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POWER TO DETECT INTERVENTION EFFECTS ON ENSEMBLES OF SOCIAL

NETWORKS

Abstract

The hierarchical network model (HNM) is a framework introduced by (Sweet,

Thomas & Junker, 2013) and (Sweet, Thomas & Junker, 2014) for modeling

interventions and other covariate effects on ensembles of social networks, such as what

would be found in randomized controlled trials in education research. In this paper, we

develop calculations for the power to detect an intervention effect using the hierarchical

latent space model (HLSM), an important subfamily of HNMs. We derive basic

convergence results and asymptotic bounds on power, showing that standard error for

the treatment effect is inversely proportional to the product of the number of ties and

the number of networks; a result rather different from the usual effect of cluster size in

hierarchical linear models, for example. We explore these results with a simulation

study and suggest a tentative approach to power for practical applications.

Key words: asymptotics, bayesian statistics, experimental design, hierarchical latent

space model, hierarchical network model, power, sample size, social network analysis
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I. Introduction

Many large-scale educational interventions are applied to entire schools or entire grades

within a school (e.g., Matsumura, Garnier & Resnick, 2010; Spillane, Correnti & Junker, 2009;

Hord, Roussin & Sommers, 2010; Glennan & Resnick, 2004; McLaughlin & Talbert, 2006) and

target changes in the organizational structure or professional climate in the school. Social

networks are an obvious outcome measure for interventions aimed at changing the social structure

in the school since the network of relationships among teachers, administrators and other school

staff not only reveals how information or resources are shared but also the overall professional

structure of the school: whether teachers are well-connected, isolated into subgroups, completely

isolated, etc. For example, an intervention whose aim is to improve professional working

relationships among school staff can be assessed through changes to the advice-seeking networks

(Spillane, Correnti & Junker, 2009). Other professional relationship ties include collaboration and

co-teaching. Interventions may also target student populations. An intervention aimed at

reducing bullying and sexual aggression among adolescents (e.g. Espelage & Low, 2009) is likely

to change the way students interact with each other, increasing the frequency of positive

interactions and friendships.

Sweet et al. (2013, 2014) introduce a modeling framework for estimating treatment effects for

experiments on networks as well as a statistical network model that can be used for both

observational and intervention network data, and Sweet, Thomas & Junker (2012) introduce a

model that can capture intervention effects on network subgroup structure.

However, virtually no work has been done to incorporate networks into experimental design.

Given that the network is the choice outcome of an organizational experiment, the experiment

should be powered so that intervention effects are detectable on the network.

The purpose of this paper is to initiate a body of research on experimental design for social

networks, beginning with power analysis methodology for sample size calculations. In Section 2,

we describe the work done by Sweet et al. (2013) and present a simple model for interventions on

networks, the hierarchical latent space model (HLSM) and explain why power calculations used

for hierarchical linear models are not applicable for social networks. We present theoretical results
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in Section 3. Then in Section 4, we present power calculations for one type of network model and

assess our analytical results using a series of simulation studies presented in Section 6. Finally, we

conclude by discussing practical applications and future work.

We present a series of results. We show asymptotic consistency and normality for treatment

effects in multiple network intervention studies. We also derive bounds on treatment effect

standard error and power and we show that sample size of each network, i.e. the number of nodes

in each network, is much more influential in determining power than cluster size in an HLM.

2. Hierarchical Network Models

Sweet et al. (2013) introduced a framework called Hierarchical Network Models (HNMs) to

build multilevel models for ensembles of social networks for network level experiments or

observational studies. Let Y be the collection of observed networks (Y1, . . . YK) and let X be the

collection of factors associated with observing a tie. For example, Yk may be a friendship network

in school k. Yijk represents the relationship or tie from person i to person j in that school.

Likewise, X may be individual-, tie- or network-level covariates believed to be associated with

friendship, such as age, being the same gender, or school parochial status.

We write a HNM as follows:

P (Y|X,Θ) =

K∏
k=1

P (Yk|Xk = (X1k, . . . , XPk),Θk = (θ1k, . . . , θQk))

(Θ1, . . . ,ΘK) ∼ F (Θ1, . . . ,ΘK |W1, . . . ,WK , ψ) ,

where P (Yk|Xk,Θk) is a model for a single network Yk, Θ = (θ1, . . . , θk) is the collection of model

parameters that come from some distribution F , and W1, . . . ,WK are covariates. In general, F is

quite flexible in that it can include covariates Wk to model dependence assumptions across the

networks and/or include parameters ψ to accommodate additional hierarchical structure.
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To model an intervention, we include a treatment effect parameter α and treatment group

covariate Tk and resulting model can be written as

P (Y|X,Θ) =
K∏
k=1

P (Yk|Xk = (X1k, . . . , XPk),Θk = (θ1k, . . . , θQk , α))

(Θ1, . . . ,ΘK , α) ∼ F (Θ1, . . . ,ΘK |W1, . . . ,WK , Tk) .

2.1 Hierarchical Latent Space Models

The HNM framework allows users a variety of choice of models for estimating intervention

effects. For the purposes of this paper, we restrict our methods to a simple version of a single

model, the hierarchical latent space model (HLSM; Sweet et al., 2013).

The HLSM is a multilevel extension of latent space models introduced by Hoff, Raftery &

Handcock (2002). There are two main assumptions of these models: first each individual in the

network occupies a position in a latent social space and the distance between any two individuals’

positions influences the probability of a tie between them. The second is that ties are independent

conditional on the latent space positions.

A simple HLSM for an intervention is given as

P (Y|β0, β1, θ,Z) =
∏
k

∏
i 6=j

P (Yijk|Zik, Zjk, β0, β1, θ)

logitP [Yijk = 1|β0, β1, θ, Zk] = β0 + β1kWijk + θXk − |Zik − Zjk|

βp ∼ N(µβp , τβp)

θ ∼ N(µθ, τθ)

Zik ∼MVN(µZ ,ΣZ) , (1)

where Zik and Zjk are the latent space positions for individuals i and j respectively in network k,

β0 is an overall density term, β1 is a set of regression coefficients for possibly vector-valued
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covariates W , and θ is the treatment effect. If we assume two conditions, then Xk ∈ {0, 1} is an

indicator for being in one condition, and the treatment affects the overall probability of a tie.

Note also that parameters may have alternative prior distributions.

Figure 1 displays networks generated from the HLSM given by

logitP [Yijk = 1] = 1.5 + 0.5Xk − |Zik − Zjk| where Xk = 1 denotes the treatment condition. Since

the treatment effect is positive, we expect an increase in overall probability of a tie and in fact,

the networks in the treated condition (bottom row) are visually more dense (i.e. have more ties)

than the networks in the control condition (top row).

Figure 1.

Networks simulated from the HLSM given by logitP [Yijk = 1] = 1 + 0.75Xk − |Zik −Zjk| where Xk = 1 denotes the

treatment condition. The treatment effect increases the probability of a tie and networks in the treatment condition

(bottom row) have more ties than networks in the control condition (top row).

Power Calculations for HLMs Are Not Applicable to HNMs

The power function for a hypothesis test φ is defined as βφ(θ) = Eθ [φ(X)] where X is the

observed data and θ ∈ Θ is the parameter in the hypothesis (Schervish, 1997). Generally, we

consider the hypothesis test φ as having some rejection region R and test statistic T (X) and

define the power function as β(θ) = P (T (X) ∈ R|θ) (Casella & Berger, 2002).
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For example, the level-α Wald test contrasting the hypotheses

H0 : θ = θ0

H1 : θ > θ0

has a test statistic T (X) = θ̂ and rejection region R = {θ̂ : θ̂ > θ0 + ZαSE(θ̂)} for a suitable

cutoff Zα. The power function is then β(θ) = P
(
θ̂ > θ0 + ZαSE(θ̂)|θ

)
. The level of the test is

β(θ0), the probability of rejecting the null when the null is true. Thus, SE(θ̂) inversely influences

the power function.

To contrast power calculations for HNMs with HLMs, consider a simple 2-level randomized

cluster trial with T clusters and s individuals per cluster,

Yij = θ0j + eij i = 1, . . . , s, j = 1, . . . , T

θ0j = γ + θWj + u0j ,

where θ is the treatment effect and eij ∼ N(0, σ2) and u0j ∼ N(0, τ2). Then SE(θ̂) can easily be

calculated and in fact,

SE(θ̂)2 =
4(τ + σ2

s )

T
. (2)

We use this example to highlight two important points. First, this calculation employs the

HLM assumption that within cluster residuals are independent. This assumption is unrealistic for

HNMs because within cluster (network) residuals are structured by the presence or absence of

ties, which are rarely independent. For example, a friendship tie between A and B and between B

and C is likely to affect the probability of a tie between A and C. Many current social network

models accommodate dependence in a variety of ways (Frank & Strauss, 1986; Hoff et al., 2002;

Snijders et al., 2006). Therefore, power calculations for HNMs are not as straightforward as

calculations for HLMs since we cannot assume independence among ties.

Second, we focus on the relationship between the standard error and sample size. In a HLM,

we see that the number of clusters affects standard error more than cluster size in that only

number of clusters can drive the standard error to zero. In fact, we will show that in HNMs,

cluster size is actually more influential than number of clusters and that both can drive standard

error to zero.
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3. Standard Error Calculations for the HLSM

Power calculations hinge on an accurate estimate of the intervention effect standard error.

Because the HNM dependence structure differs from classical HLM dependence, standard error

calculations for HLMs are not applicable. Instead we develop consistency, asymptotic normality

and standard error results from first principles.

Consider an experiment on a collection of networks. In a typical experiment, some networks

receive the treatment and the remainder are considered control networks. For example, if each

network is a school, we might randomly assign schools to be in the treatment or control arms of

our experiment and we assume the schools to be independent in that the outcome of one school is

not influenced or dependent on the outcome of another school. We also recognize that school

networks are not identical in size, structure or functionality, and our statistical models reflect

that. In the HNM framework, we model these networks to be independent of one another but not

identically distributed.

Note that consistency of MLEs when data is independently and identically distributed is well

documented (Casella & Berger, 2002). Given independent but not identically distributed data,

Cramér (1946) proved that the maximum likelihood estimate is both consistent and

asymptotically normal. We adapt his work along with other adaptations of Chanda (1954) and

Bradley & Gart (1962) to show that the posterior mode estimator θ̂ in (1) is both consistent and

asymptotically normal. We then use the asymptotic distribution for θ̂ to estimate SE(θ̂) and

compute power.

Our development is organized into two main theorems. The first shows that θ̂ in (1) is

consistent. The second shows asymptotic normality. For each theorem, we first establish the

result conditional on the latent space positions Z and then prove the result holds unconditional on

the latent space positions. Formally, our results are conditional on fixing the coefficients β or any

other coefficients of W in (1). However, following arguments similar to Theorems 4.3 and 4.5, the

same results hold unconditional on β.
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3.1 Consistency of the Posterior Mode θ̂

For all results presented in this section, we use the following notation. For network k with m

individuals, the HLSM is given as

logit [P (Yijk = 1)] = β0 + β1Wijk + θXk − d(Zik, Zjk)

= βWijk + θXk − dijk , i, j = 1, . . . ,mk (3)

where θ is the treatment effect and Xk is the treatment group indicator. Denote Z as the set of

latent space positions and let dijk be the distance between latent space positions Zik and Zjk. By

augmenting W with a column of ones and collecting β = (β0, β1), we write βWijk for β0 + β1Wijk

in the remainder of the paper.

Furthermore, let Lk(Yk, θ) be the probability density function for each independent network,

and the likelihood for ties from n networks be written as
n∏
k=1

Lk(Yk, θ). Given the prior for θ as

π(θ), we denote the posterior of θ, p = p(θ|Y1, . . . , Yk) ∝ π(θ)
n∏
k=1

Lk(Yk, θ) with mode θ̂. Note also

that the support of Yk is {0, 1} since ties are either absent or present.

The log posterior and its first, second, and third derivatives are given as

log p = log (π(θ)) +

n∑
k=1

mk∑
i,j=1
i 6=j

Yijk(βWijk + θXijk − dijk)− log (1 + exp (βWijk + θXijk − dijk))

∂ log p

∂θ
=
∂ log π(θ)

∂θ
+

n∑
k=1

mk∑
i,j=1
i 6=j

XkYijk −
Xkexp (βWijk + θXk − dijk)
1 + exp (βWijk + θXk − dijk)

∂2 log p

∂θ2
=
∂2 log π(θ)

∂θ2
−

n∑
k=1

mk∑
i,j=1
i 6=j

X2
kexp (βWijk + θXk − dijk)

(1 + exp (βWijk + θXk − dijk))2

∂3 log p

∂θ3
=
∂3 log π(θ)

∂θ3
+

n∑
k=1

mk∑
i,j=1
i 6=j

X3
kexp (βWijk + θXk − dijk)(exp (βWijk + θXk − dijk)− 1)

(1 + exp (βWijk + θXk − dijk))3
.

(4)
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We begin by verifying some results needed for Theorem 1. Let
p−→ denote convergence in

probability.

Proposition 1. Let θ0 be the true treatment effect. Suppose
∂ log π

∂θ
and its derivatives are

bounded and suppose mk ≤ m? <∞, ∀k = 1, . . . , n. Then,

1.
1

n

∂ log p

∂θ

∣∣
θ=θ0

p−→ 0 as n −→∞

2.
1

n

∂2 log p

∂θ2
∣∣
θ=θ0

+
1

n

n∑
k=1

C2
k

p−→ 0 as n −→∞ where

C2
k = E

 mk∑
i,j=1
i 6=j

X2
kexp (βWijk + θ0Xk − dijk)

(1 + exp (βWijk + θ0Xk − dijk))2

 .

Proof. The derivatives
∂ log p

∂θ
and

∂2 log p

∂θ2
are sums of at most nm?(m? − 1) finite terms

plus the log prior derivative term which by assumption converges to 0 as n grows. By applying a

version of the Weak Law of Large Numbers, (Kintchine’s Theorem Cramér, 1946, p. 253), the

Proposition is proved.

Note that C2
k > 0 when Xk = 1, i.e. when the network is in the treated condition. In

practice, we expect the number of treated networks to grow as n grows and in fact to be on the

order of O(n) and our results rely on this assumption.

Lemma 1. (Consistency of the Posterior Mode, Conditional on the Latent Space

Positions)

Let θ be the treatment effect parameter and let θ̂ be the value that maximizes the posterior

distribution and let θ0 be the true effect. Let Xk > 0 at least n′ times where n′ is on the order of

O(n). Then for an arbitrarily ε > 0,

P
(
|θ̂ − θ0| > ε|Z

)
−→ 0 as n −→∞.

Proof. To show consistency, we first represent the log posterior of θ using a second order

Taylor approximation, and we then show convergence for each term. Using these results, we then
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prove that a solution to the normal equation
∂ log p

∂θ
= 0 exists, is a maximum, and is arbitrarily

close to θ0.

Let δ > 0 be small. Then in a neighborhood of θ0, we can approximate the derivative of the

log posterior as a second-order Taylor polynomial,

1

n

∂ log p

∂θ
=

1

n

∂ log p

∂θ

∣∣
θ=θ0

+ (θ − θ0)
1

n

∂2 log p

∂θ2
∣∣
θ=θ0

+
1

2
(θ − θ0)2

1

n

∂3 log p

∂θ3
(5)

=
1

n

∂ log p

∂θ

∣∣
θ=θ0

+ (θ − θ0)
1

n

∂2 log p

∂θ2
∣∣
θ=θ0

+
λ

2
(θ − θ0)2

1

n
M (6)

Note that
∂3 log p

∂θ3
is bounded so there exists some constant M <∞ such that

∣∣∣∣∂3 log p

∂θ3

∣∣∣∣ < M

and
∂3 log p

∂θ3
= λM for some |λ| < 1. Then (5) and (6) are equivalent.

Denoting B0 =
1

n

∂ log p

∂θ

∣∣
θ=θ0

and B1 =
1

n

∂2 log p

∂θ2
∣∣
θ=θ0

, we can write (6) in terms of Bk,

1

n

∂ log p

∂θ
= B0 + (θ − θ0)B1 +

λ

2
(θ − θ0)2M (7)

Let δ > 0 and ε > 0 be fixed, and consider evaluating
∂ log p

∂θ
in a neighborhood of θ0,

(θ0 − δ, θ0 + δ). We obtain the two equations

1

n

∂ log p

∂θ

∣∣∣∣
θ−δ

= B0 − δB1 +
λ

2
δ2M = 0 (8)

1

n

∂ log p

∂θ

∣∣∣∣
θ+δ

= B0 + δB1 +
λ

2
δ2M = 0 , (9)

for θ0 − δ and θ0 + δ respectively. We now show that (8) is positive and (9) is negative.

By Proposition 1, the following is true for sufficiently large n:

• |B0| < δ2

• B1 +
1

n

n∑
k=1

C2
k < µ for some µ > 0.
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Since C2
k > 0 for O(n) networks, there exists some n0 such that B1 >

1

2n

n∑
k−1

C2
k for all

n > n0. Then let n be sufficiently large, so that

B0 +
λ

2
δ2M < δ2 +

λ

2
δ2M

< δ2(1 +
M

2
)

<
δ

2n

n∑
k=1

C2
k

< δB1 ,

since for large n, δ <
1
n

∑n
k=1C

2
k

2 +M
. Thus, the B1 term controls the sign of (7). Because B1 < 0, it

follows that
∂ log pk
dθ

is positive when evaluated at (θ0 − δ) and negative at (θ0 + δ). Therefore,

there exists a solution to the equation
∂ log pk
dθ

= 0 that is arbitrarily close to θ0 and is a

maximum. Note that this is the only maximum and is therefore the absolute maximum of the log

posterior which we defined to be θ̂.

Thus, the posterior mode θ̂ is arbitrarily close to the true value θ0 for adequately large n.

Therefore, P
(
|θ̂ − θ0| > ε|Z

)
−→ 0.

Notice that Theorem 1 assumes the latent space positions are known. We now show that the

posterior mode is a consistent estimator, unconditional on the latent space positions. We present

this result as a second theorem.

Theorem 1. (Consistency of the Posterior Mode, Unconditional on the Latent

Space Positions)

Let θ be the treatment effect parameter and θ̂ be posterior mode where θ0 is the true effect.

Let mk be the number of nodes in network k such that lim
n−→∞

max(m1, . . . ,mn) <∞. Then,

unconditional on the latent space positions, θ̂ is consistent: P [|θ̂ − θ0| > ε] −→ 0 as n −→∞.

Proof. From Theorem 1, we have P
[∣∣∣θ̂ − θ0∣∣∣ > ε

∣∣∣Z] −→ 0 with measure 1 and

P
[∣∣∣θ̂ − θ0∣∣∣ > ε

∣∣∣Z] is a probability bounded by 1. Then by the Dominated Convergence Theorem
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for Expectation (Ash & Doleans-Dade, 2000),

EZ

[
P
[
|θ̂ − θ0| > ε|Z

]]
−→ EZ [0]

P
[
|θ̂ − θ0| > ε

]
−→ 0

Thus, we have unconditional consistency of the posterior mode: lim
n→∞

P
(
|θ̂ − θ0| > ε

)
= 0.

3.2 Asymptotic Normality

We now show that the posterior mode θ̂ is asymptotically normal. Again, we present two

arguments, normality conditional on the latent space positions and normality unconditional on

the positions.

Lemma 2. Asymptotic Normality of the Posterior Mode, Conditional on the

Latent Space Positions

Let θ be the treatment effect in a HLSM with posterior mode θ̂ and true effect θ0. Let π be

the prior distribution for θ and let
∂π

∂θ
be bounded. Then conditional on the latent space

positions, θ̂ is asymptotically normal, i.e.

√√√√ n∑
k=1

C2
k(θ̂ − θ0)

D−→ N(0, 1), where C2
k is the Fisher

Information for network k and is greater than 0 for O(n) networks.

Proof. Using notation introduced in Lemma 1 and (7), the normal equation can be rewritten as:

B0 + (θ̂ − θ0)B1 +
1

2
B2λ(θ̂ − θ0)2 = 0

=⇒ (θ̂ − θ0) =

1
n

(
∂ log p
∂θ |θ=θ0

)
−B1 − 1

2λB2λ(θ̂ − θ0)

=⇒

√√√√ n∑
k=1

C2
k(θ̂ − θ0) =

1√∑n
k=1 C

2
k

(
∂ log p
∂θ |θ=θ0

)
n∑n

k=1 C
2
k
(−B1 − 1

2λB2(θ̂ − θ0))
(10)

We prove that

√√√√ n∑
k=1

C2
k(θ̂ − θ0) −→ N(0, 1) by showing the right hand side of (10) converges

to a normal (0,1) distribution. We first show that
1√∑n
k=1C

2
k

n∑
i=1

(
∂ log p

∂θ
|θ=θ0

)
−→ N(0, 1). We
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then prove that
n∑n

k=1C
2
k

(−B1 −
1

2
λB2(θ̂ − θ0)) converges to 1 and quick application of Slutsky

concludes our proof.

Let us write
∂ log p

∂θ

∣∣∣∣
θ=θ0

=
∂ log π

∂θ

∣∣∣∣
θ=θ0

+

n∑
k=1

`k, where

`k =

m∑
i,j

[
XkYijk −

Xkexp (βWijk + θ0Xk − dijk)
1 + exp (βWijk + θ0Xk − dijk)

]
. Then clearly,

lim
n→∞

1√∑n
k=1C

2
k

∂ log π

∂θ

∣∣∣∣
θ=θ0

= 0 since C2
k > 0 for O(n) networks and

∂ log π

∂θ
is bounded.

We now use the Lyapunov Central Limit Theorem (Ash & Doleans-Dade, 2000) to show that

1√∑n
k=1C

2
k

n∑
k=1

`k −→ N(0, 1). Since expectation E[`k] = 0 and variance V [`k] = C2
k are bounded,

we need only show that for some δ > 0,

lim
n→∞

1(√∑n
k=1C

2
k

)2+δ n∑
k=1

E
[
|`k|2+δ

]
= 0 . (11)

First, both Ck and `k are bounded. Second, notice that when Xk = 0 both C2
k and `k are 0. Thus,

when Xk = 1, there exists some L <∞ such that `k < m?L and there exists some C > 0 such

that C < C2
k for all k = 1 . . . n. Then (11) <

n(Lm?)2+δ

(nC)1+δ/2
which converges to 0 as n −→∞.

We now prove that
n∑n

k=1C
2
k

(−B1 −
1

2
λB2(θ̂ − θ0)) converges to 1. By Theorem 1 and the

Continuous Mapping Theorem (Ash & Doleans-Dade, 2000), C(θ̂ − θ0)
p−→ 0 for any constant C.

We also have the result that B1 − (− 1

n

n∑
i=1

C2
k)

p−→ 0, so we claim that
−B1

1
n

∑n
k=1C

2
k

− 1
d−→ 0.

By assumption, C2
k is strictly positive for O(n) terms, so that the limit is strictly greater

than zero, lim
n→∞

1

n

n∑
k=1

C2
k > 0. And by definition, C2

k =

mk∑
i,j

X2
kexp (θXk − dijk)

(1 + exp (θXk − dijk))2
which is a sum

of at most m?(m? − 1) terms each bounded by 0.25. Then,
1

n

n∑
k=1

C2
k <

m?(m? − 1)

4
<∞. Thus,

by Slutsky’s Theorem (Ash & Doleans-Dade, 2000),
−B1

1
n

∑n
k=1C

2
k

− 1
d−→ 0 and the entire

denominator in (10) converges to 1.

Thus,

n∑
k=1

(∂ log pk
∂θ

|θ=θ0
) D−→ N(0,

n∑
k=1

C2
k).

And by Slutsky,

1∑n
k=1 C

2
k

∑n
i=1

(∂ log pk
∂θ |θ=θ0

)
n∑n

k=1 C
2
k
(−B1 − 1

2λB2λ(θ̂ − θ0))
D−→ N(0, 1).
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Therefore,

√√√√ n∑
k=1

C2
k(θ̂ − θ0)

D−→ N(0, 1), conditional on the latent space positions Z.

Theorem 2. Asymptotic Normality of the Posterior Mode, Unconditional on the

Latent Space Positions

Let θ be the treatment effect in a HLSM with posterior mode θ̂ and true effect θ0. Then

unconditional on the latent space positions, θ̂ is asymptotically normal, i.e.√√√√ n∑
k=1

C2
k(θ̂ − θ0)

D−→ N(0, 1), where C2
k is the Fisher Information of θ for network k.

Proof. By Theorem 2, lim
n→∞

PY |Z

√√√√ n∑
k=1

C2
k(θ̂ − θ0) ≤ t|Z

 = Φ(t), ∀t.

Let Yn = PY |Z

√√√√ n∑
k=1

C2
k(θ̂ − θ0) ≤ t|Z

 and Y = Φ(t) for any t. Again Yn is a probability

and is bounded by 1. By the Dominated Convergence Theorem for Expectation(Ash &

Doleans-Dade, 2000) and using the fact that Z is independent of t,

E

PY |Z
√√√√ n∑

k=1

C2
k(θ̂ − θ0) ≤ t|Z

 −→ E[Φ(t)], ∀t

PY

√√√√ n∑
k=1

C2
k(θ̂ − θ0) ≤ t

 −→ Φ(t), ∀t.

Thus, we have asymptotic normality unconditional on the latent space positions,

PY

√√√√ n∑
k=1

C2
k(θ̂ − θ0) ≤ t

 −→ Φ(t), ∀t⇐⇒

√√√√ n∑
k=1

C2
k(θ̂ − θ0)

D−→ N(0, 1).
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3.3 Power Intervals

Given the asymptotic distribution of θ̂, θ̂
D−→ N

(
θ0,

1∑n
k=1C

2
k

)
, we can use

√
1∑n

k=1C
2
k

as an

estimate for SE(θ̂) and calculate power.

Recall from
n∑
k=1

C2
k is a function of the latent space positions which are not known a priori.

Instead, we find reasonable bounds for

n∑
k=1

C2
k , taking advantage of the log-odds ratio structure of

the HLSM,
n∑
k=1

C2
k =

n∑
k=1

mk∑
i,j

[ X2
kexp (θXk − dijk)

(1 + exp (θXk − dijk))2
]
.

Without loss of generality, e.g. by subsuming βWijk into −dijk, suppose βWijk = 0, ∀i, j, k

and there is constant network size m. We can easily construct an upper bound for

n∑
k=1

C2
k since

X2
kexp (θXk − dijk)

(1 + exp (θXk − dijk))2
has a maximum possible value of

1

4
for any value of Xk ∈ {0, 1}, θ ∈ R,

and dijk ∈ R. Therefore,
n∑
k=1

C2
k ≤

mn(m− 1)

4
,

where m is the number of nodes or members per network and n is the number of networks.

For a lower bound, if we assume |θ− dijk| ≤ a then
exp (θ − dijk)

(1 + exp (θ − dijk))2
≥ exp (a)

(1 + exp (a))2
, for

all values |θ − dijk| < a. And in fact,
exp (θ − dijk)

(1 + exp (θ − dijk))2
asymptotically approaches 0 as

|θ − dijk| −→ ∞. Figure 2 illustrates this relationship.

Let f be a lower bound on the proportion of treated networks (Xk = 1), so that

n∑
k=1

C2
k =

n∑
k=1

m∑
i,j

[ X2
kexp (θXk − dijk)

(1 + exp (θXk − dijk))2
]
≥ fnm(m− 1)exp (a)

(1 + exp (a))2
.

Therefore, we have the following bounds:

fnm(m− 1)ea

(1 + ea)2
≤

n∑
k=1

C2
k ≤

nm(m− 1)

4
,

and since V ar(θ) =
1∑n

k=1C
2
k

,

4

nm(m− 1)
≤ Var(θ̂) ≤ (1 + ea)2

fnm(m− 1)ea
. (12)
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Figure 2.

Relationship between
exp (θ − dijk)

(1 + exp (θ − dijk))2
and θ − dijk.

From (12) we see that the number of networks n and the number of ties m(m− 1) drive

standard error equally. Thus the network size m has greater influence over standard error than

network number n which is not the case for a standard HLM, in which n drives error.

4. Power Calculations

Given the bounds for Var(θ̂), we can easily construct upper and lower bounds for power,

given appropriate choices for f and a. In this section, we discuss methods for selecting a and f as

well as calculate bounds for experiments involving networks of various size and intervention effect.

Recall that f is a lower bound on the proportion of treated networks. Since an experiment

hinges on having treated subjects, f > 0 and typically f =
1

2
. Choosing a is more complicated

since |θ − dijk| ≤ a corresponds to the probability of a tie being in the interval[
exp (−a)

1 + exp (−a)
,

exp (a)

1 + exp (a)

]
, so by choosing a value for a, we are choosing the range of tie

probabilities. Taking advantage of the logit structure of the HLSM, a large value of a increases the

range of probabilities only slightly more than a moderately large value of a but large differences in

a result in large differences in power estimates as we will later demonstrate. To provide a context,

we compute the ranges of tie probabilities when a = 4, a = 5, and a = 6 (Table 1).

All three values of a seem plausible based on the wide intervals of tie probabilities, and we
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Table 1.

The interval of tie probabilities specified by the choice of a where |θ − dijk| ≤ a and the probability of a tie is
exp (θ − dijk)

1 + exp (θ − dijk)
, see Equation 3.

Probability Bounds a

[0.018, 0.982] 4

[0.007, 0.993] 5

[0.002, 0.997] 6

will use these three values for comparison as we construct our power intervals, which we calculate

using the following formula.

PowerUB = PH1(θ̂ > θNULL + Zα
2
SE(θ̂)LB)

PowerLB = PH1(θ̂ > θNULL + Zα
2
SE(θ̂)UB) (13)

Assuming θNULL = 0 (i.e. no treatment effect), Table 2 provides examples of lower bounds

for power for a various combination of numbers of network sizes (members), number of networks

in the experiment, two different alternative hypotheses, and our three values of a. Table 2 only

includes lower bounds since the upper bound is ≈ 1 for all cells. The upper bound is generally

close to 1 because the lower bound for standard error
4

nm(m− 1)
is quite small even for moderate

sizes of m and n. However, we consider the lower bound for power to be more important since

power calculations are generally used to determine the minimum sample size needed to achieve

specific power.

As expected, decreasing effect size decreases power and increasing the number of networks

increases power. What is surprising however, is the effect of network size on power. Increasing the

network size from 10 to 15 individuals greatly increases power regardless of treatment effect, value

for a or number of networks. In fact the number of networks n and the number of possible ties

m(m− 1) contribute equally to the power calculations since they equally contribute in

asymptotically driving SE(θ̂) to zero, see Equation 12. This relationship is not true in a typical

HLM power calculation, see Equation 2, since cluster size m does not drive the standard error to
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zero. Our lower bound for power also depends heavily on the constant a, so it is important to

choose a carefully.

Table 2.

Examples of Power Bounds with various combinations of number of networks (10 or 20) and members per network

(10 or 15), treatment effect (TE of 0.25 or 0.5) and constant (a= 4, 5, or 6) to illustrate the effects that each have

on power. Upper bounds are not shown and are approximately 1.

TE (m,n) Power Lower Bound

a = 6 a = 5 a = 4

θ = 0.5

(10,10) 0.07 0.13 0.28

(10,20) 0.10 0.22 0.50

(15,10) 0.12 0.25 0.56

(15,20) 0.19 0.44 0.85

θ = 0.75

(10,10) 0.11 0.24 0.55

(10,20) 0.19 0.43 0.84

(15,10) 0.21 0.49 0.89

(15,20) 0.38 0.79 0.99

5. Simulations

We conduct a series of simulations, both to assess the analytical power bound results derived

in Section 3.3, as well as to understand how these bounds can be used in practice. We first

examine the distribution of the treatment effect estimator, since our results assume asymptotical

normality of the estimator. Then, we compare empirical power estimates with the analytical

lower and upper bounds.

Regarding practical use, our primary goal is to reveal plausible values for the constant a in

Equation 12 and how network size affects the choice of a. It is not unreasonable to assume that

the range of plausible probabilities increases as the number of possible ties increase. We use

empirical results to shape our understanding of this relationship. We also use empirical power
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estimates to further explore the relationship between network size and number of networks.

The simulation study involved a combination of 2 treatment effects, 3 network sizes and 6

different total numbers of networks. We specifically chose treatment effects, network sizes and

numbers of networks to cover a wide range of power estimates while focusing on network sizes

that could be found in schools or classrooms. We assumed equal numbers of treated and

untreated networks. The full design is given in Table 3.

Table 3.

Simulation Summary: For each cell marked with an x, we simulated 100 data sets for that combination of m and n.

θ = 0.5 Number of Networks (n)

6 10 20 30 40 50

Network

Size

(m)

10 x x x x x x

15 x x x x x x

20 x x x x x x

θ = 0.75 Number of Networks (n)

6 10 20 30 40 50

Network

Size

(m)

10 x x x x x x

15 x x x x x x

20 x x x x x x

For each cell in Table 3, we simulated 100 datasets from the generative model

logitP [Yijk = 1] = β0 + θTk + |Zik − Zjk|

Zik ∼MVN

 0

0

 ,

 3 0

0 3

 , i = 1, . . . ,m , k = 1, . . . , n ,

where β0 = 1.5 is a fixed intercept.

For each dataset, we fit a similar HLSM to the simulated data using uninformative priors,

θ ∼ N(0, 100) and β0 ∼ N(0, 100) using an MCMC algorithm coded in R (Sweet et al., 2013). For

each model fit, we discard the first 1000 samples, and retain every 25th draw from our remaining

9000 samples for a θ posterior sample of 360.

Because our power calculations are based on the asymptotic normal distribution of the

posterior mode θ̂, we compare the distribution of the 100 posterior modes to that of a normal

distribution. Visual inspection of Q-Q plots suggests that the posterior modes are approximately

normal (Figure 3).
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Figure 3.

Q-Q plots for the 100 replications of posterior mode in the simulation study. The plots are labeled as (network size,

number of networks). The posterior mode appears to be approximately normal.
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5.1 Empirical Power Estimates

To evaluate our power bound formulas, we compare our lower bound estimates with

empirical power estimates. For each combination of (θ,m, n) shown in Table 3, we estimate power

by taking the proportion of trials with detectable treatment effects, i.e. the 95% equal–tailed

credible interval for θ did not include 0.

Table 4 compares the relationship between the calculated lower bounds calculated using three

different values of a and simulated power estimates. Regardless of treatment effect, increasing the

number or size of networks generally increases power, and the larger treatment effect generates

larger power estimates, as predicted by our formulas in (12) and (13) respectively. We also

include an estimate for level, i.e. when the true treatment effect is 0.

Empirical estimates also substantiate the claim that the size of each network m contributes

more to power than the number of networks n through error as shown in (12). For example, when

the true treatment effect is 0.5, the power estimate for an experiment on 10 networks of size 10

each with 10 individuals is 0.36. Increasing the number of networks to 20 yields estimated power

of 0.48 whereas increasing the network size to 20 yields power of 0.60. This pattern of network

size influencing power more than network number is also true when the treatment effect is 0.75.

This relationship between the number of possible ties, the number of networks and power is

apparent in Figure 4 which illustrates the analytical lower bounds calculated and the power

recovered by the simulation studies. The x-axis is the total number of ties across all networks,

nm(m− 1), and the simulated power estimates follow a typical power curve, again validating that

the number of possible ties and number of networks equally drive power.

Figure 4 also illustrates how a in (12) influences the analytical power estimates and how

these compare with empirical power estimates. It appears that a value between 4 and 5 is most

appropriate. We also note that Figure 4 suggests that the value of a may differ by network size,

which is not surprising. Larger networks have more ties and more opportunities to generate tie

probabilities that are either very small or very large.

To determine whether a varies with network size in practice, we use the simulated data to

empirically estimate a. For each cell of our simulation study, we have 100 replications of n
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Table 4.

Power lower bounds compared to the empirical estimate for power based on 100 simulations for treatment effect

θ = 0.5 and θ = 0.75 where m is the network size and n is the number of networks. The power estimates for θ = 0

are also shown for comparison. Increasing the network size makes improves power more than increasing number of

networks. Upper bound for power is approximately 1 for most cells and is not shown.

Treatment θ = 0 θ = 0.5 θ = 0.75

Level Lower Bound Power Lower Bound Power

(m,n) Est. a=6 a=5 a=4 Est. a=6 a=5 a=4 Est.

(10, 6) 0.09 0.06 0.09 0.28 0.35 0.08 0.16 0.36 0.54

(10, 10) 0.05 0.07 0.13 0.28 0.36 0.11 0.24 0.55 0.64

(10, 20) 0.08 0.10 0.22 0.50 0.48 0.19 0.43 0.84 0.81

(10, 30) 0.07 0.14 0.31 0.67 0.69 0.26 0.60 0.95 0.85

(10, 40) 0.06 0.17 0.39 0.79 0.78 0.34 0.72 0.99 0.83

(10, 50) 0.03 0.21 0.47 0.88 0.74 0.41 0.82 ≈ 1 0.98

(15, 6) 0.09 0.08 0.16 0.37 0.34 0.14 0.32 0.69 0.60

(15, 10) 0.07 0.12 0.25 0.56 0.52 0.21 0.49 0.89 0.71

(15, 20) 0.08 0.19 0.45 0.85 0.79 0.38 0.79 0.99 0.81

(15, 30) 0.13 0.27 0.61 0.96 0.80 0.53 0.92 ≈ 1 0.98

(15, 40) 0.08 0.35 0.74 0.99 0.82 0.66 0.97 ≈ 1 1.00

(15, 50) 0.09 0.42 0.83 ≈ 1 0.91 0.76 0.99 ≈ 1 1.00

(20, 6) 0.08 0.12 0.27 0.60 0.54 0.23 0.53 0.91 0.80

(20, 10) 0.03 0.18 0.41 0.82 0.60 0.35 0.75 0.99 0.83

(20, 20) 0.10 0.32 0.70 0.98 0.81 0.62 0.96 ≈ 1 1.00

(20, 30) 0.09 0.45 0.86 ≈ 1 0.95 0.79 ≈ 1 ≈ 1 1.00

(20, 40) 0.04 0.57 0.94 ≈ 1 0.99 0.89 ≈ 1 ≈ 1 1.00

(20, 50) 0.07 0.6 0.98 ≈ 1 1.00 0.95 ≈ 1 ≈ 1 1.00
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networks, each with M = m(m− 1) ties. Within each replication and for each network, we

examined the absolute probabilities of each tie, |β0 + θXk − dijk|, and use the 99th quantile as the

bound for that network. We then use the mean bound across all n networks and 100 replications

for an empirical estimate of a. Thus, â =
1

100

100∑
s=1

1

n

n∑
k=1

a?ks where a?ks = |β0 + θXk − dijk|0.99 for

all i, j in network k and simulation s.

Table 5 illustrates the relationship between network size and a. In fact, even for small

increases in network size from 10 to 15 to 20, we see small but distinct increases in a.

Table 5.

Empirical estimate for the size of a, the bound on the tie probability, calculated from simulated data.

n Network of Size 10 Network of Size 15 Network of Size 20

6 4.43 4.73 4.96

10 4.38 4.71 4.96

20 4.38 4.74 4.97

30 4.37 4.77 4.94

40 4.34 4.74 4.94

50 4.35 4.75 4.95

Our simulation study supports our analytical result that power is driven by both network

size and the number of networks and that increasing the size of the networks does more to

improve power than increasing the number of networks. These simulations also suggest possible

values for a. We find empirically that a = 5 is an appropriate upper bound for |θ − dijk| although

our simulations also suggest an additional caveat that a is a function of network size. In fact,

using the empirical estimates generated by Table 5 of a = (4.5, 4.8, 5) for network sizes

m = (10, 15, 20), one may observe in Figure 4 that the analytical lower bound appears to be both

accurate and fairly precise.
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6. Discussion

Interventions whose aim is to shape the social structure of a school should use social network

data to detect effects and measure relational outcomes. Changes to the network and

organizational structure are the first detectable result and can provide insight into whether and

how the intervention was successful. Some statistical network models have been proposed for

analyzing experimental network data, but there is a void in research on experimental design

involving networks.

In this paper, we have introduced the first formulas relating sample size and power for

experiments on independent, isolated networks. To derive these formulas, we developed novel

results regarding the posterior mode estimator for a network-level treatment effect in a simple

hierarchical latent space model; we proved that this estimator is both consistent and follows an

asymptotic normal distribution centered at the true treatment effect.

We then used these results to derive bounds for power which are based on the number of

networks, the size of each network, and the treatment effect. Most surprising is that the number

of possible ties and the number of networks contribute equally to power. We also ran a small

simulation study to assess these intervals and the empirical estimates substantiate our analytical

results as well as suggested additional relationships. Of the bounds, the lower bound is most

practical since it is not only the more precise bound but it is also the one useful for calculating

minimum sample size needed to attain a predetermined power level. The simulations also suggest

that network size influences the constant a, larger networks require larger values of a and

empirically estimating a found a similar relationship. Finally, the empirical estimates do

substantiate our analytical results. We find increasing either network size, number of networks, or

treatment effect to improve power, and we found a similar relationship between sample size and

power in that increasing the network size increases power more than a similar increase in number

of networks.

This paper provides a novel yet solid foundation and direction for sample size calculations for

network-level experiments. As the first of its kind, there are several areas for future exploration.

We have presented results for a single multi-level statistical network model, but there are other
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models that can accommodate interventions (Sweet, 2012) and we aim to develop similar results

for other models. Furthermore, we will also consider ways of narrowing these power bounds;

including baseline covariates generally improves power in other models and we believe covariates

may be useful in network models as well. We are also considering alternative approaches for

sample calculations as well. Finally, empirical results were very useful in refining this work and

we believe simulations will continue to serve in both exploratory and confirmatory capacities to

forward this work.
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Figure 4.

Power versus Sample Size calculated as the product of the number of networks n, and the number of possible ties

m(m − 1). Power lower bounds for a = (3.8, 4, 4.2, 4.4, 4.6, 4.8, 5) plotted as curves and simulated power estimates

as points. Simulations appear to follow power curve, suggesting network size drives power more than number of

networks, i.e. number of possible ties and number of networks drive power equally. Plots also suggest the value of a

may be a function of network size.
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