or
edges, that connect certain pairs of these nodes. We as-
sume that there are no edges that connect a node to itself
and that there is at most one edge connecting any two
distinct nodes in a given direction. Figure 1 illustrates a
digraph with five nodes (g = 5) and nine directed edges.

Directed graphs arise in many fields, but the applica-
tions that motivate our work are studies of social net-
works in anthropology, sociology, social psychology, and
related disciplines (Leinhardt 1977; Holland and Lein-
hardt 1979b). In these applications, the nodes usually
represent people, and the directed edges represent di-
rected relationships that can obtain between these peo-
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ple. For example, some of the earliest quantitative re-
search on social networks was done by Moreno (1934),
who called his studies of the friendship patterns obtaining
between group members ‘‘sociometric’’ studies. In this
case there is a directed edge from node i to node j if
individual i says that individualj is a friend. If we interpret
Figure 1 as the digraph of friendship in a group of five
people, then person 1 says that persons 2 and 5 are his
or her friends, while person 2 says that person 3 is a
friend, and so on.

The sociometric studies of Moreno have been gener-
alized in a variety of ways; we use the term sociometric
to refer to any study of the structure of social relation-
ships, regardless whether the nodes represent people or
other social actors such as corporations, government
agencies, and other institutional entities. The many dif-
ferent kinds of scientific questions that are of interest in
sociometric studies range from identifying patterns of
regularities among the friendship choices in the original
Moreno studies to relating communication patterns to the
output of work groups. The key element of such studies
is their focus on the pattern of relationships between the
actors rather than on the distribution of attributes pos-
sessed by the actors. Sociometric studies have become
quite common in the sociological, social psychological,
anthropological, and educational literatures. Examples
of the substantive concerns of recent sociometric studies
include political, economic, and social elites (Moore
1979; Laumann and Pappi 1976; Alba and Moore 1978),
scientific elites (Breiger 1976; Friedkin 1978; Burt 1980),
interorganizational connections (Aldritch 1977; Galas-
kiewicz and Marsden 1978; Fennema and Schijf 1979),
community structure (Freeman 1968; Fischer et al. 1977),
ethnography (Wolfe 1978), acquaintance (de Sola Pool
and Kochen 1978), job opportunities (Granovetter 1974;
Boorman 1975), mental health (Burns 1974; Tolsdorf
1976), family organization (Bott 1971; Noble 1970), racial
integration (Schofield and Sager 1977), political processes
(Barnes 1969), diffusion of innovations (Rogers 1979), and
mainstreaming or the integration of educable mentally
retarded children in normal classrooms (Ballard et al.
1977). Leinhardt (1977) contains a selection of earlier
studies, while Holland and Leinhardt (1979a) consists
of reports of more recent research. The journal Social
Networks regularly publishes research in this area.
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Figure 1. Digraph With Five Nodes and Nine Di-
rected Edges

With all the substantive variety that is present in con-
temporary social network research, it is surprising to
discover that there is a paucity of statistical tools avail-
able. The aim of this paper is to begin to fill this gap by
providing a simple, yet flexible, family of probability dis-
tributions that can be used to analyze certain types of
digraph data. In our opinion the most important aspect
of the model we present is that it allows for the simul-
taneous estimation of parameters that measure both the
amount of reciprocation of directed edges between nodes
(i.e., our parameter p) and the amount of differential
attractiveness exhibited by each node (i.e., our parameter
B;). Furthermore, these parameters are directly compa-
rable across digraphs that differ in the number of nodes
and directed edges they contain.

In the discussion that follows we use the phrase ‘‘i
relates to j°’ as shorthand for the more ponderous *‘i
stands in the given relationship to j*’; similarly, we use
the terms relation and relationship interchangeably.
While diagrams like Figure 1 are sometimes useful, for
most analytic purposes the adjacency matrix of the di-
graph is more convenient. This is the g-by-g matrix of
indicator variables, X, defined by

X, = 1 if i relates to j,
v 0 otherwise.

We will always set X;; = 0 by convention. The adjacency
matrix for Figure 1 is given in Figure 2.

1 2 3 4 5 |X,
1 o 1 0 0 1 |2
2 o 0 1 0 0 |1
3 o 0 0 1 0 |1
4 0o 1 1 0 0 |2
5 1 1 1 0 0 |[3
X4 1 3 3 1 1 l9a=x,,

Figure 2. The Adjacency Matrix for Figure 1
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In their applied substantive contexts social networks
are complex social phenomena that exist over time and
encompass actors who may be free to enter and leave the
network at will and who do not necessarily share identical
attributes. Social network research has exhibited the
usual historical trend of developing procedures for ana-
lyzing more and more realistic situations. The currently
available methods are typically based on deterministic
models, and stochastic models are only just becoming
available for many important applications. To locate our
contribution in the context of social network analysis, we
propose the following classification of digraph data. The
scheme reflects, in varying degrees, the types of com-
plications that obtain in real social network data.

a. Single relationship data. A single relationship ob-
served on a set of nodes at a single point in time
(e.g., “‘friendship’’ in a given school classroom
observed during one week in November).

b. Time series data. There may be more than one
point in time at which the relation on the set of
nodes is observed (e.g., friendship in a school
classroom observed on the first Monday of Sep-
tember, October, November, and December).

c. Covariates. There may be information about nodal’
attributes in addition to the relationship informa-
tion (e.g., in a classroom study we may also ob-
serve each student’s sex, race, etc., as well as his
or her friendships). '

d. Valued relationship. Some types of relationships
exist in varying degrees or strengths rather than
in an all-or-none fashion (e.g., children may be
asked to rate the intensity of their friendship with
each child in a classroom).

e. Multiple relationships. There may be more than
one type of relationship studied on the same set of
nodes (e.g., the relationship of friendship and the
relationship of team membership').

There are other complications that can arise, but the
preceding list illustrates those that are important to the
study of social networks (Davis and Leinhardt 1972). In
other applied contexts, such as physics (Kinderman and
Snell 1980) or sample surveys (Frank 1978), other com-
plications may prove to be of greater relevance. Since
the present work derives its motivation from social net-
work research, we concern ourselves with developing an
approach that facilitates the incorporation of the com-
plications characterized by cases (b) through (e). We
focus here on a fundamental framework, a family of par-
ametric probability models that are appropriate for case
(a), single relationship data. In Section 5 we briefly con-
sider an extension to the multivariate case of several
adjacency matrices defined on the same set of nodes,
case (e).

There is a small amount of recent work that is related

' We will include symmetric relations as a special case of directed
relations. In this case X; = Xj; for all i, j.
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to the approach we take here. For example, in Holland
and Leinhardt (1977a,b) we proposed a class of stochastic
process models that could serve as the basis for extending
the work reported here to case (b), time series data.
Wasserman (1977, 1979, 1980) and Galaskiewicz and
Wasserman (1979) developed that work further. Sgrensen
and Hallinan (1976) and Hallinan (1978) reported related
methodological and empirical research. Recently, Fien-
berg and Wasserman (1979, 1981) also considered prob-
ability models for social network data, using ideas that
are closely related to ours. They studied cases (c) and
(e), covariates and multiple relationships. Case (d), val-
ued relations, was recently studied using analysis of var-
iance models by Warner, Kenny, and Stoto (1979) and
Kenny and Nasby (1980).

Although the literature contains little on the problem
of fitting and estimating parametric probability models
for digraph data, there is an extensive body of work on
the analysis of social network data. This literature falls
roughly into three types—tests of randomness, pattern
detection, and measures of structure.

Examples of tests of randomness include the work of
Katz (1951) on the distribution of the number of isolates
in a random digraph, White’s (1977) work on the random
distribution of zero blocks in an adjacency matrix, and
Holland and Leinhardt’s (1978) work on the distribution
of triads in a random graph. Examples of pattern detec-
tion methods include the many clique-finding algorithms
(Nosanchuk 1963; Alba 1973; Roistacher 1974), block-
modeling procedures (White, Boorman, and Breiger
1976; and Boorman and White 1976; Arabie, Boorman,
and Levitt 1978; Light and Mullins 1979) and spatial rep-
resentations of digraphs (Levine 1972). Measures of
structure are exemplified by structural measures of bal-
ance (Harary, Norman, and Cartwright 1965), connectiv-
ity (Luce 1950; Barnes 1966; Doreian 1974) and centrality
(Moxley and Moxley 1974; Freeman 1977, 1979). Reviews
of all three of these topics can be found in Burt (1980)
and Leik and Meeker (1975).

2. THE p, DISTRIBUTION

We base our model on two empirical observations that
have been made repeatedly in studies of social net-
works—from friendship among individuals to interlocks
among the directors of corporations. To state these two
observations precisely, we need to develop more nota-
tion. Let M denote the number of pairs {i, j} for which
X; = X;; = 1. Then M may be computed as

M = 2 X,J)(J, .
i<y
Thus M is the number of reciprocated or symmetric or
mutual relationships in X.2 The in-degree of node j is

1

g
X+j= EXij7 (2)
i=1

2 Moreno (1934) tends to use the term mutuality. Davis (1977) employs
symmetry. In Katz and Powell (1955) and Katz, Tagiuri, and Wilson
(1958), they are used interchangeably. We use reciprocity.

so that X ,; is the number of nodes i for which X; = 1.
The in-degrees {X . ;} form a set of numbers with mean,
X, and variance, V(in), defined by

e ,
X=<EX+j)/g=X++/g 3)
R j=1
and
g -
Viin) = [ 2 X4/ — X)2>/g, C))
=1
respectively. The out-degree of node i is
8
Xiv = 2 X . Q)
Jj=1

The mean of the out-degrees is also X, and their variance,
V(out), is defined in obvious analogy to (4).

In the earliest sociometric studies, Moreno (1934)
found that M and V(in) usually exceeded their ‘‘chance”’
expected values. To Moreno, empirical sociometric data
always seemed to exhibit a ‘‘surplus’’ of mutual rela-
tionships, while some individual group members always
managed to attract a ‘‘surplus’’ of choices (Moreno and
Jennings 1938). Moreno posited a simple null model for
X in which all adjacency matrices with out-degrees agree-
ing with those in the data are equally likely. We denote
this probability distribution by conditioning on {X; }. The
chance expectations of M and V(in) under this null dis-
tribution may be shown to be

EM | {Xi+}) = (gX*(2(g — D) ©
— (gV(out/2(g — D?)

and
E(V(in) | {X:+}) = X — (X*/(g — 1)

- (g — 2V(out)/(g — 1?).

™)

The purpose of comparing M and V(in) to (6) and (7) (and
other similar types of comparisons) is to show that the
digraph’s observed edges are not distributed randomly
and that, in fact, they exhibit expected nonrandom be-
havior. From intuition and substantive theoretical con-
sideration, many social relationships can be expected to
be reciprocated (see Newcomb 1979; Jones and Gerard
1967; Davis 1968), and in these cases we would expect
X to exhibit nonrandomness by having a value for M
larger than the expected value given by (6). Other types
of social relationships, (e.g., ‘‘power’’) can be expected
to be nonreciprocated (French 1956; Friedell 1967), and
in such cases we would expect M to be smaller than (6).
Similarly, from intuition, it should not be surprising that
nodes are differentially attractive and that some are in-
volved in more relational ties than are others (Hopkins
1964). This leads to an expectation about the distribution
of in-degrees—in Moreno’s (1934) terms there will be
‘“‘stars’’ (nodes that attract many relations) and ‘‘iso-
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lates’’ (nodes that attract no relations).? This will result
in large values of V(in) that are larger than the expected
value given in (7).

From these empirical observations and substantive the-
oretical predictions, we wanted to construct a family of
distributions for X with parameters that allow us to con-
trol the probability of observing different values of M and
{X.,}. Exponential families of distributions are natural
choices to consider for this purpose, since they explicitly
tie sufficient statistics to parameters. To be more precise,
let G denote the set of all g-by-g adjacency matrices so
that X may be thought of as a random matrix taking values
in G (see Katz and Powell 1955). Let x denote a generic
point of G; then let p,(x) be the probability function* on
G given by

PX = x)

exp{pm +0x++ + 2 aiXi+ + 2 Bjx+j} ®)
i J

Pl(X)

X K(p’e’{ai}9{Bj})

where m, x. ., x;+, and x; are the values of M, X, .,
Xi+, and X ; computed from x. In (8), p, 0, a;, and B;
are parameters with o; and B; subject to the identifying
constraint ., = B, = 0. These parameters control the
probability of observing X with specific values of M, X . ;,
and X;, . The function K(p, 0, {a;}, {B;}) in (8) is a nor-
malizing constant that insures that p,(x) sums to 1 over
all x in G. Generally speaking, one can always get this
far with an exponential family, but unless K can be com-
puted explicitly, little more can be done. Fortunately,
there is a simple derivation of (8) from basic assumptions
that leads to a formula for K as well as to a deeper un-
derstanding of the model. We shall develop (8) from this
alternative point of view before we proceed further.

21 Derivation of the p, Distribution

We first decompose X into its (§) dyads or pairs, D;;
= (X, X, fori <j. The distribution of X may be specified
by giving the joint distribution of the pairs, D, D5, and
so on. To describe the joint distribution of the {D;}, we
first assume that the Dj; are all statistically independent.
This independence assumption means that p, cannot ex-
press tendencies toward transitivity, cliquing, hierarchy,
and so on, other than those already implied by tendencies
toward reciprocation and differential attraction. In this
sense, p; is essentially a null model that is more realistic
than models that do not express tendencies toward re-
ciprocation and differential attraction. However, in Hol-
land and Leinhardt (1978) we present empirical evidence

3 Strictly speaking, one can only expect literal isolates when choice
volume is small.

4 We denote the probability function in (8) by p;(x) to emphasize our
view that it is the first or simplest family of distributions on digraphs
that might be considered for social network data. This is because it
expresses the two elementary social tendencies of reciprocation and
differential attraction.
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that the assumption of dyad independence may be sat-
isfied in a substantial number of groups studied by social
network analysts. Thus in addition to providing a null
model, the p, family of distributions may also provide
adequate models for representing certain types of em-
pirical data. Finally, we point out that it appears to be
difficult to relax the independence assumption and to re-
tain the tractability of the model.

Having assumed that the {D;} are independent, we
need only specify the distribution of each Dy, i < j, in
order to completely specify the distribution of X. This is
done by specifying values of m;, a;, and n; where

my = PDy = (1,1)) i<j, ©)
aj = P(Dy = (1,00) i#j, (10)
ng = P(Dy = (0,0) i<j, 1

and
my + a; + a; + ny =1, forall i<j. (12)

In (9) m; is the probability that the dyad i, j is a mutual
or reciprocated pair; in (10) a; is the probability that the
dyad i, j is an asymmetric or nonreciprocated pair; in
(11) n; is the probability that the dyad i, j is a null pair.~
The probability distribution of X may be expressed in the
following way:

PX = x)
= H mij-xiixii H a’,jxii(l —Xji) H nij(l =X —x;) (13)
i<j i#j i<j

This may be reexpressed as follows to emphasize the.
exponential form of (13):

P(X = x) = exp{2 pyxyxi + 2 Opxg} [I ny, (14)
i<j itj i<j
where
py = log.((myny)laya;)) i<j (15)
and
0, = log.(a;/ng) ; i #j (16)

and in (16) we interpret nj; = n; for i > j. The exponential
or ‘‘natural’’ parameters, p; and 6, are-equivalent to the
original set of parameters m;, a;, and n; when these are
subjected to the constraint specified by (12).

The parameter, p;, is a log-odds ratio, and a little al-
gebra reveals that it gives the log of the increase in the
odds that X; = 1 due to X;; = 1, that is,

PXy=1|X=1) /PX;=1|X:=0)
PX;=0|X:=1)/ P(Xy=0|X;=0)"

exp(py) = 17
Thus p; measures the ‘‘force of reciprocation’ in the
sense that if p; is positive and if X; = 1, then we are
more likely to also observe that X; = 1.

The parameter, 6y, is a log-odds. Again, a little algebra
shows that

exp(®;) = PX;=1| X;=0)/P(X;=0] X;=0) . (18)
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Thus 6; measures the probability of an asymmetric dyad
between i and j, given that X;; = 0.

As it stands, the distribution in (14) is not the same as
that given as p,(-) in (8). In fact, (14) is a more general
family of distributions for X than (8) is, but it has too
many parameters to be useful for many statistical pur-

poses. To obtain (8) from (14), we impose restrictions on
p; and 6;. We set
p; = p forall i<j, (19)
and
0; =0 +o; + B, forall i#j, (20)
where
ay = B+ =0.

Assumptions (19) and (20) lead to the following formula
for p,(x):

pi(x) = exp{pm + 6x4 . + 2 Xt

+ 2 Bt x [Ing, @D

i<j
where the n; are functions of the parameters p, 0, {a;},
and {B;}, given in (24) and (25).

The restriction (19) has the interpretation that the
‘“force of the reciprocation’’ is independent of the nodes
involved. With this restriction, p may be interpreted as
the average tendency toward reciprocation for all pairs
of nodes. It is natural to consider weakening restriction
(19) when generalizing p,(-). We will not pursue this here.
Restriction (20) implies that the probability that X; = 1
given X; = 0 (as measured by the odds in (18)) is the
product of a factor for node i and another factor for node
J. It is analogous to logit models in more standard statis-
tical problems involving binary data (Cox 1970).

It is also useful to solve for my;, a;, and n; in terms of
the exponential parameters. This yields

my =exp{p +20 + o; + o + B: + Btky, (22)
a; = exp{0 + o + Bjtky , (23)
ng = Uky , (24)
where
ki =14 **tBi 4 fFoy+b
(25)

+ ep+29+ﬂj+ﬂj+B,’+Bj .

Equations (24) and (25) express n; explicitly as a function
of the exponential parameters and may be used to derive
a formula for K(-) in (8).

We have already discussed one possible interpretation
of the parameter p in p,(-). Possible interpretations of the
other parameters, 0, o;, and B;, follow. If we set p, {a;},
and {B,} all equal to zero, then the resulting distribution
on G is equivalent to assuming that the X; are all inde-
pendent and identically distributed (iid) indicator variables
with p = P(X; = 1) and 6 = log.(p/(1 — p)). In this

Table 1: Selected Special Cases of p;

Parameter Values Interpretation

: The uniform distribution over G in which
all digraphs are equally likely.
» X, are iid,.-0 = loge (p/(1 — p)).

p=0=0q =8 =0

p=c=p=0

a; = B; =0 . Dyareiid, m; = m,a;, = a; = a,
ngy=nandm+ 2a+ n=1,
p=pB =0 . Xj, are iid in each row of X;
0 + a; = loge (pi/(1 — pi)),
p=a;=0 . Xj, are iid in each column of X;
8 + B; = loge (p/(1 — py)).
p=0 . Xj, are independent; logit of p;;
is additive.
p=o : X, = Xji and the graph is symmetric.
p=— : Xy X;i = 0 and the digraph is
asymmetric.

sense, 0 governs the density of ones in X or edges in the
digraph. Therefore, we refer to 0 as a density param-
eter.’ If we let 8 and {o;} be nonzero (but keep p and
{B;} zero), then the resulting distribution on G is equiv-
alent to assuming that the X;; are iid in each row of X
with a common p; = P(X; = 1). In this case, 6 + o;
= log.(p;/(1 — p;), so that o; governs differences in the
distributions of the out-degrees of X. Hence we may call
o; a productivity parameter since, if «; is large and pos-
itive, node i will tend to have a relatively large out-degree
or will appear to ‘‘produce’ relational ties (see Duck
1977). If «; is large and negative, then node i will produce
relatively few ties and X;, will tend to be zero or small.
If we allow 6 and B; to be nonzero (but keep p and «o;
zero), then the resulting distribution on G is equivalent
to assuming that the Xj; are iid in each column of X with
common p; = P(X; = 1). In this case, 8 + B; = log.(p,/
(1 — p;j), so that B; governs differences in the distribu-
tions of the in-degrees, X, ;. Hence we may call B; an
attractiveness parameter since, if B; is large and positive,
node j will tend to have a large in-degree or will appear
to ‘‘attract’’ relational ties (see Berscheid and Walster
1977; Huston 1974). If B; is large and negative, then node
J will attract few ties and X . ; will tend to be zero or small.

In the preceding discussion we indicated how setting
various exponential parameters of p, to zero corresponds
to easily interpreted distributions on G. We summarize
these and other special cases of p; in Table 1.

2.2 Simulated Digraphs From the p, Distribution

To provide an informal feeling for the types of digraphs
that the p, distribution will generate, we present in Figure
3 four simulated adjacency matrices for four different sets
of parameter combinations. It is easy to simulate-random
digraphs from p,(x) because the D; = (X;;, X;;) are in-
dependent. We used the following procedure. For spec-
ified values of p, 0, {a;}, and {B;}, calculate m;, a;, and
n; from (22), (23), and (24). A pseudorandom number

3 This is similar to Loomis and Proctor’s (1951) notion of ‘‘gross
expansiveness’’ in the affective sociometric context. The term density
seems more context free.
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b. Parameter values and summary statistics
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Figure 3. Four Examples of Digraphs Simulated From the p, Distribution
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from the uniform distribution is then used to simulate one
of the four events: D; = (1,1), (1,0), 0,1), or (0,0). Repeat
this operation independently for all g(g¢ — 1)/2 dyads, D
and X is thereby simulated.

In Figure 3 all four cases have been chosen to make
E(X) = 3.0, a commonly observed value in empirical data
(see, e.g., Bjerstedt 1956). The parameter combinations
are chosen to emphasize different features of the p,
distribution.

In case 1 all parameters except 0 are set to zero. The
observed values of M.and V(in) for this case are near
their expected values, given X, , because p = 0 and B;
= 0.

In case 2 there is differential attraction, with nodes 1,
2, and 3 being the most highly attractive, and nodes 8,
9, and 10 the least. Here p = 0, and therefore M is near
its null expected value. Since B; # 0 the digraph exhibits
differential attraction, and therefore V(in) exceeds its null
expectation by more than a factor of two.

Case 3 has p = 2 and the same set of nonzero B; as in
case 2. Thus both reciprocity and differential attraction
are present. Here both M and V(in) exceed their null
expected values by nearly factors of two.

Case 4 is the same as case 3 except that p = —2, so
there is a tendency away from reciprocation. Here M is
less than half its null expected value, while V(in) exceeds
its null expected value by more than a factor of two.

Although these four examples do not exhaust the pos-
sibilities, they illustrate how, by varying the values of the
parameters of the p, distribution, we are able to inde-
pendently vary tendencies toward reciprocation and dif-
ferential attraction. Any structural features that may be
detected in these simulated digraphs are either implied
by tendencies towards reciprocation and differential at-
traction or are accidents of chance. Similar remarks are
in order when structural features are observed in empir-
ical data that fit a p, model.

ifs

3. ESTIMATION AND TESTING USING THE p,
DISTRIBUTION

In order to use p,(x) for data analysis, we need to be
able to estimate the parameters of p,(x), that is, the vector

OB, oy Be) - (26)

Since . = B, = 0, w ranges over a (2g)-dimensional
space. We shall denote the maximum likglihood estAimates
(MLE) of these parameters by # or p, 0, &;, and §;.

If X is the observed adjacency matrix, then the likeli-
hood function is

p1(X) = exp{pM + 60X, , + 2 aiXis

m™=(p,0,a,...

@7
+ 2 B X} 1 ey

i<j
where

Cij — (1 + eﬂ+a,~+Bj+ ee+aj+B,~ + eP+29+“i+°‘i+Bi+B./)_l .

Since p; is an exponential family, the likelihood equa-
tions, found by differentiating (27) with respect to the
parameters and setting the resulting system equal to zero,
must have the form ‘‘sufficient statistics equal their ex-
pected values.” Thus the likelihood equations that are
needed to find the MLE of « are

M =E.(M) = X my, (28)
i<j
Xiv =E-Xiz)=Dmy+ay), i=1,...,g, 29
J
X+j=E‘IT(X+j)=Z(mij+aU)7j= 19'-'7g' (30)

Note that in (29) and (30) we have expanded the defini-
tions of m; and a;. For i > j we set m; = mj; and let m;;
= 0. We also set a; = 0 and expand n; to a full g-by-g
matrix by setting n; = n;; for i <jand n; = 0. Thus (m;),
(ay), and (ny) are all g-by-g matrices with zero main di-
agonals; (m;) and (n;) are also symmetric. These con-
ventions simplify the subsequent discussion.

The MLE of = is the solution to the system (28), (29),
and (30).

There are two approaches that are commonly used to
solve such systems—one direct and one indirect. The
direct approach, exemplified by Newton-method itera-
tions, Fisher’s method of scoring, and various weighted
least squares iterations, sets up an iterative system of
approximations to 4. The indirect approach sets up an
iterative system of approximations to i, d;, and Ay
(defined by (22), (23), (24), with 4 substituted for ). For
this problem, generalized iterative scaling, described and
analyzed by Darroch and Ratcliff (1972), is the natural
candidate for the indirect approach.

There are two main drawbacks to the direct approach
here. First, there are, potentially, a large number of pa-
rameters—2g—and this will result in large matrices (2g
by 2g) and the need for careful numerical methods in the
iterations. Second, it is easy to have cases in which one
or more of the [3,- = —w (e.g., if X,; = 0). This situation
causes nonconvergence in Newton-method and related
approaches unless they have special adjustments to deal
with it.

The indirect approach—generalized iterative scaling—
suffers from neither of these two drawbacks. The largest
matrices that arise are g by g, and the computations done
on them are simple row and column multiplications.
When 3, = —, the corresponding my; or a; are zero,
and iterative scaling automatically adjusts for this. We
used a version of iterative scaling to estimate # and will
describe the algorithm here.

3.4 An lterative Scaling Algorithm®

We have tried several variants of iterative scaling for
fitting the p, distribution to data. The following algorithm

¢ FORTRAN code for these algorithms is available from the authors.
The code was developed on a DEC-20 machine. Other algorithms have
been developed since this work was initiated (e.g., Fienberg and Was-
serman 1979).
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was suggested to us by Y. Wang. It is quite simple and
can be shown to converge to the MLE by using the meth-
ods described by Darroch and Ratcliff (1972).

Let (m;™), (a;™), and (n,”) be the nth iterates in a
sequence of approximations to the MLE’s, (r1;), (4;),
and (A;). We begin with initial values (m;®), (a;”), and
(ni{®), which satisfy (22), (23), and (24) for some set of
values 0, p@, {0}, {B@}. For example, if we set m;
= ay® = n/® = 25foralli # j, and m;® = a, =
n;{” = 0, then these initial values satisfy (22), (23), and
(24), with 6@ = p©@ = q© = B© = (. The iterations
proceed in cycles of four steps, which we call the row
step, the column step, the mutual step, and the normal-
izing step, respectively.

The row step: For all i # j,

1) _
mij(n+ ) — m’_j(n) (F,'(")Fj("))l/z

aij(n+l) — aij(") (F ™ Ky G1)
ngnth = p g
where
F? = X l(min ™ + a; 2 ™) (32)
K® = (glg = 1) = Xy HMar ™ + n. ™). (33)
The column step: For all i # j,
mij(n+2) = mij(n+l) (Gi(n+l)Gj(n+l))l/2
aij(n+2) = aij(n+l) (Gj(n+l)K(n+l))l/2 (34)
nij("+2) — nij(n+l)K(n+l),
where
G"*D = X (m, "+ + a, D) 35)
and
K™D = (glg = 1) = Xy M@y (D + 0, ,000),
(36)
The mutual step: For all i # j,
mij(n+3) _ mij(n+2)H(n+2)
4"t = gy PLOHD G7)
ng®+d = gD peEd
where
H+2 = MiGm, @) (38)
and
L+ — [(«;’) _M]/[(§> _ (%m++(n+2))]' (39)
The normalizing step: For all i # j,
Mg+ D = DR+
a; "+ = ag "+ PR+ (40)

mj(n +4) _ ”ij(n + 3)/Rij(n +3) ,
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where
Rij(n +3) — mij(n +3) + a,-j(" +3) + a,-,-(” +3) + "ij(n +3) . (41)

The full algorithm consists of chaining together these
four steps into a single cycle and repeating the cycle until
convergence. The output of the normalizing step is used
as the initial values for the row step in the next cycle.
Our experience with the algorithm suggests that it is a
practical way to fit the p, distribution to adjacency mat-
rices for which g is as large as 60. We have had no ex-
perience with fitting larger matrices, but we do not expect
that they would create problems beyond the obvious ones
involved with storage and machine time.

The algorithm just described fits the full p, distribution.
However, we are also interested in fitting submodels of
pi (e.g., those described in Sec. 2) to data. For example,
the submodel of p, for which p = 0 is important for testing
hypotheses about p. It may be estimated by maximum
likelihood in a number of ways. One way is to leave out
the mutual step in the algorithm just described. We can
then obtain the MLE’s of m;, a;, and n; for p; with p
= 0. We have also used the following algorithm for fitting
the p = 0 case. Let.

and
g5 = 1 — p; = PX;; = 0). 43)
When p = 0, the X;; are independent and p;; satisfies
log.(py/qy) = 6 + a; + By, i #j. (44)

The likelihood equations for this submodel of p; may be
expressed in terms of the p;. They are

45)
(46)

The algorithm creates a sequence of iterates, p; and
q;", that converge to p; and §;. There are three steps
to each cycle of this algorithm: a row step, a column step
and a normalizing step.

The row step: For all i # j,

Xi+=pi+9 i=1’~"9g

X+j=p+j, j=1,...,g.

PtV = py® Xis/lpis™) 47
27" = ¢ (g — 1 = Xi)lgis ™). (48)
The column step: For all i # j,

Py *? = p D (X lp D) 49)
a7 P = g;"* P (g — 1= X4 ))lg+;"* ). (50)

The normalizing step: For all i # j,
p’:i(n+3) = pij(n+2)/Rij(n+2) (51)
@i = g " TP IR;D (52)

where

Rij("+2) — pij(n+2) + qij(n+2). (53)
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This algorithm is related to the usual iterative scaling
algorithm used to fit the model of ‘‘no three-factor inter-
action’’ to a three-way contingency table. The initial val-
ues for this algorithm for fitting p, with p = 0 are p;©
= q,‘j(o) = .50.

Another important submodel of p, requiring iterative
methods for its estimation by maximum likelihood sets
Bi =0,j=1,...,g. This submodel can be estimated
by dropping the column step from the first algorithm de-
scribed before, and using m;® = a;® = n;® = 25 as
the initial values.

Those submodels of p;(x) described in Section 2, in
which p = 0 and either o; = 0 or B; = 0, do not need
iterative methods for their estimation. For example, if p
= 0 and B; = 0 but 6 and « are free to vary, then the
MLE of p; = P(X; = 1) is

pi = Xislg — D). (54

Under this model, 7, d;, and A; may be computed di-
rectly from (54).

3.2 Testing Hypotheses Within the p, Distribution

The algorithms just described may be used to obtain
MLE’s of mj, a;, and n; for the full p, distribution and
for various submodels that we defined by setting certain
parameter values to zero. These submodels correspond
to hypotheses within the p, distribution that have inter-
esting substantive interpretations. We will consider these
hypotheses

Ho: p = 0, {B; = 0}; 0, {a;} unconstrained, (55)
H,:p = 0;0, {a;}, {B,} unconstrained, (56)
H,: {B; = 0}; 0, p, {a;} unconstrained, 57
Hs: 0, p, {a;}, {B;} all unconstrained. (58)

The hypothesis H; corresponds to the full p, distribution
with no constraints on the parameter values. In Hy, only
6 and the {o;} are unconstrained. H, corresponds to the
assumption that each node produces directed edges at
random and that there are no tendencies for reciprocation
(p = 0), nor is any node more attractive than any other
(B; = 0). H, extends H, to allow the nodes to be differ-
entially attractive, while H, extends H, to allow a ten-
dency toward (or away from) reciprocation.

Tests for reciprocation have previously been based on
testing H, against Hy. This is implicit, for example, in the
work of Katz and Wilson (1956). This approach assumes
that the attractiveness parameters, B;, are all zero. For
example, the procedure of comparing M to E(M | {X;.})
from (6) may be justified by the fact that the uniformly
most powerful unbiased test of H, against H, may be
shown to be based on the conditional distribution of M
given {X;,} under Hy (see Lehmann 1959, p. 134). As-
suming the relevant normal approximations hold, this is
the same as comparing M to E(M | {X;, }) and rejecting
H, for H, if this difference is large compared to the con-

ditional standard deviation of M given {X;.} under H,.
See Katz and Wilson (1956) for this variance calculation.

The problem with the procedure just outlined is that
in many applications there is often evidence that 8; # 0.
Thus to test for reciprocation within the p, distribution,
it is more natural to test H, against H3. An important use
of the p, distribution is to allow us to form the likelihood
ratio test for H, against H;. The MLE’s of m;, a;, and
n; may be easily computed under either H, or H3 by the
algorithms just described. If 1, d;;, and 7i;; are the MLE’s
under H; and my;*, a;*, n;,* are MLE’s under H,, then
the usual log-likelihood ratio (LLR) statistic for this prob-
lem is

LLR = -2log.\) =L,,+ L, + L,, (59)
where \ denotes the likelihood ratio and,
L. =22 X;X;log. (m"*> ,
i<j mij
Lo =23 Xy(1 - X;) log. (“—) : (60)
i+ ai

L =23 (1 - X;)(1 = X;) log. ("—) .
i<j ny

The reference distribution of LLR from (59) might be
expected to be chi squared on one degree of freedom, but
the standard theory does not apply in this case. The rel-
evant ‘‘sample size’’ is g(g — 1), which will be large in
many applications, but there are 2g — 1 nuisance param-
eters, 0, {;}, {B;}, that are being estimated and they may
affect the null distribution of LLR under H,. We have
not explored the theoretical analysis of this distribution
problem but have performed a small pilot simulation
study’ (1,000 replications per case) to see if the chi-
squared distribution on one degree of freedom is plau-
sible. Table 2 summarize$ these preliminary simulation
results. There are eight sets of parameter values used in
the simulation; these are described in Table 2a. In cases
A-10 and B-10, g = 10, in A-20 and B-20, g = 20, in
A-30 and B-30, g = 30, in A-40 and B-40, g = 40. In
the A cases all parameters except 0 are zero. In order to
examine the effect of differential attractions on the dis-
tribution of LLR for the B cases, p and a; were set to
zero, but the B; are not all zero.

Although this pilot study is too small to give definitive
results (because of the small number of parameter sets
studied, i.e., 8), some useful conclusions and conjectures
can be drawn from it. First of all, there is consistent
evidence across the eight cases for a modest bias in the
use of the one-degree-of-freedom chi-squared distribution
for the likelihood ratio test of H, against H;. All of the

7 Our procedure employed a FORTRAN coded algorithm, RANGEN,
to generate random graphs from p; as described in Section 2. The code
uses the FORTRAN-20 uniform random number generator (RAN) as
implemented on the DEC-20 computer.
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means exceed one, with an average mean ot 1.17. All of
the eight variances exceed two, with an average variance
of 2.87. All of the eight medians equal or exceed the chi-
squared values of .45, with average median value .52.
Fifteen of the sixteen obtained percentage values equal
or exceed the corresponding chi-squared values. The av-
erage of the obtained percentages for the nominal 5 per-
cent chi-squared point is 7.25 percent. The average for
the 10 percent point is 12.50 percent. All of this is con-
sistent with the hypothesis that the correct reference dis-
tribution for this likelihood ratio test has a slightly heavier
upper tail than the chi-squared distribution with one de-
gree of freedom. The degree of this bias, however, ap-
pears to vary somewhat across the eight cases studied.
It is never so large as to make the use of the chi-squared
distribution seriously suspect, and it appears to become
smaller as g increases. In Section 4 we investigate an
empirical digraph and obtain a value for the LLR statistic
of 30.4 for g = 18. These pilot simulation results suggest
that this value is highly significant.

Two important dimensions are varied in this simulation
study—the number of nodes, g, and the values of the
““nuisance’’ parameters B;. We expected that as g in-
creased, the agreement with the chi-squared distribution
would improve. As mentioned previously, this seems to
be true. If the means for the A-g and B-g cases are av-
eraged, we obtain values of 1.33, 1.18, 1.15, and 1.03 as
g varies from 10 to 40—an apparent tendency to approach
the chi-squared values of one as g increases. A similar
trend can be observed in the other A, B-g averages dis-
played in Table 2b. To study the effect of varying values
of the nuisance parameters, we averaged the entries in
Table 2b separately from the A cases and the B cases.
These values are also given in Table 2b. There is a slight
tendency for the A cases to be more in agreement with
the chi-squared results than are the B cases. This suggests
that the values of the nuisance parameters do have a
modest effect on the distribution of the likelihood ratio
statistic.

These results, while based on a pilot study, are reas-
suring, and although more detailed simulation studies and
theoretical analyses need to be carried out, we do not
anticipate any surprises. We intend to report the results
of a more extensive simulation study elsewhere. Our main
conclusion from this pilot study is that the chi-squared
distribution on one degree of freedom is adequate for
crude evaluations of the significance levels of the likeli-
hood ratio test of H, against Hj;.

. Other likelihood ratio tests of hypotheses within p, may

be constructed: for example, a test of {8; = 0} that does
not also assume that p = 0 is obtained by forming the
likelihood ratio statistic for testing H, against H;. We
have not explored the behavior of this test statistic to see
if the chi-squared distribution on g — 1 degrees of free-
dom is a reasonable approximation to its distribution
under H,. More research is needed to clarify the use of
likelihood tests in these circumstances.
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Table 2. Summary of Pilot Simulations of the Log-
likelihood Ratio Statistic (LLR) for Testing H,
Versus Hj in 8 Cases of the Null Hypothesis
(1,000 replications for each case)

a. Parameter Values for Simulation Cases?®

Case g 0 p a B
A-10 10 —-.693 0 0 0
A-20 20 -1.674 0 0 0
A-30 30 -2.159 0 0 0
A-40 40 -—2485 0 0 0
15 for1=j=<3
B-10 10 —-.906 0 0 0 for3<j<8
—-15 for8=j=10
15 fori=j=<6
B-20 20 -2.100 0 0 0 for6<j<15
-15 for16=j=20
15for1=j=<9
B-30 30 -2647 0 0 0 for9<j<22
-15for22=j=<30

15for1=sj=<12
0 for12<j<29
—-15for29=j=<40

B-40 40 -3.001 0 0 {

b. Summary Statistics for Simulated Values of
the Likelihood Ratio Statistic

Case Mean Variance Median % = 3.84 % = 2.71

Chi-squared 1 df 1 2 .45 5 10
A-10 1.26 3.06 .57 10 14
A-20 1.15 242 .59 6 1
A-30 1.14 2.78 .51 7 12
A-40 1.04 217 .45 6 11
B-10 1.39 4.65 .56 11 16
B-20 1.21 3.01 .51 8 14
B-30 1.16 2.69 .53 6 12
B-40 1.01 214 .45 4 10
Overall Average 1.17 2.87 .52 7.25 12.50
A-average 1.15 2.61 .53 7.25 12.00
B-average 1.19 3.12 .51 7.25 13.00
A, B-10 average 1.33 3.86 .57 10.5 15.0
A, B-20 average 1.18 2.72 .55 7.0 12.5
A, B-30 average 1.15 274 - 52 6.5 12.0
A, B-40 average 1.03 2.16 .45 5.0 10.5

2 values of § are chosen so that the expected value of X is three.

3.3 Testing the Fit of the p, Distribution

We have two suggestions for ascertaining whether an
observed adjacency matrix X is well represented by the
p distribution. The first is the time-honored study of
residuals, while the second uses approximate test statis-
tics that we developed elsewhere (Holland and Leinhardt
1975a,b and 1978). In the example in Section 4 we will
illustrate how the fitted p, distribution can be used for
residual analysis. In the remainder of this section we
discuss how the tests proposed in Holland and Leinhardt
(1975 and 1978) can be used to provide goodness-of-fit
tests of p,. ’
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The natural way to test the fit of an exponential family
of distributions is to embed it in a larger family of dis-
tributions and perform the corresponding tests. For ex-
ample, let p>(x) be a new probability distribution over G
having the form

pa2(x) = exp{dZ(x) + pm + 0x

+ 2 aixie + 2 Bix g} (61)

X k2(83 P, e’ {(Ii}, {Bj}) )

where everything in (61) is just like p, in (8), except that
3 is a new parameter and Z(x) is a new sufficient statistic
(or real-valued function of the matrix x). The p, distri-
bution contains the p, distribution as a special case, and
thus the natural goodness-of-fit test of p, is the test of &
= 0in p, (where all the other parameters in p, are allowed
to vary freely).

The form of p, depends on the function Z(x). The choice
of Z(x) depends on the type of departure from p, that the
analyst wishes to be able to detect. There are several
considerations in choosing Z(x). For example, any choice
of Z(x) that can be expressed as a linear combination of
m, {x;, }, and {x ., ;} will yield a family, p,, that would be
identical to p,. Another consideration in the choice of
Z(x) is the tractability of the resulting p, distribution. We
have not succeeded in finding a function Z(x) that leads
to a tractable p, and that uses information from x that is
more complicated than the dyads, D;. Nonetheless, for-
mulating goodness-of-fit tests of p, in terms of embedding
p, in a larger family is useful because, regardless of what

Z(x) is, the form of the uniformly most powerful unbiased
(UMPU) test of 8 = 0 is easy to describe. From Lehmann
(1959, p. 134) it follows that the UMPU test of 8 = 0
against 8 # 0 is based on the conditional distribution of
Z(x) given M, {X;.}, and {X .}, under the uniform dis-
tribution over G. Thus if Z(x) has an approximate normal
conditional distribution given M, {X;. }, and {X .}, then
the UMPU test of 8 = 0 will reject if

oD e (62)
s

is extreme, where e is the conditional mean and s is
the conditional standard deviation of Z(x), given M,
{X:+}, and {X,;}. Thus in order to obtain a goodness-
of-fit test of p,, we need to find a Z(x) that reflects the
types of departures from p, that interest us and for
which the conditional distribution of Z(x), given M,
{X;,}, and {X,}, is adequately represented by a normal
approximation.

In Holland and Leinhardt (1975 and 1978) we have
discussed tests of the form given in (62) where Z(x) is a
function of the ‘‘triad census’’ of x. The triad census of
x is defined as follows. Each of the (§) distinct triples
of nodes defines a triad of the original digraph. There are
16 possible nonisomorphic triads of a digraph. These are
displayed in Figure 4. The triad census of x is the 16
vector whose ith entry gives the number of triples of
nodes of x of the ith triad type. We have suggested using
linear combinations of the counts in a triad census as
possible choices for Z(x) because they reflect information

Type: (1) (2) (3) (4) (5) (6) (7) (8)
o [ ) @ [ ] [ ) [ ) [} [ )]
S A A AN
[ ] [ ) [ J [ ) ® o o @ «—e0 [ Lo X )
003 ol2 102 021D 021U o2iC 1o i
Type:  (9) (10) (1) (12) (13) (14) (15) (16)
@ @ @ @ [ ] @ @ @
./—b\. ./——}. {—b .{—.\. .4—-1\. ./«}. .L—\. ./G—}.
030T 030C 201 120D 120U 120C 210 300

Triad isomorphism classes are coded by three digits. The first digit indicates the number of
reciprocated or mutual pairs (M), the second the number of asymmetric pairs (A), and the third

the number of null pairs or pairs without ties (N). Trailing letters distinguish among classes

that differ because of orientations of asymmetric pairs.

See Holland and Leinhardt (1970).

Figure 4. The 16 Triad Isomorphism Classes for a Digraph*
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in x that goes beyond the dyads. Furthermore, because
linear combinations of triad counts are sums, it is rela-
tively easy to calculate means, variances, and covari-
ances. Finally, normal approximations are plausible
when the triad frequencies are large. In Holland and Lein-
hardt (1970) we considered test statistics of the form

where T is the 16 vector of triad counts of x and w is a
weighting vector. In earlier reports we used weighting
vectors that yielded w'T equal to the number of intran-
sitivities in x (i.e., i, j, k form an intransitivity if X;; = 1,
Xjyr = 1 but X; = 0). We call this test statistic 7(intran)
(Holland and Leinhardt 1971, 1972). In Holland and Lein-
hardt (1970) w and 3 were the conditional mean vector
and covariance matrix of T given M and X. In Holland
and Leinhardt (1975) we proposed a method that can
be used to obtain approximate values for the conditional
mean vector and covariance matrix of T given M, X,
V(in), V(out), and the correlation of (X;., X,;) or
COR(out,in). While this method is approximate and does
not go all the way to the full conditioning of T on M,
{X;+},and {X }, it appears to be a useful step in the right
direction.

In Holland and Leinhardt (1978) we proposed the test
statistic 7>(max) defined by

72(max) = max 72(w) (64)
where 7(w) is defined in (63). This test statistic may also
be used to test p,. Instead of loading all the discriminating
power of the test in one direction, as T(w) does (i.e., that
defined by the weighting vector), T>(max) is able to detect
any sufficiently large departure from p, that may be ex-
pressed as linear combinations of triad counts. The null
distribution for t?(max) is chi-squared distributed if the
conditional asymptotic normality of T holds. The degrees
of freedom for t2(max) depend on the level of condition-
ing. If w and 2 used in (63) are the conditional moments
of T given M, X, V(in), V(out), and COR(out,in), then the
degrees of freedom for t?(max) are 16 — 1 — 5 = 10.

At present, t(w) and 7*(max) are the only tools we
know of for formally testing the goodness of fit of the
unrestricted p; distribution to an observed adjacency
matrix. Further research is necessary to substantiate and
refine our suggestion to use t(w) and 72(max) in this way.
In Section 4 we illustrate the use of t(w) and 7*(max) to
test the fit of p; to an empirical example.

4. AN EMPIRICAL EXAMPLE

Figure 5 gives the adjacency matrix for friendship data
originally gathered by Sampson (1969) in a study of the
interpersonal ties among 18 members of a monastery.
The matrix in Figure 5 is taken from White, Boorman,
and Breiger (1976), who rearranged the rows and columns
of X to emphasize blocks of high and low edge density.
The out-degrees in Figure 5 are all three or four because
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White, Boorman, and Breiger used only the top three
friendship choices of a complete ranking in which ties
were allowed. We have not investigated whether varying
the number of top choices alters the conclusions of the
analysis.

Table 3 gives some summary information computed
from the matrix in Figure S. It is evident that recipro-
cation is high—M is nearly three times its null expected
value. The in-degree distribution does not seem to be
markedly different from the chance prediction because
V(in) is only 1.2 times its null expected value. The test
statistic t(intran) is significantly negative (—4.92), indi-
cating a tendency toward a transitive structure. Since
there is statistical evidence for both reciprocation and
transitivity, we would expect to see a reasonable level
of cliquing in these data. This supports the division of
these data into blocks found by White, Boorman, and
Breiger. The large value of t?(max), 38.37, suggests that
p, does not fit this set of data well. The ratio (t(intrans))?/
7?(max) is .63, indicating that the tendency towards tran-
sitivity and reciprocation accounts for most of the struc-
ture detected by t?(max). (See Holland and Leinhardt
1971; Davis and Leinhardt 1972; Leinhardt 1972 for dis-
cussions of transitivity and cliquing.)

Table 4 gives the fitted expected values of X;; under
the p, distribution, that is, p; = m; + d;, for the adja-
cency matrix in Figure 5.

Table 5 gives the residuals, ry; = X; — py, i # j. In
Table 6 we have formed the distribution of the nonzero
residuals from Table 5. The left-most column of Table 6
gives the tenths digit for the residuals. These range from
9 down to —4 since the residuals range from .94 down
to —.47. The second column of Table 6 gives the number
of residuals with the specified tenths digit, and the third
column gives the corresponding percentage. The bulk of
the residuals are negative, corresponding to the fact that
X has more zeros than positive values. Six of the positive
residuals are .90 or larger. Figure 6 contains coded re-
siduals in which all those .70 or larger are coded ‘‘+,”
those —.70 or smaller are coded ‘‘ —"’ (there are none in
this example), and all those between .69 and — .69 are
left blank. These coded residuals may be interpreted as
“‘unexpected’’ ties (for +) and ‘‘unexpected’’ nonties
(for —). They are unexpected in the sense that they are
not what the p, distribution would predict based on the
observed in- and out-degrees and reciprocation. Most of
the relational ties in this example are ‘‘unexpected’’ be-
cause of the clean-cut pattern of cliquing. The six most
unexpected ties (i.e., residuals .90 or greater) are (6,7),
6,11), (7,4), (11,12), (13,14), and (14,12). Except for

Table 3. Some Summary Information for Adjacency
Matrix in Figure 5

v Vv

g X (out) (in) M E(V(in)|Xi+) E(MXy.) =(intran) 1*(max)

18 3.11 .099 299 15 2.54 5.12 -492 38.37
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1234567 8910 11 12 13 14 15 16 17 18 | X,
| T

1 0110100:0000000}1000 4
2 0010110, 000 0 O O O'!' 0 O OO 3
3 010000131000000;0000 3
4 0110100:000000010000 3
5 0101010,0000000:0000 3
6 01000011000 1 0 0 0, 0 0 0 O 3
7 0011100:0000000:0000 3

ety S S
8 0000000!0110010:0000 3
9 0000‘000:1001000:0100 3
10 000000011100010:0000 3
11 0000000,110 0 10011 00 0 O 3
12 0000000}101 0 0 101 000 O 3
13 0000000!101 0 00 10000 3
14 0000000J0010110:0000 3

________________ i
15 0100000:0000010:0001 3
16 0000000:010000031011 4
17 0000000:0010000:0101 3
18 00000001001 0 00 O0:!: 0110 3
Xij 0642422 646 2 2 5 1 2 3 2 3 156=X,.

Figure 5. Adjacency Matrix From Sampson (1969) As Presented in White, Boorman, and Breiger (1976).
Dashed Lines Indicate High and Low Tie-Density Blocks Found by White et al. Left-most Column and Upper-
most Row Are the Indices of i and j, Respectively

(6,11), these are all “‘within-block ties’’ from the point
of view of the blocks identified by White, Boorman, and
Breiger (1976), and except for (13, 14) these are all non-
reciprocated ties. These support the block structure
found by White et al.

Table 7 gives the parameter estimates of p, o;, and B;
for these data. The value of p = 3.10 means that the odds
ratio in (17) is 22.2, indicating a 22-fold increase in the
odds that X;; = 1 when X;; = 1 over the value obtained
when X;; =.0.

Table 4. Fitted Expected Values of X;; From Figure 5 for the p, Distribution®

By x 100

Tt 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 pu.
1 0 47 29 12 29 12 12 47 29 47 12 12 38 05 12 16 12 20 4
2 0 0 28 12 23 12 12 33 23 33 12 12 28 06 12 19 12 18 3
3 0 3 0 12 22 12 12 33 22 3 12 12 28 06 12 18 12 17 3
4 0 3 22 0 22 10 10 34 22 34 10 10 28 05 10 16 10 16 3
5 0 3 22 12 0 12 12 33 22 33 12 12 28 06 12 18 12 17 3
6 0 34 22 10 22 0 10 34 22 34 10 10 28 05 10 16 10 16 3
7 0 3 22 10 22 10 0 34 22 34 10 10 28 05 10 16 10 16 3
8 0 3 23 12 23 12 12 0 23 33 12 -12 28 06 12 19 12 18 3
9 0 3 22 12 22 12 12 3 0 33 12 12 28 06 12 18 12 17 3
10 0 3 23 12 28 12 12 33 23 0 12 12 28 06 12 19 12 18 3
11 0 3 22 10 22 10 10 34 22 34 0 10 28 05 10 16 10 16 3
12 0 34 22 10 22 10 10 34 22 34 10 0 28 05 10 16 10 16 3
13 0 3 23 12 23 12 12 33 23 33 12 12 0 06 12 19 12 18 3
14 0 3 21 09 21 09 09 35 21 35 09 09 28 0 09 14 09 15 3
15 0 3 22 10 22 10 10 34 22 34 10 10 28 05 0 16 10 16 3
16 0 43 30 15 30 15 15 43 30 43 15 15 36 08 15 0 15 23 4
17 0 34 22 10 22 10 10 34 22 3 10 10 28 05 10 16 0 16 3
18 0 3 22 11 22 11 11 33 22 3 11 11 27 05 11 18 11 0 3

B+ 0 6 4 2 4 2 2 6 4 6 2 2 5 1 2 3 2 3 56=p..

2The decimal points have been left off the entries in the body of the table. The marginal totals have not been so altered.



46

Joumal of the American Statistical Association, March 1981

Table 5. Residuals, rij = Xi; — pi;, From Figure 5 and Table 4, Multiplied by 100

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

1 0 53 71 -12 71 -12 —-12 -47 -29 -47 -12 -12 -38 -5 88 -16 -12 -20

2 0 0 77 -12 77 88 -12 -33 -28 -33 -12 -12 -28 -6 -12 -19 -12 -18

3 0 67 0 -12 -22 -12 88 67 -22 -33 -12 -12 -28 -6 -12 -18 -12 -17

4 0 66 78 0 7% -10 -10 -34 -22 -34 -10 -10 -28 -5 -10 -16 -10 -16

5 0 67 -—22 88 0 88 -12 -33 -22 -33 -12 -12 -28 -6 -12 -18 -12 -17

6 0 66 -22 -10 -22 0 90 -34 -2 -34 90 -10 -28 -5 -10 -16 -10 -16

7 0 -34 78 90 78 -10 0 -3 -22 -34 -10 -10 -28 -5 -10 -16 -10 -16

8 0 -33 -28 -—-12 -23 -12 -12 0 77 67 -12 -12 72 -6 -12 -19 -12 -18

9 0 -33 -2 -12 -2 -12 -12 67 0 -33 88 -12 -28 -6 -12 82 -12 -17

10 0 -33 -28 -12 -23 -12 -12 67 77 0 -12 -12 72 -6 -12 -19 -12 -18
11 0 -34 -2 -10 -22 -10 -10 66 78 -34 0 90 -28 -5 -10 -16 -10 -16
12 0 -34 -2 -10 -22 -10 -10 66 —22 66 —10 0 72 -5 -10 -16 -10 -16
13 0 -33 -23 -12 -28 -—-12 -12 67 -23 67 -12 -12 0 94 -12 -19 -12 -18
14 0 -3 -21 -9 -21 -9 -9 -3 -21 65 -9 91 72 0 -9 -14 -9 -15
15 0 66 -2 -10 -22 -10 -10 -34 -22 -34 -10 -10 72 -5 0 -16 -10 84
16 0 -43 -30 -15 -30 -15 -15 -43 70 -43 -156 -15 -36 -8 85 0 85 77
17 0 -34 -2 -10 -22 -10 -10 -—-34 -22 66 -10 -10 -28 -5 -10 84 0 84
18 0 -3 -2 -1 -2 -11 -11 -33 -22 67 -1 -11 -27 -5 -—-11 82 89 0

This estimate of p assumes the {a;} and the {B;} are
not equal to zero. It can be contrasted with an alternative
estimate, which assumes the {a;} and {B;} equal zero. This
alternative estimate derives from Davis’s (1977) sugges-
tion that one could summarize an adjacency matrix X by
forming the 2-by-2 table of the frequencies of the pairs

11111 1111
1234567|(8901234|5678
110 + + +
2 0+ + +
3 0 +
4 + 0+
5 + 0 +
6 0+ +
7 ++4+ 0
8 0+ +
9 0o + +
10 +0 +
11 + 0+
12 0 +
13 0+
14 ++0
15 + 0 +
16 + +0+ +
17 + 0 +
18 ++ 0
Codes
+=l’i12.70.
0 = main diagonal

Figure 6. Coded Residuals From Table 5 (X; = 0 by
convention)

of nodes D; = (X;;, X;;) for i # j. His table has the form

Xji
1 0 Total
1 2M A Xi+
X, : (65)
0 A 2N glg—1)— X+ s
Total X+ g(g_1)_x++ g(g_1)

where M, as before, is the number of reciprocated paris,
A is the number of nonreciprocated pairs, and N =
() — M — A is the number of null pairs. Davis pro-
using contingency table measures of association to obtain
measures of particular structural effects for digraph data.
His proposed measure of reciprocation is a monotonic
function of the log-cross-product ratio in the 2-by-2 table

in (65), that is,
b = log.(4MN/A?). (66)

We have denoted this by p because, under the submodel
of p, that assumes that {a;} = {B;} = 0, p is the MLE of

Table 6. Distribution of Residuals in Table 5

Tenths Digit Frequency  Percent

9 6 2%

8 14 5

7 18 6

6 17 6

5 1 0

4 — —

3 —_ —

2 — -

1 —_ —

0 R I
-0 22 8
-1 126 44
-2 48 17
-3 32 1
-4 5 2

289 101%
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p. When the o; and B; differ from zero, p may be a mis-
leading measure of reciprocation because it ignores dif-
ferential attraction among the nodes. Indeed, in the case
at hand p = 2.30, corresponding to an odds ratio of 10.0.
Thus, while these two estimates of p both indicate a large
value for this parameter, the difference between them
illustrates the effect of simultaneously estimating p, {o;},
and {B;}.

In Table 7 we have estimated §, as — » because this
is the required value for p.; = X, = 0. The other B;
have been parameterized so that they sum to zero. In this
qxample, there is a near-monotonic relationship between
B;and X, ;. The exception to monotonicity occurs in the
estimate of B for node 16. Although node 16 and node 18
both receive three choices, 16 = —.25, while ;5 = 0.
Thus an estimate of the relative attractiveness of nodes
16 and 18 assuming p = 0 would imply no difference
between the two individuals, while an estimate assuming
p # 0 implies that node 18 is more attractive than node
16. In other empirical situations the divergence from
monotonicity may be more extreme. Comparison of the
o; with the X;, indicates that these are definitely not
monotonically related.

These results and those for p and p illustrate the im-
portance of p,. Fitting p, to data involves the simulta-
neous estimation of p, 6, {o;}, and {B;}. Earlier analyses
have at best estimated analogs of p and {B;} separately.
This implicitly assumes that the nonestimated parameters
are all zero. The differences we have observed in this
empirical example suggest that assuming that parameter
values equal zero may be misleading.

The value of the log-likelihood ratio statistic for the
test of p = 0 (i.e., H, versus H; in Section 3, Egs. 56
and 58) is LLR = 30.41. When referred to the chi-squared
distribution with one degree of freedom, this is statisti-
cally significant at the usual levels, as mentioned earlier
in the simulation study of Section 3. This supports rejec-
tion of H, and gives inferential support to the previously
indicated evidence of high reciprocation in these data.

Table 8 gives the triad census for this example along
with the approximate expected values of the triad census
conditional on X, M, V(out), V(in), and COR(out,in). The
value of t?(max) is 38.37. This value exceeds the .005
cut-off level of the chi-squared distribution on 10 degrees
of freedom. Thus, although the agreement between the
observed and expected triad frequencies looks remark-

Table 7. Estimates of p, 0, a;, and B; for Data in
Figure 4 (p = 3.14, 6 = —2.50)

i1 2 3 4 5 6 7 8 9

& 115. -.73 -.30 22 -.30 .22 22 -.73 -.30
B - 125 49 -.62 49 —-62 -62 125 .49
i 10 11 12 13 14 15 16 17 18

a -.73 22 22 -.53 49 22 .48 .22 —-.05
B 125 -.62 -.62 89 —-153 -62 -25 -62 .00

Table 8. Triad Census for Data in Figure 5 With
Expected Values Conditional on g, X, M, V(in),
V(out), and COR(out, in)

Expected Value

Triad Type® Triad Census (0) (E)
003 293 307.82 —14.82
012 257 231.16 25.84
102 155 140.53 14.47
021D 7 9.99 -2.99
021U 13 17.35 -4.35
021C 20 23.64 -3.64
111D 27 38.71 -11.71
111U 13 21.05 —-8.05
030T : 3 2.66 .34
030C 1 .62 .36
201 9 14.42 —-5.42
120D 7 1.98 5.02
120U 1 1.00 .00
120C 3 2.48 .52
210 5 2.37 2.63
300 2 .23 1.77

2 See Figure 4 for this code.

ably good, the discrepancy is statistically significant. This

demonstrates the difficulty encountered in performing

‘‘eyeball” analyses of surpluses and deficits of triads. .
Given the large value of 7?(intrans)—that is, 24.21 out of

a maximum of 38.37—most of the discrepancies between

the observed and expected values in Table 8 are asso-

ciated with the single degree of freedom given by intran-

sitivity. This is especially hard to ‘‘eyeball’” because it

corresponds to a specific linear combination of the triad

frequencies.

5. A GENERALIZATION

We have developed the p, distribution for data on a
single relationship observed at one point in time, case
(a) of Section 1. Although such data represent by far the
most common Kind of data studied by social network
analysts (Davis. and Leinhardt 1972), probably the next
most common form consists of one-time observations of
multiple relationships, case (e).of Section 1. Together
with the increase in theoretical richness that multiple re-
lationship data provide (see, e.g., White, Boorman, and
Breiger 1976; and Boorman and White 1976), the fre-
quency with which these data are collected would indi-
cate that extending p, to the multiple relationship case
is a natural next step. Because of its importance, the
straightforwardness of its development, and the way in
which it illustrates the utility of p,, we briefly discuss
such an extension here. Of course, extensions of p, that
incorporate other complications, such as those repre-
sented by cases (b) through (d) of Section 1, are also
important for social network analysis, but their devel-
opment here is precluded by space limitations.

51 Multiple Relationship Digraph Data

Suppose that two different adjacency matrices are ob-
served for the same set of nodes; denote them x and y,
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respectively. Then x and y are both g-by-g zero-one ma-
trices and their rows and columns are in correspondence
(i.e., x;and y; refer to two different relationships between
the same two nodes, i and j). There are many examples
of multiple relationship (or multiple generator) data in
social network research. For example, in studies of
friendship it is common to collect information on ‘‘dis-
like’’ as well as ‘‘like.”” In Sampson’s (1969) study of the
social relationships among members of a monastery, he
reports data on no less than eight different types of re-
lationships. In this section we shall be content to gen-
eralize p,(x) to the ‘‘bivariate’’ case of two adjacency
matrices, x and y, since this illustrates the essential fea-
tures of the general case and allows us to address an
important substantive issue, the correlation of x and y.
Suppose, to begin, that X and Y are two random g-by-
g adjacency matrices that are statistically independent and
that both have p, distributions with possibly different
parameter values. The joint distribution of X and Y is
thus
PX =x,Y =y) = pi(pi(y)
exp{piM(x) + p2M(y)

+ 01xe + 02y++

+ > aaxis + Z Q2 Yi+
i i

(67)

+ 2 Bixe + 2 By}t X k

where k is the product of the two normalizing constants
and M(x) and M(y) are the numbers of mutual or recip-
rocated pairs in x and y, respectively.® Even this simple
distribution illustrates an important consideration in the
analysis of multivariate digraph data. If we set B;; = B,
forj =1, ..., g so that the attractiveness parameters
are the same for the two random digraphs, then, if the
B; vary widely, the entries in X and Y will exhibit an
apparent positive correlation. This is because a node that
has a high B;; will have a high B;, and will tend to attract
relational ties of both types, X and Y. The apparent cor-
relation between X and Y that is due to similar parameter
values is analogous to similar statistical artifacts in other
settings—the ecological correlation fallacy, for example.
To introduce a ‘‘true’’ correlation between X and 7Y,
it is convenient to proceed as we did for p,(x) by con-
sidering the pairs (i, j). We may decompose X, Y into

() vectors
Dij(Z) = (Xy, Xii, Yy, Y;) (68)

where [ < j.
In (68) D;® has a superscript two to remind us that it

8 Producing random matrices from a bivariate p, distribution proceeds
along lines similar to those described earlier for the univariate case. We
have developed a FORTRAN routine on a DEC-20 computer that pro-
duces pairs of random adjacency matrices from a bivariate p; distri-
bution with specified parameter values.
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is the two-relation analog of D;; defined in Section 2. D;®
can have any of 16 possible values. It may happen that
the relationships X and Y are mutually exclusive in the
sense that X;; = 1 implies that Y;; = 0 and X;; = 0 implies
that ¥; = 1. For example, like and dislike will often have
this property in classroom sociometric studies of friend-
ship. In the case of mutually exclusive relations, D;®
has zero probability of taking on certain values (such as
1,1, 1, 1)).

To generalize p,(x) to the case of two relationships, we
first assume that the.vectors D;® are all independent, as
we did for D; in the theoretical development of p;(x).
Then, to specify the joint distribution of X and Y, we
need only specify the values of the 16 probabilities that
D;® takes on its 16 possible values. We let

qu(t’ u, v, W) = P(Dij(Z) = (t, u, v, W)) (69)
fori <jandt, u, v, w = 0,1. We also set
Iy(x, y; t, u, v, w)

_)l ifxy=t,xi=uy;i=v,yi=w

- {0 otherwise (70)

fori <jandt, u,v,w = 0,1, xand y ¢ G. The I;(.)
functions may be expressed in terms of products of x
1 — xy, x;;, and so on. For example,

ijs

| (71)
Thp joint probability distribution of (X, Y) is given by
PX =x,Y=y)

=11 11

i<j t,u,v,w=0,1

Ij(x, y; 1,1, 1, 1) = XXy -

q(’i(t, u, v, w)ly'(x,y.'t,u.v.W)'

(72)

Equation (72) is the bivariate version of (13) in the de-
velopment of the univariate case in Section 2. We may
reexpress (72) in the following way that emphasizes its
exponential form:

PX =x,Y=1x
= exp{ X O1gxy + 2 B2y

i#j i#j

+ X pugxuXii + X P2yYiVii

i<j i<j

+ X Ongxgyy + 2 pragXyYi
i#1 i#j

(73)
+ 2 bigxgXiyy + 2 W2eXe Yy Vi

i#+j i*

+ > iaxgxiiyyyiik

i<j

x [1 40,0, 0,0) .
i<j
In (73) the 0’s, p’s, and {’s are the logs of products and
ratios of the g;’s.

Just as we simplified (14) to (21) by placing restrictions
on p; and 6;, so too can we simplify (73) by placing
restrictions on the 6’s, p’s, and {’s. For example, a po-
tentially useful model for (X, Y) that introduces true cor-
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relation between X and Y (in 67) without going to the full
parameterization in (73) is obtained by making the fol-
lowing restrictions:

015 = 01 + an + B 74)
025 = 02 + an + Bj2 (75)
P1j = P15 P2y = P2 (76)
Pi2i = p12; 012y = 012 a7

Ui = U25 = 12y = 0. (78)

The resulting bivariate distribution for (X, Y) has the fol-
lowing exponential form:

PX =x,Y=y)
= pilx, y)
= exp{p.M(x) + pzM(y) + 0ix+ 4 + 92))++

+ 2 it Xi+ + E A2 Yi+ 79

+ 2 Bixas + 2 Bpy+
i J

+ pi2R(x, y) + 0:2C(x, )} X K ,

where M(x) = Ei<jxijxji7 M(y) = 2i<jyy'yji and R(x, y)
= DiciXg¥Yii» C(X, ) = DiwiXyyy» and K in (79) is the
normalizing constant. We denoted the distribution in (79)
by pi(x, y) because it is a bivariate version of p, in the
sense that if p;, = 6;, = 0, then p,(x, y) = p;(x) pi(»)
as given in (67). Thus a submodel of p,(x, y) is the case
of independent X and Y where each follows the p, dis-
tribution. This leads naturally to tests of correlation be-
tween X and Y that are not confounded by the artifactual
correlation introduced by the B’s that was described ear-
lier (see Hubert and Baker 1978; and Katz and Powell
1953).

The substantive importance of tests of correlation be-
tween digraphs rests on the fact that social network an-
alysts typically assume or hypothesize that the structural
properties of one social relationship have implications for
the properties of another. Thus Homans (1950), for ex-
ample, argues that affective ties and interactional ties are
positively associated. An investigator of this proposition
could proceed by studying the correlation of a group’s
digraph of friendship relations with its digraph of inter-
action. Similarly, one might study the proposition that
liking and influence are inversely related (French 1956;
and Hopkins 1964) by studying the correlation between
a group’s digraph of friendship relations and its digraph
of influence relations.

6. CONCLUDING REMARKS

We believe that the study of statistical models for di-
graph data is an important area for future statistical re-
search. This paper has concentrated on introducing an
approach that is useful for applications in the study of
social networks. With these beginnings, it is likely that

related problems can be identified in other fields of ap-
plication and that eventually a consistent statistical meth-
odology for analyzing relationship data will be developed,
one that possesses the flexibility and completeness of
methods that currently exist for analyzing attribute data.

[Received April 1979. Revised May 1980.]
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RONALD L. BREIGER*

Comment

Holland and Leinhardt have long been among the most
innovative and most productive researchers in the field
of social network analysis. I and my colleagues were
gratified to have some aspects of the empirical findings
derived from our network theory supported rather strik-
ingly in their accompanying article pioneering new ap-
proaches to binary matrices. At the same time we were
surprised, given our theoretical goals, at the awkward-
ness of certain aspects of Holland and Leinhardt’s
approach.

In the ‘‘empirical example’ section of their paper,
Holland and Leinhardt’s p, distribution provides a null
model of an idealized structure. A null model for social
networks should be well defined, plausible, and clearly
capable of rejection in applications where definite struc-
ture exists. The p, model fulfills these criteria admirably,
as demonstrated in Holland and Leinhardt’s Section 4.
On the other hand, if one’s goal is an explicit model of
social structure, a modeling context that goes beyond the
null hypothesis is required. Some specific directions are
provided below.

It seems anomalous to generate predictions for square
binary arrays from a statistical framework that in the
given instance is unable to predict any one of the possible
array events with a ‘‘probability’’ over one-half (see Hol-
land and Leinhardt’s Table 4). As the authors point out,
“most of the [observed] relational ties in this example
are ‘unexpected,”’’ in the sense that the 38 residuals
greater than + .70 are a subset of the 56 observed data
ties. (Each residual greater than + .70 results, of course,
from matching an observed value of *‘1”’ with a predicted
value less than .30). I have no doubt that the Holland-
Leinhardt stance on what is interesting will pay off in
drawing generalizations across the enormous array of
square binary matrices. But I do not see why a sociolo-
gist, theorist or field worker, is much concerned for social
network analysis unless it leads to models of explicit so-
cial structure.

This brings me to my second point. Their pioneering
development of statistical tools leads Holland and Lein-
hardt away from a focus on patterns of relationships and
toward a framework within which a structure of persons
and relations is decomposed into a heap of pairs, which
I argue is inappropriate for social networks. Indeed, the
frequent collaborator with Holland and Leinhardt in past

* Ronald L. Breiger is Associate Professor of Sociology, Harvard
University, Cambridge, MA 02138. This research was supported by
National Science Foundation Grants SOC76-24394 and SES80-08658.

publications, the sociologist James A. Davis, writes in
his survey article on the previous Davis-Holland-Lein-
hardt studies of his ‘‘regret [over] our slide from global
structure to microanalysis. . . I wish we had been able
to move upward to say things about groups as a whole
instead of retreating to a perspective from which a triad
looks as large and complicated as intergalactic space’’
(Davis 1979, p. 60).

Put these points together: Holland and Leinhardt’s goal
is not to replicate entries in the network proper (the in-
terior cell values and the structure of present and absent
ties), and no attempt is made to discern an overall con-
textual pattern. I now illustrate that simultaneous re-
versal of these two weaknesses (from my point of view)
can yield results.

Blockmodel analysis ‘‘requires the aggregation of a
population’s members into distinct sets, termed blocks,
such that each set is treated homogeneously across all
networks simultaneously’’ (Breiger 1979, p. 23). From
this perspective, the basic point is that each of the nine
submatrices resulting from our three-block partition
should be internally homogeneous if the blockmodel
analysis makes sense. Provisionally adopting Holland and
Leinhardt’s p, model as a characterization of a homo-
geneous structure, I will therefore apply their model sep-
arately to each of the nine submatrices identified in
White, Boorman, and Breiger (1976, p. 750) and reported
in Holland and Leinhardt’s Figure 5. If the p, model fits
the full matrix poorly, but fits each of the blocked sub-
matrices well, then the improvement in fit is due to the
explicit structure uncovered by the blockmodel. (Such
improvement should not be confused with a *‘test’’ of the
blockmodel; see the last paragraph of this Comment.)
The underlying ‘‘principle of internal homogeneity’ as
a criterion for assessing the fit of a simultaneous partition
of the rows and columns of a square array is proposed
in Breiger (1981) and is implemented there in log-linear
models for counted data in social mobility tables.

Fitted values obtained from applying Holland and Lein-
hardt’s p, model separately to each of the nine blocked
submatrices are reported in the accompanying Table 1.
Treating only those entires greater than .50 in Table 1 as
predictions of ties, one obtains the binarized fitted values
of the accompanying Table 2. Comparing these with the
observed data (Holland and Leinhardt’s Figure 5), the
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Table 1. Fitted Expected Values From the Model Described in the Text?

—_

2 3 4 5 7

6 8 9 10 11 12 13 14 15 16 17 18 P4
1 0 84 65 29 65 29 29 0 0 o0 0 0 0 0 100 0 0 0o 4
2 0 0 78 48 81 45 48 0 0 o0 0 0 0 0 0 0 0 0o 3
3 0 78 0 23 58 19 23 50 0 0 50 0 0 0 0 0 0 0 3
4 0 88 69 0 73 33 37 0 0 O 0 0 0 0 0 0 0 0 3
5 0 91 76 46 0 41 46 0o 0 o 0 0 0 0 0 0 0 0 3
6 0 72 44 17 50 0 17 50 0 0 50 0 0 0 0 0 0 0 3
7 0 88 69 37 73 33 O 0o o0 O 0 0 0 0 0 0 0 0 3
8 0 0 0 0 0 0 O 0 58 77 22 43 77 22 0 0 0 0o 3
9 0 0 0 0 0 0 O 7 0 48 8 18 48 8 0 100 0 0 3
10 0 0 0 0 0 0 O 89 53 0 21 41 7% 21 0 0 0 0o 3
11 0 0 0 0 0 0 O 83 45 65 0 29 65 13 0 0 -0 0o 3
12 0 0 0 0 0 0 O 86 46 69 16 0 69 16 0 0 0 0 3
13 0 0 0 0 0 0 O 89 53 76 21 41 0 21 0 0 0 0o 3
14 0 0 0 0 0 0 O 83 45 65 13 29 65 0 0 0 0 0 3
15 0 100 0 0 0 0 O 0 5 58 0 0 30 0 0 1 1 99 3
16 0 0 0 0 0 0 O 0 100 15 0 0 6 0 99 0 100 100 4
17 0 0 0 0 0 0 O 0 5 58 0 0 30 0 0 100 0 100 3
18 0 0 0 0 0 0 O 0 5 58 0 0 30 0 1 99 100 0 3
B+ 0 6 4 2 4 2 2 6 4 6 2 2 5 1 2 3 2 3 56=p++

2 The decimal points have been left off the entries in the body of the table. The marginals have not been so altered.

reader will find 22 errors of prediction: 8 cells predicted
to be ‘‘1”’ are actually ‘‘0,”’ and 14 cell predictions err
conversely.

The reader may compare these predictions directly
with those of Holland and Leinhardt (their Table 4). To
aid intuition, I report (in Table 3 of this Comment) Hol-
land and Leinhardt’s predicted values above and below
.30 (of which 56 are greater than .30; no predicted value
is greater than .50; my choice of .30 is arbitrary, but the
reader may experiment with other choices). Treating only
those entries greater than .30 in Table 3 as predictions
of ties, the reader will find 74 errors of prediction (37
cells predicted to be ‘1’ are actually ‘‘0,”” and 37 cell
predictions err conversely). What is more, Table 3 em-
phasizes the patterning of ties predicted from Holland

and Leinhardt’s model. Of these 56 cells with the highest
expected values, 51 appear in just three columns (each
column consisting entirely of fitted values above .30, ex-
cept for self-choices), and 33 of these correspond to the
observed absence of ties. The contrast of Tables 2 and
3 suggests the implications of a model of definite structure.

Narrowing the gap between a ‘‘suggestion’’ such as
this one and a rigorous statistical procedure is a goal that
Holland and Leinhardt’s paper advances. Clearly, sev-
eral entire submatrices in the accompanying Table 1 are
fitted exactly under the model, which (even apart from
this fact) exhibits fewer degrees of freedom than Holland
and Leinhardt’s p, model applied to the full matrix. I am
not prepared to assess the goodness of fit of the model
for the blocked data. The model illustrated here (Table

Table 2. Fitted Expected Values Greater Than .50 in Table 1 of This Covmment"’l

1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18
1 0 1 1 0 1 o0 o0 0 o 0 0 0 0 0 1 0 0 0
2 0 0 1 0 1 [0 o0 0 o 0 0 0 0 0 0 0 0 0
3 0 1 0 0 [] o0 [0 0 o 0 0 0 0 0 0 0 0 0
4 0 1 1 o0 1 0 o0 0 o 0 0 0 0 0 0 0 0 0
5 0 1 [ [0 0 [0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 0 0 0 0 [0 0 o 0 [0 o 0 0 0 0 0 0
7 0 [ 1 [0 1 0 o0 0 o 0 0 0 0 0 0 0 0 0
8 0 0 0 o0 O0 0 0 0o 1 1 0 0 1 0 0 0 0 0
9 0 0 0 o0 o0 0 © 1 0 0 [0 o 0 0 0 1 0 0

10 0 0 O0 0 0 o0 © 1 1 0 0 0 1 0 0 0 0 0

1 0 0 0 O 0 0 0 1 [0 [ o [0 M1 o 0 0 0 0

2 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0

13 0 0 0 0 ©0 0 © 101 1 0 0 0 [0] 0 0 0 0

14 0 0 O0 0 0 0 0 ] o 1 o [0 1 0 0 0 0 0

%5 0 1 0 0 0 0 © o o0 [ o 0 [ o 0 0 0 1

%6 0 0 0 0 0 0 © 0o 1 0 0 0 0 0 1 0 1 1

177 0 0 0 0 0 O0 © 0 o 1 0 0 0 0 0 1 0 1

18 0 0 0 0 0 0 O 0 o 1 0 0 0 0 0 1 1 0

2 Errors of prediction (compare the observed data in Holland and Leinhardt's Figure 5) are enclosed in square brackets.
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Table 3. Fitted Expected Values Greater Than .30 in Table 4 of Holland and Leinhardt?®

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 1 [0 0 [0 o0 0 Ml o [ o0 0o [ o0 o] o 0 0
2 0 0 [0 O [0 [0 o0 o [ o 0 0 0 0 0 0 0
3 0 1 0 o0 0 0 0] 1 o [ o 0 0 0 0 0 0 0
4 0 1 [0 o [© 0 0 m o [ o 0 0 0 0 0 0 0
5 0 1 0 [0 O0 [0 0 o [ o 0 0 0 0 0 0 0
6 0 1 0 0 0 0 [0] Hp o [ [ o0 0 0 0 0 0 0
7 0 [] [0 [ [© o0 0 Ml o [ o 0 0 0 0 0 0 0
8 0 [1 0 o0 0 0 O o [0 1 0 0 [ o 0 0 0 0
9 o0 [ o 0 0 o0 0 1 0 [ [0 o 0 0 0 [0 o0 0
10 0 [ 0O o0 0 0 0 1 [0 o0 0 0 [0 0 0 0 0 0
11 0 (] o o0 0 o0 0 1 [0 (] o0 [0 o 0 0 0 0 0
12 0 (M 0 o0 o0 0 0 1 0 1 0 0o [0 o0 0 0 0 0
3 0 [ o ©0 o0 o0 0 1 0 1 0 0 0 0] 0 0 0 0
14 0 [ o 0 0 o0 0 H] o 1 0 [0 [0 o0 0 0 0 0
%5 0 1 0 0 o0 O0 O M o [ o 0 [0 o0 0 0 0 [0]
16 0 [] [ o0 [1] 0 0 ny 1 M o o [ o o] o [0 [0]
7 0 (M 0 o0 0 0 0 H] o 1 0 0 0 0 0 [0 o0 [0
8 0 [ 0 ©0 o0 0 o0 ] o 1 0 0 0 0 0 [0] [ o0

2Errors of prediction (compare the observed data in Holland and Leinhardt’s Figure 5) are enclosed in square brackets.

1) appears to be a natural generalization of the Holland-
Leinhardt model that may prove useful in the analysis of
matrices whose rows and columns have been partitioned,
and where homogeneity of structure is hypothesized to
be confined within the resulting submatrices. (The reader’s
attention is also called to the similarly motivated but dis-
tinct work of Fienberg and Wasserman in their important
paper, 1979, Sec. 6.) The major technical considerations
raised by these observations notwithstanding, there is
also a crucial substantive point to be made. Despite the
utility of measures of deviation from a well-defined null
structure, sociological analysis is most in need of explicit
models of the overall structures of observed populations.

One further main theoretical issue deserves recogni-
tion. Structural equivalence, an algebraic homomorphism
concept rather than a labeling of each node with a derived
statistical measure, is needed to provide an overall struc-
tural perspective and complement local concepts such as
cliques. Holland and Leinhardt seem to me to be so literal
about adopting standard parametric techniques that they
confound any possibility of introducing such ideas (cf.
White 1977). None of their techniques seem to have any
relation to the semigroup-algebraic side of our theory-
based analysis of multiple networks (Boorman and White
1976, Breiger and Pattison 1978, Mandel 1978, Pattison
1980). Nonetheless, this paper by Holland and Leinhardt
constitutes a major contribution to the development of

statistical models for digraph data, and will serve as an
enduring foundation for future work.

[Received August 1980.]
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STEPHEN E. FIENBERG and STANLEY WASSERMAN*

Comment

1. INTRODUCTION

Statistical approaches for modeling social network data
have been distinguished primarily by their absence from
much of the social network research literature. Holland
and Leinhardt’s work in this area is a notable exception,
and thus it is a special pleasure for us to comment on the
present paper. We believe that Holland and Leinhardt’s
development of exponential family models for directed
graph data is a major advance that will rapidly be applied
in a variety of substantive areas.

In February 1978 we first attempted to develop statis-
tical methods for a class of log-linear models for the
analysis of a social network brought to us by a Minnesota
colleague, J. Galaskiewicz. We accomplished little until
we had an opportunity to read an early version of Holland
and Leinhardt’s paper. Our progress immediately accel-
erated, and their exponential family of probability dis-
tributions and bivariate generalizations have served as
a basis for much of our subsequent work with the Gal-
askiewicz data (Fienberg and Wasserman 1980, 1981;
Fienberg, Meyer, and Wasserman 1981). Here we de-
scribe additional results and observations regarding Hol-
land and Leinhardt’s p, model, which help link their work
to the extensive literature on log-linear models for con-
tingency table analysis. The order of presentation of our
comments parallels that of their paper. We restrict our
comments to results for single relation data and refer the
interested reader to Fienberg, Meyer, and Wasserman
(1981) for a partial treatment of multivariate p,-like
models applied to the Galaskiewicz data, which involve
three relations.

2. FITTING THE p,-DISTRIBUTION

Holland and Leinhardt present a version of generalized
iterative scaling (Darroch and Ratcliff 1972)—GIS—for
solving the likelihood equations for the parameters of p,.
While GIS is known to converge, Holland and Leinhardt
provide us with no information on how rapidly conver-
gence takes place in practice, and specifically for the
example of Section 4. Many authors (e.g., see Fienberg
1980) have observed that the presence of fractional pow-

* Stephen E. Fienberg is Professor, Department of Statistics and
Department of Social Science, Carnegie-Mellon University, Pittsburgh,
PA 15213. Stanley Wasserman is Assistant Professor, Department of
Applied Statistics, School of Statistics, University of Minnesota, St.
Paul, MN 55108. The preparation of the Comment was supported in
part by National Science Foundation Grants No. SOC78-26075 and No.
SES80-08573. The authors are grateful to Michael Meyer for compu-
tational assistance and for comments on an earlier draft.
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ers of the GIS adjustment factors (i.e., the powers of 3
in (31) and (34) tends to make convergence excrutiatingly
slow relative to the standard iterative scaling procedure;
however, there is no guarantee that an alteration to GIS
to speed up convergence will “‘work’ in general (i.e.,
converge or maximize the likelihood). Thus it is some-
times profitable to explore alternative versions of GIS
and generate alternative data representations that allow
the use of simpler and perhaps more rapidly converging
versions of iterative scaling algorithms.

Our approach to this problem has been to begin with
an alternative notation that is evocative of that used in
the analysis of multidimensional contingency tables.
Rather than working directly with x, we define a new
array, y, with elements

1 ifDy = (g, %) = (K, D
Yok =10 otherwise.

Note that y;; is defined to be equal to zero and that y;;,
= yu. Thus we need only consider one ‘‘triangle’” of y,
in which i > j. By retaining all g - 22 cells in the array,
however, we are able to express the sufficient statistics
for the parameters of p, given by (27) as margins of y:

iy++n1 = M, number of mutuals,

Yi+1+ = Xi+ , out-degree of node i,

Y+ji+ = X4+;, in-degree of node j,

Y++1+ = X+ 4+ , -total number of choices.

Through the use of the redundant representation of the
full y array, one can show that fitting p, to the x array
is equivalent to fitting the ‘‘no three-factor’’ interaction
log-linear model to the incomplete four-dimesional array,
y. Technical details are given in Meyer (1980). Thus we
can fit p, to the data by using standard iterative scaling
applied to y (Fienberg and Wasserman 1981).

The no three-factor interaction log-linear model, in the
common notation of Fienberg (1980) and others, simul-
taneously fits the following margins of y to a four-way
array of estimated probabilities:

[12] [13] [24] [14] [23] ([34].

The [12] margin must be included in any iterative scaling
algorithm to ensure that the fitted values satisfy the con-
straints on the dyadic probabilities, (12). By exploiting
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the symmetries in y, we can straightforwardly reexpress
the remaining two-way margins as linear combinations
of [12] and the sufficient statistics, y. +11, {yi+1+}, and
{y+j1+}. We compare the convergence of the standard
iterative scaling algorithm with Holland and Leinhardt’s
algorithm on the Sampson data in a later section.

The submodels described by Holland and Leinhardt as
special cases of p, and listed in their Table 1 are all related
to equivalent log-linear models for y, and thus they too
can be fit by using standard iterative scaling computer
programs (see Fienberg and Wasserman 1981 for further
details). For example, fitting the version of p, with p =
0 is equivalent to fitting the model given by [12] [13] [24]
[14] [23] to y, and fitting the version of p, with {8, = 0}
is equivalent to fitting the model given by [12] [13] [24]
[34].

3. ASYMPTOTICS FOR TESTS WITHIN p,

A noteworthy feature of Holland and Leinhardt’s work
is their pilot Monte Carlo study of the ‘‘small-sample”’
distribution of likelihood ratio test statistics for compar-
ing hypotheses within p,; for example, testing for p =
0 by testing H, against H;. The usual asymptotic chi-
squared distributions associated with such tests are based
on a fixed parametric structure and let the sample sizes
tend to infinity. Such an asymptotic setup is inapplicable
in the present context because the sample size is g(g —
1), which is a function of g, the number of nodes. But as
we let g grow (so that the sample size can get large), we
get a sequence of probability structures whose dimen-
sions are also growing as a function of g; that is, there
are 2g¢ parameters for p, and 2g — 1 for p, with p = 0.

For the test of p = 0 using H, against H;, the special
large sparse asymptotics of Haberman (1977) appear, at
least on the surface, to be applicable since the difference
in dimensionality is fixed; that is, the difference equals
one. In this case, Haberman’s results suggest the use of
the standard x,? approximation to the null distribution
under H, for large samples. The Holland and Leinhardt
simulation provides some support for this conjecture. The
approach to this asymptotic distribution as g increases
in their simulation appears to be from the direction of
distributions with slightly heavier upper tails than x,2.

For similar likelihood ratio tests of {a; = 0} or {B; =
0}, for example, H, against H;, Haberman’s results are
inapplicable as the difference in dimensionality, g — 1,
increases with the sample size. All may not be lost here,
since the dimensionality is of order the square root of the
sample size, g(g — 1), but new asymptotic expansions
for such situations need to be developed. Even if the
resulting asymptotic null distribution as g tends to infinity
is not x,_ %, normal approximations similar to those de-
veloped by Koehler (1977) are likely to be applicable.

4. TESTING THE FIT OF p,

To check on the fit of p,, Holland and Leinhardt sug-
gest using a probability distribution p, that contains p,

as a special case. One approach to developing such dis-
tributions or models is to search for more complicated
log-linear models for y, which contain all six two-factor
effects, and hence p,. These models should be substan-
tively interesting and conceivably provide a better fit than
Di.
One such model could be based on the notion of dif-
ferential reciprocity. Rather than setting the dyadic re-
ciprocity effects equal to a constant as with p, in (19),
we could take
pp=ptptp, i>]j,

where the {p;} are normalized to sum to zero. This model
allows the effect of reciprocity to depend in a linear man-
ner on the two actors in a dyad. It can be shown that
fitting this model of differential reciprocity to the x array
is equivalent to fitting the following log-linear model to
the y array:

[12] [134] [234].

There is no closed-form solution available for fitting es-
timated probabilities under this model to the y array, and
thus some form of iterative solution, such as iterative
scaling, is required.

Unfortunately, there are no other standard log-linear
models that can be fit to y that contain p, as a special
case. For example, one model, mentioned by Holland
and Leinhardt, replaces o; + B; + 6 by 6; where 0; #
0;;. This model corresponds to fitting the log-linear model
to y specified by

[123] [124] [34].

The sufficient statistics [123] and [124] are the margins
of each 2 x 2 subtable of y. Because they consist of 0
— 1 entries, however, the margins completely determine
the interior of the 2 X 2 tables, and thus this model is
equivalent to the saturated model for the y array.

If we denote this model of differential reciprocity by

H,: 0, p, {a;}, {B:}, {p;} all unconstrained,

then a test for the adequacy of p, can be based on testing
H, (i.e., p,) against H,. The corresponding likelihood
ratio statistic has g — 1 degrees of freedom, and our
earlier discussion about possible asymptotic distributions
for tests of {o; = 0} or {B; = 0} is relevant here as well.

Holland and Leinhardt’s approach to testing the fit of
p. is to develop p, with a single additional parameter, 3,
yielding a new sufficient statistic, z(x). Then they suggest
using a normal approximation to the null distribution of
the test statistic 7 in (62). The version of T that they use
in practice is based on the triad census of x. The null
distribution is developed using a series of approximations
(see Holland and Leinhardt 1978), only some of which
are made completely explicit in this paper. For example,
they recognize but choose to ignore dependencies in the
triad counts, and they do not use n and %, the conditional
moments of 7 given M, {X;.}, and {X.,}. Instead, they
approximate p and 3 by the conditional moments of =
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given M, X, V(in), V(out), and COR(out,in). The effects
of such approximations on the distribution of T are very
unclear (see Wasserman 1977 for a discussion of these
conditional distributions). Finally, Holland and Leinhardt
suggest that the asymptotic distribution of their statistic
72(max), given in (64), is x,0>. This appears to be based
on a further assumption, not discussed either in the pres-
ent paper or in Holland and Leinhardt (1978), regarding
the nonzero eigenvalues of the conditional covariance
matrix. Given the problematic nature of many of these
assumptions, we would be extremely cautious in using
the suggested x,o° reference distribution, even as an ap-
proximation. While Holland and Leinhardt’s work on the
distribution of 7*(max) demonstrates a very high level of
technical virtuosity, clearly further work needs to be
done.

5. THE EXAMPLE

In our earlier discussion of fitting p,, we discussed
three different algorithms: (a) Holland and Leinhardt’s,
(b) an alternative generalized iterative scaling algorithm
without the powers of 3, (c) regular iterative scaling ap-
plied to y. The speed of convergence of all three algo-
rithms is illustrated in our Figure 1, using as the conver-
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Figure 1. Comparison of the Rates of Convergence
for Various Algorithms Applied to Sampson’s Data:
H-L = Holland-Leinhardt Algorithm; GIS* = Gener-

alized lIterative Scaling Algorithm Without Powers of
1/2; RIS = Regular lIterative Scaling Algorithm
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gence criterion the likelihood ratio statistic of p, against
unrestricted alternatives, referred to here as G2. In this
example, regular iterative scaling applied to y was far
superior to our version of generalized iterative scaling
without the powers of §, and GIS without the powers of
# was in turn superior to Holland and Leinhardt’s GIS
algorithm. These results are in accord with our experi-
ence in applying such algorithms to other problems.

This comparison of the three algorithms is for illustra-
tive purposes only and is certainly not complete. We have
not directly examined the number of operations per-
formed, the extent of central memory and storage used,
execution time, and so on. Note that the y array is much
larger than the x array, and thus our approach, which
requires a single large array, could rapidly exhaust the
storage capacity of even the largest computers as g
increases.

The likelihood ratio statistic for testing H against H,
(p1 = p2 = =+ = p, = 0) for Sampson’s network is the
difference in G*’s for the two models: AG® = 236.93 —
205.96 = 30.97. If x,-° is used as an approximate refer-
ence distribution, the significance level for this test is p
= .02, partially indicative of lack of fit for p,. We see
that in addition to tendencies toward general reciprocity
and transitivity, there is evidence that the monks enter
into reciprocal relationships at different rates.

In their dicussion of the example, Holland and Lein-
hardt note the alternative estimate of p suggested by
Davis (1968). Davis’s 2 x 2 table in (68) is similar to the
2 X 2 intraclass contingency table that often arises in
genetics applications such as twins studies (e.g., see
Plackett 1974, pp. 122-123; and Altham 1971). Perhaps
specializations of p,, using nodal characteristics as in
Fienberg and Wasserman (1981), may have some appli-
cation to this completely different class of practical
problems.

Finally, as Holland and Leinhardt note, the version of
the Sampson data that they analyze in Section 4 involves
only one of eight different relations in the original study.
These relations are of two kinds;, positive feelings—like,
esteem, influence, and praise; and negative feelings—
antagonism, disesteem, negative influence, and blame.
How similar are the four positive relations? Are the neg-
ative relations antithetical to the positive? Earlier anal-
yses of this group of 17 monks indicated that the indi-
viduals can be placed into three subgroups: ‘‘loyal
opposition,”’ ‘‘young Turks,”” and ‘‘outcasts.”” Once we
control for membership in these subgroups, are there any
individual differences? A complete analysis of these data,
using the multivariate versions of p, in Section 5 of Hol-
land and Leinhardt and the methods and models in Fien-
berg, Meyer, and Wasserman (1981), may yield answers
to such questions.

[Received July 1980.]
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OVE FRANK*

Comment

There is a considerable lack of appropriate statistical
models and methods for the analysis of data from social
networks and other kinds of empirical graphs, and there
also are many examples of untraditional kinds of data in
graphs. Examples of different kinds of data and further
details can be found in the surveys by Frank (1980a,b).
In their article, Holland and Leinhardt (hereafter referred
to as HL) suggest a statistical model of exponential type
for adjacency data in a digraph and give methods for
estimation and testing that provide an important contri-
bution to statistical graph theory.

Since about 1960 there has been an increasing interest
in statistical methods based on the so-called log-linear
models developed for the analysis of contingency tables
and the so-called logit models used for the analysis of
latent structure in psychometric data. The HL model ex-
tends the applicability of the exponential models to a new
kind of data, and their model will probably soon be re-
ferred to as one of the standard illustrations of exponen-
tial models. The general theory of estimation and testing
that has been developed for the exponential models is
one of the great achievements of modern statistical the-
ory. This attractive theory makes the models easy to
apply, and they have gained widespread use. In a recent
book by Andersen (1980), the exponential models are
taken as a basis for a general introduction to statistical
model building and analysis in the social sciences. Since
the HL model fits into this general framework, it will
probably stimulate more statisticians to work with sta-
tistical graph problems.

An exponential model that is closely related to the HL
model was suggested by Bradley and Terry (1952) for the
analysis of data from paired comparisons. Assume that
g alternatives are compared pairwise by n individuals.
Each individual compares every pair of alternatives and
announces which one is preferred. Assume that the in-
dividuals have a common probability a; of preferring al-
ternative i to alternative j. Assume further that all com-
parisons are independent, and let X; be the number of
individuals expressing a preference for alternative i over
alternative j. Fori # j, X; + X;; = n, and for i = j, we
set X;; = 0. The Bradley/Terry model assumes that the
g alternatives are characterized by parameters ¢,

. » ®g, SO that

log(ayla;) = ¢ — ¢; . (1

* Ove Frank is Professor, Department of Statistics, University of
Lund, Box 7008, S-22007 Lund, Sweden. This research was supported
by the Swedish Council for Social Science Research.

The parameters ¢; are only determined up to an additive
constant and can be constrained by 3¢; = 0. Andersen
(1980, Theorem 8.1) shows that the Bradley/Terry model
is exponential. For n = 1, the data matrix X = (X;) is
the adjacency matrix of a tournament, that is, an asym-
metric complete digraph, and the Bradley/Terry model
is the same as the HL model (13) with m; = n; = 0 and

a; = e®/(e® + e%), 3}
but it is not a version of the HL model (21).

Note that the exponential or ‘‘natural’’ parameters ¢;
and 0; defined by (15) and (16) in HL can be considered
to be the canonical parameters in the terminology of An-
dersen (1980, p. 20) only if m;, a;, a;, and n; are all
positive. Since the canonical parameters are fundamental
for the theory, it is of interest to investigate what will
happen if some of the probabilities are set to zero. We
will briefly consider some such cases.

For a tournament, all dyads have single arcs, and there-
fore m; = n; = 0. A tournament, for instance, corre-
sponds to paired comparisons that cannot fail or result
in a tie. An examination of (13) in HL reveals that

P(X = x) = exp >, 0;xy , 3)
i#j
where
9,~j = lOg aij, i # j (4)

Now, the x; are linearly dependent (x; + x; = 1 for i
< j), and 8; are not canonical parameters. In this case
we find that

PX = x) = (exp 2 o) IL (1 + e,

i<y i<j

o)

where

(©)

@; = 8y — 0; = log (agla;)), i<j

are the canonical parameters.

If the paired comparisons can fail but cannot result in
a tie, we can use an asymmetric digraph to describe the
results. For an asymmetric digraph with m; = 0 and ay,
a;;, n; > 0, it follows that

P(XX = x) = (exp X, 0pxp)/ [T (1 + €% + %),

i#j i<j

™)
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where

are the canonical parameters.

If the paired comparisons cannot fail and ties are al-
lowed, we can use the specification n; = 0 and my, a;,
a; > 0. This leads to

P(X = x) = exp( X Oyxy + 2 pyxyXii) » )

i#j i<j
where

0; =logay, i#j

i<j. (10)
Formula (10) is the same as (15) and (16) in HL if log 0
is formally interpreted as 0. But these 6; and p;; are not
canonical, because their coefficients in (9) satisfy the lin-
ear relationship x;x; = x; + x; — 1. By substituting this
into (9), we obtain

P(X = x) = (exp 2 ¢gxy) [ (e?v+ e

i#j i<j

py = log(mylagaj),

+ e® 4+ e®) ,  (11)

where
i #j

P = log(mij/aﬁ)a (12)

are the canonical parameters.
A model used by Kousgaard (1976) for paired com-

parisons with ties can be specified by (13) in HL with

my = e‘g/(e“"'_“’f + e®T® 4 eg), i<j
a; = e‘Pi_‘Pi/(e‘Pi_‘Pj + e®™%® 4 e&), i #j (13)
ny =0, i<j

where ¢; are parameters characterizing the alternatives
and & is a tie parameter. This model, like the Bradley/
Terry model, does not fit into the HL. model (21).

The present discussion seems to indicate that one
should search for an exponential model for adjacency
data in digraphs that is more general than the HL, Brad-
ley/Terry, and Kousgaard models, so that it would be
possible to test any of these models against an appropriate
specification of a general model. An attempt to link the
HL model with the Bradley/Terry and Kousgaard models
might also be of some help for the rather frustrating task
of trying to find an appropriate Z in formula (61) of HL.

[Received September 1980.]

REFERENCES

ANDERSEN, E. (1980), Discrete Statistical Models with Social Science
Applications, New York: North-Holland.

BRADLEY, R.A., and TERRY, M.E. (1952), ‘‘Rank Analysis of In-
complete Block Designs I. The Method of Paired Comparisons,’’
Biometrika, 39, 324-345.

FRANK, O. (1980a), ‘‘Sampling and Inference in a Population Graph,”’
International Statistical Review, 48, 33-41.

(1980b), ‘A Survey of Statistical Methods for Graph Analysis,”’
in Sociological Methodology 1981, ed. S. Leinhardt, San Francisco:
Jossey-Bass.

KOUSGAARD, N. (1976), ‘‘Models for Paired Comparisons With
Ties,”’ Scandinavian Journal of Statistics, 2, 1-14.




SHELBY J. HABERMAN*

Comment

Since Holland and Leinhardt’s p, model is an example
of an exponential response model, results of Haberman
(1977) can be used to obtain some information regarding
the asymptotic results suggested by the authors. The ar-
guments required are very similar to those used in Ha-
berman (1977) to discuss the Rasch (1960) model.

In the corresponding Rasch model, an educational test
is given to g subjects. Each subject i has responses Xj;,
1 = j = h, with the X; independent 0—1 random variables.
The probability that X; = 1is [1 + exp — (0 + a; +
B)I~', where >, a; = >, B; = 0. If X; = 1 corresponds
to a correct answer, then «; is a measure of the relative
ability of subject i and B; is a measure of the relative
easiness of item j. Consider the unique maximum likeli-
hood estimates 8 of 8, &; of o;, and ﬁj of B;. For simplicity,
assume that as g — ® and & — o, it remains true for
some positive a, b, and c that | 6 | < a, | ;| <a,1 =i
=g,|B;|<a,1=j=<h,and b < g/h < c. By Haberman
(1977), 6 — 0, max ==, | & — a;|, and max == | B;
— B; | all converge in probability to 0. For some constants
o; > 0 and 1; > 0 (dependent on g), (&; — o;)/o; and (B;
— Bj)/7; converge in distribution to the standard normal.
Unfortunately, no normalizing constant w > 0 generally
exists such that (§ — 6)/w has asymptotic distribution
N(, 1). To see the difficulty, let a; = B; = 0 and 6 #
0. Let p # 3 be the probability that x; = 1, and assume
g = h. Given Haberman (1977), elementary applications
of fixed point theorems and Taylor’s theorem show that
6 may be approximated to terms of order less than g~
by

0+c'Y. —dc72g71(1 - 2p)

8
XS Y2+Y2-Y.2,
i=1
where 0 = p(1 = p)Y; = X; — p, Yr = g ' Dh.1Y,,
Y; = g '>% Yy, and Y. = g 23¢ 2%, Y,. Thus
ga'?(® — 0) converges in distribution to N(—og~ 2
(1 - 2p), D).

The situation in the Holland-Leinhardt model is very
similar, for their model under p = 0 is mathematically
equivalent to the incomplete Rasch model with g = h
and X; unobserved. Only minor modifications in argu-
ments in Haberman (1977) are required for the following
conclusions. Let | 0| < a,|p| <a,| o] <a,and|p|
< a for some constant a > 0. As g — ®, |6 — 0], [ p

* Shelby J. Haberman is Associate Professor, Department of Statis-
tics, University of Chicago, Chicago, IL 60637. Support for this research
was provided in part by National Science Foundation Grant No.
SOC76-80389.

— p|, max ==, | 6; — |, and max,=;=, |B; — B;] all
converge in probability to 0. For some ¢; > 0 and 7; >
0, (& — a;)/o; and (B; — pj)/fj converge in distribution
to N(0, 1). Unfortunately, 6 and p are not asymptotically
unbiased; that is, no o > 0 or A > 0 generally exist such
that (8 — 6)/w or (p — p)/\ converges in distribution to
N(0, 1). Thus the estimation picture is a mixed one. In
the case of parameters such as o; or o; — g, i # i,
approximate confidence intervals based on the normal
approximation are available, with estimated asymptotic
standard deviations derivable as in ordinary log-linear
models. In the case of a parameter such as p, maximum
likelihood estimation does not lead to entirely satisfactory
results.

The problem of estimation of p is difficult to solve in
a practical fashion. In principle, a possible approach is
through conditional maximum likelihood estimation given
the totals X;,, | =i=g,and X,;, | =j =< g. In this way
only one parameter remains, so that there is good hope
for an asymptotically normal estimate. Unfortunately,
formidable practical and theoretical problems are pres-
ent. To examine these issues, let E(p) be the conditional
expectation of M given p, X;,., 1 =i =g, and X, 1
=j = g, and let V(p) be the corresponding conditional
variance of M. Let p* be the conditional maximum
likelihood estimate of p. By trivial changes in arguments
based on Haberman (1977, Condition 2), one finds that
[V(p)]"?(p* — p) converges in distribution to N(0, 1) if
[Vl '| V(p') — V(p)| = 0 whenever | p’ — p [*V(p)
is bounded above as g — . Under this condition V(p*)/
V(p) converges in probability to 1, so that approximate
confidence intervals for p can be constructed. The the-
oretical problem is demonstration that [V(p)]~'[V(p')
— V(p)] does approach 0 under the required conditions.
At this time, I do not know how to accomplish this task.
The practical problem is that of computation of p*. One
must be able to evaluate E(p) and V(p) to accomplish this
task through the Newton-Raphson algorithm. These com-
putations are very difficult since large summations are
needed over sets which are themselves hard to enumer-
ate. Thus conditional estimation of p is far from a simple
matter.

Similar situations exist with respect to testing. The
LLR test for p = 0 does not appear to result in a test
statistic with an asymptotic x,2 distribution under the null
hypothesis. The authors may well be right that the x,?
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approximation holds tolerably well, but confirmation of
the claim would be bolstered by examination of param-
eters which are less regularly distributed. Presumably,
a conditional likelihood ratio test results in a well-dis-
tributed chi-squared statistic, but the claim is difficult to
prove and the test is difficult to implement.

Conditional tests have also attracted the authors. Note
the conditional tests of fit for the p, distribution and for
H, versus H,. Unfortunately, only the proposed test of
H, versus H, leads to a relatively easily computed test
statistic. The theoretical difficulties are comparable to
those encountered in conditional maximum likelihood
estimation of p; for example, in the test statistic T, one
must show that the variance of Z is sufficiently stable for
small 8. Again, such a demonstration is difficult. Practical
problems of complex summations arise except in the test
of H, against H,.

The problems of unconditional inference are particu-

larly disappointing given the ease of computation of reg-
ular maximum likelihood estimates, either by the author’s
algorithms or the Newton-Raphson algorithm for log-lin-
ear models. One reservation can be expressed concerning
the author’s algorithm for the p, model. Iterative pro-
portional fitting models are available which involve no
square roots. Why are they not preferable?

In all, Holland and Leinhardt have written a most chal-
lenging paper. Solution of the difficult problems they raise
would provide a major advance in statistical theory and
practice.

[Received August 1980.]
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PAUL W. HOLLAND and SAMUEL LEINHARDT

Rejoinder

It is especially gratifying to have had such excellent
discussants. Their collective comments extend and clar-
ify our results, pose new problems to solve, and urge us
(and, we hope, others, too) on to complete the research
program that lies ahead. We are very grateful to them for
the care, thought, and effort that went into their contri-
butions. We will try to respond to some of the points
each raises. Since Breiger is the most critical of our work,
we begin with his remarks.

At the general level Breiger feels that our ‘‘develop-
ment of statistical tools’’ has led us ‘‘away from a focus
on patterns of relationships.’’ In support of this claim he
asserts that ‘‘Holland and Leinhardt’s goal is not to re-
plicate entries in . . . the interior cell values and the struc-
ture of present and absent ties.”” In view of our lack of
a ““‘model for explicit social structure’’ Breiger sees little
in our work to interest a sociologist—either theorist or
field worker! We completely disagree with this stance.
We believe that Breiger’s position is perfectly analogous
to criticizing the use of probit models in drug bioassay
on the grounds that these models fail to explicitly predict
exactly which rats will and will not develop tumors at

LD-50. We don’t believe that this is a useful criticism .

of either bioassay or sociometry. In our opinion, it is of
questionable value to make up a complex and detailed
explanation of why each zero or one in a sociomatrix
appears where it does. Such an approach ignores the fact
that noise and uncertainty, at many levels, are always
associated with sociometric data—just like any other
data. Our strategy is to disentangle pattern and noise by
constructing models that allow both to be characterized
explicitly. We fail to understand why either theoretical
or empirical sociologists should view this approach as
unproductive.

At the specific level Breiger finds it anomolous that the
D, distribution is unable to predict any of the ones in
Figure 5 with a probability over .5. This phenomenon
occurs because (a) the overall choice density is low (.183)
and (b) the p, distribution does not fit this particular set
of data well. However, the residuals from p, clearly high-
light the structure in these data that is not explained by
p1. It is exactly this type of residual analysis that im-
proves ad hoc searching for patterns in noisy data.

Breiger’s quote from Davis on our ‘‘slide from global
structure to microanalysis’’ is unfortunate because it re-

Funds for the research activities reported in this response were pro-
vided by grants from the National Science Foundation (SOC 79-08841)
and the National Center for Child Health and Human Development (1
RO1 HD 12506-01) to Carnegie-Mellon University. The authors are
indebted to Kathy Blackmond for computational assistance.

fers to earlier work only peripherally related to p,. Fur-
thermore, this criticism simply ignores the fact that the
parameters of p; are global—p, for example, is an average
reciprocation parameter for the whole network. Breiger’s
view to the contrary notwithstanding, we are interested
in the essential global patterns of network structure, but
we are also interested in searching for stable patterns in
noisy data. Models like p,; are small, but important, first
steps in achieving these goals.

Although we disagree with Breiger’s overall evaluation
of the potential substantive utility of p,, we are very much
attracted to his ‘‘principle of internal homogeneity.”” We
believe it is the key to understanding the relationship
between the apparently deterministic blockmodels that
he seems to prefer and statistical models like p, that we
have introduced. We do not mean to imply by our com-
ments or research activities that one approach dominates
the other. Indeed, we are convinced that both approaches
have their uses and it is important that they be brought
closer together. We disagree, however, with the way that
Breiger uses the p, distribution to formalize the homo-
geneity principle. We offer the following alternative for-
mulation that is based on the notion that a blockmodel
has explained a set of sociometric data if within each
submatrix of the partitioned sociomatrix the position of
the ones and zeros is random. More formally, let the g
nodes be partitioned into mutually exclusive and ex-
haustive blocks By, . . ., B.. A stochastic g X g adja-
cency matrix X will be said to satisfy a blockmodel with
respect to {B;} if, given the blocks, the entries in X are
independent and, for all i € By, j € B,, the X;; are identically
distributed with

my = PXy; = 1). R.1)

The implied distribution of the matrix X may be shown
to be

P(X = x|B,,...,B.
= exp{ 2 Ourx + + (k, [)} K({ekl}) , (R.2)
k,l
where
%=bg«1&0 for kI=1,...,c
1 — 7w
and

X++(k,l) = 2 EXU.

ieBy jeB)
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We believe that this is a potentially fruitful stochastic
formulation of Breiger’s homogeneity principle and, in
fact, reveals that his principle is exactly the same sort of
assumption that is made in ‘‘latent structure’’ models of
various types. In this case the blocks are the latent struc-
ture to be discovered. One must carefully distinguish be-
tween (a) the probability model given in (R.2) in which
the blocks are assumed known, and (b) a data analytic
result in which the block structure and the block density
parameters have been estimated simultaneously from the
data. It is an interesting and difficult problem to give
satisfactory simultaneous estimates of the m’s and the
latent blocks. In our opinion, current blockmodeling tech-
niques ignore the subtleties implicit in this estimation.

If we regard the blocks in Figure 5 as given, then the
choice density in each submatrix is the MLE of the cor-
responding ;. These are given in Table R.1. These es-
timates can be used to predict the in-degree distribution
and the number of mutuals that would obtain if (R.2) held
with the m,, given by Table R.1. The relevant equations
are

EM | {Bi}, {mu})
B
= 2(' 2" |) i + 2 | B || Br | ww
% k=t

E(X ;| {B}, {mu})
=(|Bi|=VDmu+ X | Be| mu
Py

R.3)

(R.4)

for j € B;, and where | B, | denotes the size of block B;.
The estimated values for (R.4) are given in the last row
of Table R.1 and the estimated value for (R.3) is 11.90.
This is a little smaller than the observed value of 15 for
M. This example illustrates the general phenomenon that
the fewer the number of blocks, the harder it is for a
blockmodel to predict the in-degree distribution and the
value of M. The column of zeros in Figure 5 stands out
as a clear set of ‘“‘outliers’’ with respect to the blockmodel
found by White, Boorman, and Breiger (1976). To pursue
this example, and the models it implies, would require
another paper, which we leave for another time.

We find it interesting that Breiger in effect rejects the
utility of p,, then proceeds to apply it to data. Nonethe-
less, his provisional use of p, to characterize ‘‘internal
homogeneity’’ is, in our view, incorrect because p, can
produce very inhomogeneous probabilities as exhibited
in his Table 1. However, if p, fits the main diagonal sub-

Table R.1. Parameter Estimates for Stochastic
Blockmodel Given in (R.1)

B4 B, Bs
B1 19 = 452 12 = .041 T3 = .036
B> 21 = .000 T2 = 476 Trag = .036
Ba ’ﬁ’31 = 036 ’ﬁ‘az = 143 ’ﬁ’gg = 667
E(X+) 2.86 3.72 2.51
[Bi]=7 |B2| =7 [Bs| =4
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matrices of the sociomatrix substantially better when p,
{a;}, and {B;} are all allowed to be nonzero than when
they are all fixed at zero, then we think this is strong
evidence that the blocks are not internally homogeneous.
In such a case we would argue that the blockmodel failed
to fit the data. This seems to contradict the position taken
by Breiger.

We do agree with Breiger’s final point that it is still
unclear how to relate stochastic models like p, or the
stochastic blockmodel given in (R.2) to the semigroups
of relations that play a role in the blockmodels of White
and his coworkers. We believe that exploration of this
relationship is important because of the very special na-
ture of the ‘‘product of two relations’’ that White and his
coworkers use to generate these semigroups. Since there
is no obvious reason why the ‘‘logical product’ is the
logical choice, new and potentially more useful defini-
tions of this product are possible outcomes of such an
investigation.

Frank discusses models in which the values of m;; and/
or n; are zero because of structural constraints. We agree
that these are important cases to consider, not only the
single generator examples mentioned by Frank, but also
multiple generator examples such as the ‘‘mutually ex-
clusive generator case’’ mentioned in Section 5 of our
article. Our only disagreement is with Frank’s comment
that the Bradley/Terry and the Kousgaard models are not
versions of p,. Both of these models are limiting cases
of p, in the following senses. If we set p = — 2,0 = ¢,
a; = &;, B; = 0, and let = o, then m;; and n; both go
to zero and the a; converge to the values given in Frank’s
equation (2). On the other hand, if we setp = & — ¢, 0
=t o; = ¢, Bi = —&;, and let t — o, then n; goes to
zero and my; and a; converge to the values given in
Frank’s equation (13). This type of limiting process is
implicit in the last two entries of our Table 1. Of course,
by pointing out that these models are limits of the p,
family, we do not mean to imply that one should avoid
exploiting the structure of these special cases. Contrary
to Frank’s suggestion, though, since the Bradley/Terry
and Kousgaard models are contained within the p, family,
linking these three models will not solve the difficult prob-
lem of finding a Z for our formula (61).

We are indebted to Haberman for his analysis of the
asymptotic behavior of the MLE’s of the parameters of
pi. It is especially pleasing to discover that the results
of his paper, Haberman (1977), can be applied or ex-
tended to cover our case. We agree with him that models
such as p; and the Rasch model for educational tests raise
important problems in mathematical statistics. For ex-
ample, Haberman’s analysis suggests that even though
the MLE of p, p, converges to p as g— «, the distribution
of p can be centered at a value that differs from p by an
amount that is of the same order of magnitude as the
variability in p (even though both the bias and variability
are going to zero). This is not what normally happens in
simple statistical problems where the bias is typically of
order n~! and the variability is typically of order n~ 2.
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Table R.2. Mean, Standard Deviation, and
Standardized Values of p and 8, for g = 20, 30, and
40 (500 replications, p = 2, 31 = 2)

20 30 40
Average p 2.278 2171 2121
S 504 267 .203
Stzd. p 552 642 597
Average  f4 2.311 2.188 2.137
Sp1 683 495 418
Stzd. B 455 .380 .328

Thus, as Haberman points out, the bias cannot be ignored
in constructing confidence intervals for p. Furthermore,
the situation for p is different from that for the o’s and
B’s, which should be more well behaved. To illustrate
this we did a small Monte Carlo experiment in which p
and B, were both given the nonnull value of 2.0, E(X , ./
g(g — 1)) was set to .3, g was set to 20, 30, and 40, and
500 replications were made for each value of g.

Quantile plots of p and B, indicated that the distribu-
tions of the estimates were roughly Gaussian, as ex-
pected. Consequently, we standardized by subtracting
two from the average estimate and divided by the sample
standard deviation. Results appear in Table R.2. We
focus on the standardized values. The standardized av-
erages of p and B, do differ. The standardized average
estimate of B, is less then the standardized average es-
timate of p in each case and, while the bias in the estimate
of p seems to be unrelated to g, the estimate of 8, appears
to trend downward with increasing g. The standardized
average bias of p averages .597 across the three cases
supporting the conjecture that the bias of p is of the same
order of magnitude as the variability.
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Haberman conjectures that the likelihood ratio test of
p = 0 (i.e., the test of H; versus H,) does not have an
approximate chi-squared distribution on one degree of
freedom under H,. We think that the extent of agreement
with the chi-squared distribution that is displayed in Table
2 is not accidental. It suggests to us that, at least under
some conditions on the values of the nuisance parame-
ters, the chi-squared approximation is correct. We are
currently exploring a wider range of parameter values in
a simulation study to see where the result breaks down.

The contributions of Fienberg and Wasserman to the
analysis of digraph data are important and move us closer
to our mutual goal of a coherent statistical methodology
for such data. Their observation that the standard fitting
procedures for multiway contingency tables can be used
without change to fit p, is a major breakthrough. It makes
the statistical approach to network analysis accessible to
a large group of investigators. Furthermore, by formu-
lating p, in terms of standard log-linear models, they were
led to the ‘‘differential reciprocity model’’ as an easily
computed extension of p,. This is an important extension
with many useful empirical applications. Their papers
show how the statistical approach can be applied to a
variety of types of digraph data and are well worth
reading.

In their discussion of the test statistics T and t2(max),
Fienberg and Wasserman raise a number of cautions with
which we generally agree. The procedures are approxi-
mate and their connection to p; is not completely clear.
Nonetheless, we are of the opinion that a highly signifi-
cant 72(max) value is a strong signal that p, does not fit
the data. To investigate this we performed a small study
of 7>(max) under p, for various sets of parameter values.
If 7?(max) provides a reasonable test statistic for p,, then
sociomatrices generated by p; ought to produce ‘‘nullish”’

Table R.3. Parameter Values Used for Stimulation Study of 1 (max)

Case Name 0 p {oi} {Bi}

1 Null —.847 0 0 0

2 Ro -1.185 1 0 0

3 Al —.852 0 2 2 1 1 1-1-1-1-2-2 0

4 Be —-.905 0 0 9 9 65 1 1-5-5-5-5-5

5 Ro-Be -1.242 1 0 9 9 5§ 1 1-5-5-5-5-5
AB+Cor—-10 —.947 0 9 9 5§61 1-5-5-5-5-5 9 9 65§ 1 1-5-5-5-5-5

6 AB+Cor-20 —-.952 0 9 9 5§ 1 1-5-5-5-5-5 9 9 65 1 1-5-56-5-5-5
AB +Cor-30 —.954 0 9 9 5 1 1-5-5-5-5-5 9 9 5§ .1 1-5-5-5-5-5
AB+Cor—40 —.955 0 9 9 5 1 1-5-5-5-5-5 9 9 65 1 1-5-565-5-5-5
AB-Cor-10 —-.978 0 9 9 5 .1 1-5-5-5-5-5 -9-9-5-1-1 65 5 5 5 5

7 AB-Cor-20 -.971 0 9 9 5§61 1-5-5-5-5-5 -9-9-5-1-1 5 5 5 5 5
AB—Cor-30 —.968 0 9 9 5 .1 1-5-5-5-5-5 -9-9-56-1-1 5 5 5 5 5
AB-Cor-40 —.967 0 9 9 5 .1 1-5-5-5-5-5 -9-9-56-1-1 65 5 5 5 5
RAB+Cor—10 -1.314 1 9 9 5 1 1-5-5-5-5-5 9 9 5 1 1-5-5-5-5-5

8 RAB +Cor—-20 -1.320 1 9 9 5§ .1 1-5-5-5-5-5 9 9 5 .1 1-5-5-5-5-5
RAB +Cor—-30 -1.322 1 9 9 51 1-5-5-5-5-5 9 9 5 1 1-5-5-5-5-5
RAB +Cor—40 -1.323 1 9 9 5 .1 1-5-5-5-5-5 9 9 5 1 1-5-5-5-5-5
RAB-Cor—-10 -1.273 1 9 9 5 1 1-5-5-5-5-5 -9-9-56-1-1 5 5 5 5 5

9 RAB —-Cor—-20 —1.268 1 9 9 5 1 1-5-5-5-5-5 -9-9-56-1-1 5 5 5 5 5
RAB - Cor—30 —1.266 1 9 9 5§ .1 1-5-5-5-5-5 -9-9-56-1-1 5 5 5 5 5
RAB—Cor—40 —1.266 1 9 9 5 .1 1-5-5-5-5-5 -9-9-6-1-1 65 5 5 5 5

NOTE: Nonzero parameter values for {ai} and {B;} are given for the case g = 10. The values are increased proportionately for g = 20, 30, and 40.
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values of 7*(max) with respect to the x,o? distribution.
The parameter values for the simulation cases appear in
Table R.3.

To facilitate discussing the results we have presented
them in Table R.4 as ratios by dividing obtained values
by the reference distribution values. We used nine sets
of parameter values and ran 1,000 replications for each
of four values of ¢ while maintaining E(X . , /g(g — 1))

Table R.4. Ratio of Simulation Results to Those
Predicted by Chi Squared on 10 df for 1? (max)
Under Various Choices of p, B+

Case Mean Var Median %>16.0 %>18.3 %>23.2

Null-10 93 129 .90 .8 1.0 2.0

1 Null-20 101 120 .99 1.1 1.4 2.0
*Null-30 1.00 1.07 1.00 1.0 1.2 1.0
Null —40 1.01 108 .98 1.0 1.2 20
Ro-10 98 147 .92 1.2 1.4 3.0

> Ro-20 99 1.21 .97 1.0 1.2 2.0
"Ro-30 .98 1.00 1.00 1.0 1.0 1.0
Ro-40 1.00 1.04 1.00 1.0 1.2 1.0
Al-10 95 154 93 .9 1.2 20

3 Al-20 1.03 1.24 .99 1.3 1.2 2.0
“Al-30 1.02 111 1.03 1.2 1.2 2.0
Al—40 1.02 1.16 1.00 1.2 14 20
Be-10 1.00 174 .99 1.2 1.6 3.0

4 Be-20 112 201 1.14 2.0 2.4 5.0
*Be-30 1.30 246 1.24 2.6 3.8 8.0
Be—-40 139 256 1.35 3.3 4.6 9.0
Ro-Be-10 1.06 179 1.00 14 1.6 3.0

5 Ro-Be-20 119 174 1.14 2.1 2.8 5.0
"Ro-Be-30 129 255 1.21 25 3.4 8.0
Ro—Be—40 141 270 1.35 3.1 4.6 12.0
AB+Cor—-10 116 214 1.09 1.9 2.4 6.0

6 AB+Cor—-20 1.43 3.19 1.36 3.2 4.6 11.0
"AB+Cor-30 182 7.14 1.63 4.7 7.4 23.0
AB+Cor—-40 226 883 210 6.6 11. 38.0
AB—-Cor-10 1.02 182 .95 1.3 1.6 3.0

7 AB—-Cor—20 137 366 1.28 2.9 4.2 10.0
"AB-Cor-30 1.81 519 1.69 4.9 7.8 23.0
AB—-Cor—40 246 11.00 224 6.9 11.8 43.0
RAB+Cor—10 121 243 1.12 2.2 3.0 7.0

8 RAB+Cor—-20 143 282 1.38 34 4.8 12.0
"RAB+Cor—30 192 6.41 1.80 5.4 8.6 26.0
RAB+Cor—40 256 11.21 233 7.0 124 47.0
RAB-Cor—10 1.04 176 .98 1.2 1.6 4.0

9 RAB—-Cor—-20 132 246 1.26 2.7 3.8 9.0
"RAB-Cor—-30 1.64 4.63 1.52 4.2 6.6 18.0
RAB—-Cor—40 227 982 2.07 6.3 10.8 37.0

NOTE: The last three columns refer to the 10, 5, and 1% points.
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at .3. If nullish values of 7?(max) were generated, then
the entries in Table R.4 ought to all be around one. In
cases 1, 2, 3, and 4 the results for the mean and median
of 72(max) are quite good. The variances seem a bit in-
flated, and in case 4 the variance apparently gets worse
with increasing g. Case 4 was designed to be extreme and
seems to suggest that the approximation deteriorates as
the variation in parameter values increases. Case 5 has
two nonzero parameter sets, and again, while the mean and
median are relatively well behaved, the variation seems
to increase with g. The situation seems to deteriorate
further when we make the situation more complex. In
cases 6 and 7, {o;} and {B,} are positively and negatively
correlated, respectively, with p = 0. In these two cases
all the results diverge from x,0> as g increases. The pat-
tern seems roughly the same when, in cases 8 and 9, we
replicate the parameter values of cases 6 and 7 but set
p = 1 so that all parameters have nonzero values.

As a test statistic, T°(max) doesn’t behave quite as
nicely as we would like. In fact, it seems to return in-
creasingly larger values as complexity and g increase,
even though no triadic structure is present. While these
results clearly support the caution that Fienberg and
Wasserman advise, in the absence of a clearly preferable
alternative, these results support the conservative use of
7?(max) as a test for p;.

Finally, Fienberg, Wasserman, and Haberman are all
mildly critical of our algorithm for fitting p,. Our only
defense here is that when we began this research several
years ago we needed to be able to fit p, by some method
and we found one that worked. Now that we have had
a chance to fit p, to numerous data sets, the question of
improving the algorithm arises, and it is good news that
there are several to choose from. With apologies to the
U.S. motto, when it comes to algorithms, ex uno plura.
Needless to say, our own experience has not revealed
any substantial savings in overall computing costs when
one non-Newton method or another is used to fit p, to
data. :

REFERENCES

HABERMAN, S.J. (1977), ‘‘Maximum-Likelihood Estimates in Ex-
ponential Response Models,”’ Annals of Statistics, 5, 815-841.

WHITE, H.C., BOORMAN, S.A., and BREIGER, R.L. (1976), *‘Social
Structure From Multiple Networks, I: Blockmodels for Roles and
Positions,”” American Journal of Sociology, 81, 730-779.



