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Abstract

Survey studies of complete social networks often involve non-respondents, whereby certain peo-
ple within the “boundary” of a network do not complete a sociometric questionnaire—either by their
own choice or by the design of the study—yet are still nominated by other respondents as network
partners. We develop exponential random graph (p∗) models for network data with non-respondents.
We model respondents and non-respondents as two different types of nodes, distinguishing ties be-
tween respondents from ties that link respondents to non-respondents. Moreover, if we assume
that the non-respondents are missing at random, we invoke homogeneity across certain network
configurations to infer effects as applicable to the entire set of network actors. Using an exam-
ple from a well-known network dataset, we show that treating a sizeable proportion of nodes as
non-respondents may still result in estimates, and inferences about structural effects, consistent
with those for the entire network.

If, on the other hand, the principal research focus is on the respondent-only structure, with
non-respondents clearly not missing at random, we incorporate the information about ties to
non-respondents as exogenous. We illustrate this model with an example of a network within
and between organizational departments. Because in this second class of models the number of
non-respondents may be large, values of parameter estimates may not be directly comparable to those
for models that exclude non-respondents. In the context of discussing recent technical developments
in exponential random graph models, we present a heuristic method based on pseudo-likelihood
estimation to infer whether certain structural effects may contribute substantially to the predic-
tive capacity of a model, thereby enabling comparisons of important effects between models with
differently sized node sets.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Exponential random graph models (p∗); Missing data

∗ Corresponding author. Tel.:+61 3 8344 6377; fax:+61 3 9347 6618.
E-mail address:g.robins@psych.unimelb.edu.au (G. Robins).

0378-8733/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.socnet.2004.05.001



258 G. Robins et al. / Social Networks 26 (2004) 257–283

1. Introduction

A commonly occurring problem in survey-based studies of complete networks is that of
non-responding network members. Although methods for handling non-responses in general
survey contexts have attracted considerable interest (e.g.Little and Schenker, 1995), over
the last two decades there has been relatively little discussion of the problem of non-response
in survey network studies. Some recent work suggests that this important issue may now be
receiving more sustained attention (for example,Butts, 2003; Kossinets, 2003) but methods
for effectively dealing with non-response continue to require further development.

Non-respondents create significant and potentially insidious problems for network analy-
sis. In particular, many network studies are based on the premise that in order to understand
some social phenomenon of interest, it is necessary to understand the arrangement of net-
work ties into larger network structures and sub-structures. If this premise is correct and
a network tie is missing, then we not only have a limited capacity to describe the net-
work context of those individuals whose ties are missing, but we may also lack significant
information on the network context of many other neighboring actors as well.

For survey studies of complete networks, researchers have to decide on some putative
“boundary” to the network in advance of the survey (Laumann et al., 1989). In other words,
they must make a decision about the individuals or entities considered to constitute the set
of actors in the network. Often this “boundary” can be inferred from the research question.
For instance, for research on networks in work teams, a natural boundary might be provided
by a workgroup of individuals. Of course, there may be no real “boundary” to a network
(e.g.White, 1992), but the practicalities of conducting an empirical research investigation
often require that some such decision be taken, at least implicitly.

Having decided on a boundary, researchers may consider several methods to elicit so-
ciometric responses. The definition of the boundary may be utilized directly: for instance,
participants may be asked to list those in their workgroup whom they trust. Alternatively,
the researcher may obtain a list of individuals “within” the boundary. Each person on the
list is asked to select from the list those who are his or her network partners. There are
several possible sources of missing data in this survey design: for instance, a list of names
provided by the researcher may be incomplete;1 secondly, not all individuals “within” the
boundary may respond to the sociometric questionnaire.2

An incomplete specification of individuals may often be avoided by a well-justified
specification of the boundary and by obtaining sufficient preliminary information about a

1 When researchers use the definition of the boundary directly to elicit sociometric responses (e.g. “List those
of your work colleagues whom you trust”), we do not consider the “forgetting” of names of those within the
boundary as missing data. Rather, the data is potentially confounded, with a non-listing signifying, in this case,
either “not trusted” or “trusted but forgotten”. Researchers, of course, may choose to assume that it is the “trusted
and remembered” category that is most important to an individual’s behavior, so the confounding may not be
particularly invidious. For recent work on forgetting in network data collection, see for instance,Brewer and
Webster (1999). These issues relate toinformant accuracyabout underlying network structures, brought into focus
by the Cognitive Social Structure approach ofKrackhardt (1987). Recent developments open new possibilities in
dealing with cognitive social structures (e.g.Butts, 2003; Koehly and Pattison, in press).

2 Kossinets (2003)also discusses fixed choice designs, where participants are restricted in the number of network
nominations they can make. This is not an issue we consider here.
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network of interest. Of course, not every research situation is quite so simple, and given
that in all but some extreme examples there are no impermeable boundaries to networks,
the potential for ambiguity may be considerable. The problem of boundary specification in
network studies has been widely recognised for some time, and the ramifications of various
approaches have been well-canvassed (Laumann et al., 1989). Nonetheless, network analysis
has made little progress on dealing with a mis-specified boundary beyond a clear account
of its potential problems. Fortunately, this source of missing data is to some degree within
the control of researchers, through careful decisions about the set of individuals relevant
to a particular research question, and with some thought to the type of generalizations that
might be drawn from the results.

The second source of missing data is more problematic and is the focus of this article. As
is the way of data collection in the social sciences, 100% response rates to sociometric ques-
tionnaires are rare. Several actors may be included as network partners in other participants’
questionnaires, but they themselves may choose not to complete the questionnaire. It is not
an unusual situation, then, for network data to include two sets of participants:respon-
dents, who complete the sociometric survey and thereby fully participate in the study; and
non-respondents, who do not complete the survey but who are included in the network in
the sense that respondents have identified them as network partners.3

A slightly different version of this situation arises with snowball sampling approaches
to complete network studies. Here, boundaries to the network may not be clearly defined
but key individuals are asked to specify network partners, with some but not necessarily
all such partners then in turn asked to specify their own network partners. At some point
the snowball stops rolling, with a number of non-respondents a likely outcome (except
in rare cases where the network is small and really is constituted from a self-contained
set of individuals). Another important variation occurs if the study involves, for instance,
individuals within one department of an organization, each of whom is a respondent, but who
may also have formal or informal connections to individuals from other departments not
included in the survey (in such a study, it is quite possible that the number of non-respondents
may exceed the number of respondents). In this case, the research focus may be on the
original department, and the modeling endeavor may be directed towards understanding the
structural patterns among respondents only. But in doing so, it seems sensible to include
the additional information about links to other departments, even if that information is not
itself explicitly modeled. In a sense, there are two nested “boundaries” operating in such
studies: one involving respondents only, the central focus of the research, and the second
including (a possibly large number of) non-respondents as well.

It is worth briefly noting that these methods of data collection, and the fact that there may
be both respondents and non-respondents, imply that the network is measured asdirected,
even if for conceptual or other reasons researchers may choose to infer non-directed ties
from the directed observations. For instance, researchers may be interested in non-directed
networks (e.g. mutual friendship ties) and transform the data under some rule (e.g. the

3 There are current discussions about the ethics of including non-respondent individuals in network data (e.g.
Klovdahl, 2002). Whatever the outcome of these considerations, presumably these ethical matters do not arise
when the nodes represent entities other than individuals (e.g. corporations) where interlocking information is not
complete.
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observation of reciprocated responses), a technique that may be problematic when there are
non-respondents and the observations are inherently directed.

1.1. Methods for dealing with non-responses

In general, the network literature provides little guidance on how to proceed when there are
non-respondents. It is notable, for instance, that a comprehensive text such asWasserman and
Faust (1994)gives little advice on handling missing data in networks. Various researchers
have commented on the difficulty of accommodating non-responses in network studies (e.g.
Burt, 1987; Rogers and Kincaid, 1981). One pragmatic approach to the problem of missing
network data has been to restrict attention to the subset of individuals for whom network
information is complete. This approach to missing data effectively leads to a re-specification
of the network “boundary”. As discussed below, this convenient “solution” to the problem
will be considerably less than optimal in many circumstances.

Stork and Richards (1992)are among the few to discuss missing data issues in some detail
and to provide suggestions about how to analyze network data with non-respondents, as
well as how to improve response rates. In preference to the blunt tactic of simply removing
non-respondents,Stork and Richards (1992)propose a process that they termreconstruc-
tion. In reconstructing a network, researchers assume that if a respondent nominates a
non-respondent, then the tie between the two exists, so that the respondent’s description of
the relationship is accorded to the non-respondent as well. Stork and Richards advise that
the validity of this approach should be checked against the data, so that if the ties are to be
conceptualized as mutual, and hence non-directed, levels of reciprocity in actual responses
should be examined. In directed network studies, questions reflecting both directions of
the relationship should be asked (for instance, people should nominate both those to whom
they give advice and those from whom they receive advice). If, among respondents, de-
scriptions of ties tend to match across network partners, then this dyadic reconstruction
process may be applied to ties with non-respondents. Stork and Richards note that some
ties—specifically, those from one non-respondent to another—cannot be reconstructed by
this process, and so remain as missing. If the missing ties are at random and in small num-
bers, then the development of some type of imputation approach might be considered, but if
all of the ties for a potential network member are missing, imputation is unlikely to be very
successful.

Using a simulation study,Kossinets (2003)has examined the impact of various types
of missing data on the structural properties of social networks. This case study, based on
a bipartite graph rather than a unimodal network, suggests that boundary specification in-
adequacies and fixed choice designs present major problems. In regard to non-response,
Kossinets endorses the dyadic reconstruction approach ofStork and Richards (1992), pro-
vided that the number of non-respondents is not large. Dyadic reconstruction makes good
sense when its assumptions are justified. For directed network studies, survey questions to
examine both directions of the relationship need to be incorporated into the design of the
study before the data is collected. But there is no guarantee that relationship descriptions
will tend to match across network partners. Moreover, as we show in our second example
below, there can be strong reciprocity effects in the data, yet the majority of ties may still
not be reciprocated. It is not clear what to do in regard to reconstruction in this case.
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Even when reconstruction is not appropriate, it may still be useful to retain non-respondents
in the data set, but only to analyze those network constructs that can be defined in terms of
incoming ties. An adjacency matrix that includes missing data may be constructed to have
a row of zeroes for each non-respondent. A non-respondent column, on the other hand, will
not comprise zeroes if the non-respondent is nominated at least once. It would be possible
to create, for instance, a partition of approximately structurally-equivalent blocks by clus-
tering solely on the columns, as long as the structural equivalence is understood in terms
of incoming, and not outgoing, ties. But of course there are many research questions for
which an analysis based solely on incoming ties is inadequate.

Missing data are problematic in any context and it is a truism to state that none of the
strategies mentioned above is universally successful. Indeed, judgments about the appropri-
ateness of any strategy will almost certainly depend both on the researchers’ beliefs about
the underlying processes by which the network data are generated and on the kind of net-
work characteristics that the researchers intend to measure. More broadly,Butts (2003)has
written an interesting review of issues relating to network ontology: is a network principally
a cognitivist construction, or is it underpinned by a “real” structure of interactions poten-
tially observable by third parties?Butts (2003)notes that different perspectives may result
in different approaches to the analysis of networks. These differing perspectives may them-
selves inform preferred treatment of issues relating to informant inaccuracy and missing
data.

In any event, asKossinets (2003)notes, the proportion of non-respondents is clearly im-
portant. If this proportion is sizeable, then the simple strategy of excluding non-respondents
is difficult to defend. Furthermore, exclusion provides no evidence as to whether the data
are missing dataat random(i.e. whether non-respondents are different in their network
patterning from respondents), nor whether the missing data mask important structural prop-
erties. The latter prospect might be realized, for instance, if individuals who are central
in an organization do not respond because they are too busy.Stork and Richards (1992)
note the importance of similarities between respondents and non-respondents. In cases of
dissimilarity at either structural- or individual-level, exclusion distorts conclusions.

Importantly, many network studies have non-respondents for which the missing at random
assumption is quite inappropriate. This occurs in the class of studies we noted above, where
the research focus is on respondents, for instance, within one organizational department,
but with additional information about ties to non-respondents from a quite separate context
(such as from other departments). Usually, in such cases there are no grounds to assume
that the ties from respondents to non-respondents present with the same structural patterns
as those among respondents.

1.2. An exponential random graph approach

In this article, we present an approach in which all available data are modeled simulta-
neously—both the full network data for respondents and the incoming ties for non-respon-
dents—without making reconstruction assumptions. Our models do not require that
respondents and non-respondents be similar, either structurally or at the individual-level,
although the models permit some exploration of whether respondents and non-respondents
are involved in similar structural patterns.
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We utilize exponential random graph models—commonly referred to asp∗ models—for
our purposes (Frank and Strauss, 1986; Pattison and Wasserman, 1999; Robins et al., 1999;
Wasserman and Pattison, 1996). The advantage of this class of models is that they model
global network structure as the outcome of processes occurring inlocal social neighbor-
hoodsof the network. A local social neighborhood can be construed as a set of network tie
variables that are hypothesized to be mutually conditionally interdependent (Pattison and
Robins, 2002). The form of these local social neighborhoods is determined by an hypothe-
sized dependence structure, that is, by a set of assumptions about which pairs of potential
ties are dependent, conditional on the values of all other tie variables (e.g. seeRobins and
Pattison, in press). A common dependence assumption has been a Markovian one (Frank
and Strauss, 1986) in which two tie variables are assumed to be conditionally independent
only when they do not have nodes in common. Given a particular set of dependence as-
sumptions, and a consequent specification of the form of local social neighborhoods, the
resulting random graph model expresses the probability of a global network structure as a
function of parameters and observed statistics pertaining to certain network configurations
(small sub-graphs) that occur within local neighborhoods of the network.

In the case of survey network data with missing data, a respondent can be thought of
as having two types of tie: those that are expressed to other respondents; and those that
are expressed to non-respondents. The local social neighborhood of any possible tie can
then be hypothesized to contain both types of tie. Accordingly, exponential random graph
models can be constructed in which the two types of tie are kept distinct and the model for
the network is expressed in terms of configurations containing one or both types of tie.

In essence, we propose to model the sub-matrix of the adjacency matrix that includes all
columns but only the rows pertaining to respondents. We impose homogeneity across all
respondents and also separately across all non-respondents. The resulting model parameters,
then, refer to isomorphic network configurations in which respondents and non-respondents
are distinguished.

If the researcher has confidence that the non-respondents are missing at random, then
we propose a further simplification of the model in which homogeneity is imposed across
appropriate configurations pertaining to respondents alone and to both respondents and
non-respondents.

When, however, the research focus is principally on the respondents and in circumstances
when the missing at random assumption does not apply, we could of course simply ignore
non-respondents and use, for instance, a standard Markov graph model (Frank and Strauss,
1986). But it seems sensible to include all available information in attempting to under-
stand the respondent-to-respondent connections. So we propose models in which the ties
to non-respondents are exogenous predictors of ties involving only respondents.

Our rationale for distinguishing respondent-to-respondent ties and respondent-to-non-
respondent ties in this way is that they differ markedly in the quality of the local network
information that we have available for modeling. In the case of respondent-to-respondent
ties, the dyadic local neighborhood is necessarily complete, and there is likely to be a mix
of non-missing and missing data in higher-order (e.g. triadic) neighborhood configurations.
For respondent-to-non-respondent ties, on the other hand, even the dyadic neighborhoods
involve missing data, and there is a larger proportion of higher-order neighborhoods with
missing data. As a result, any attempt to model ties involving non-respondents is likely to
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be less successful than attempts to model ties involving only respondents. Nonetheless, ties
involving non-respondents can provide important information about the local neighborhood
of a tie linking two respondents (for example, a tie between two respondents may be more
likely if both respondents share a tie to a non-responding third party). Consequently, we can
adopt the approach of treating respondent-to-non-respondent ties as exogenous in a model
for respondent-to-respondent ties.

The use of predictor variables in exponential random graph models has hitherto focused
on the development of social influence, social selection and temporal models (Robins et al.,
2001a,b; Robins and Pattison, 2001, respectively) with both social influence and tempo-
ral models involving a set of network ties as predictors. Using the non-respondent ties
as predictors, we develop models that can be compared with models for the data with
non-respondents ignored altogether. Such comparisons provide useful information about
how important non-respondent ties are to an understanding of the major effects in the
respondent-only network.

Below, we present both of these modeling approaches: the more general model for both
respondent and non-respondent structure, which might be further simplified if the missing
at random assumption can be justified; and models for the respondent-only network, using
non-respondents ties as exogenous predictors. Comparisons between various models within
these classes may also be revealing about the pattern of responses by respondents specifically
in regard to non-respondents, especially when an effect seems substantial in one model but
not so in another. There is a difficulty here in making such comparisons. The effect of
“scaling-up” in these models—that is, the effect of increasing the number of nodes for
fixed parameter values—is not yet well-understood (Robins, Pattison and Woolcock, in
press). This is likely to be a particular problem when non-respondent numbers are large.
Suffice to say that across networks with different numbers of nodes, thevaluesof estimates
of a parameter for a given neighborhood form may not be directly comparable in terms
of indicating, for instance, the size of the neighborhood effect (even if models have the
same parameterization). We need to consider which effects may be considered as the more
important in the model, irrespective of the actual estimates.

A difficulty here is that, despite rapid advances in Markov Chain Monte-Carlo estima-
tion techniques (Handcock, 2002a,b,2003; Handcock et al., 2004; Snijders, 2002; see also
Wasserman and Robins, in press, for a summary), pseudo-likelihood (PL) estimation is still
at this time the most practicable option for the estimation of more complex models, includ-
ing for large networks.4 In this article we use pseudo-likelihood estimation techniques, so
that we do not have available accurate standard errors for parameter estimates. Given the
desirability of comparing across networks with different numbers of nodes, however, it is
useful to establish criteria to identify the important effects in the various models, criteria
that are sensitive to the large number of cases that can arise. But, because the distributional
assumptions are not applicable, one needs to resist the temptation of using the standard tests
of the logistic regression procedure from which pseudo-likelihood estimates are obtained.
The approach we propose here uses a simple heuristic based on criteria related to model fit.

4 Although this situation is changing quite rapidly with the development of the ergm program (Handcock et al.,
2004) and the Siena program within the StOCNET package (Snijders, 2002).
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We discuss this below in the context of using pseudo-likelihood estimation as an exploratory
technique.

In the next section, we describe the general exponential random graph model for a uni-
modal network and then explain how to model the respondent-only structure, using the
non-respondent information as exogenous. We proceed to a section covering certain tech-
nical details, including our heuristic for determining the important effects. We then present
two empirical examples of our approach. The first example involves a well-known net-
work data set, for which we treat a proportion of nodes as non-respondents to compare our
models against the known model for the entire network. The second example is from an
organizational study, with the research question related to the effect of external linkages
on internal organizational structure. We conclude with a discussion of further extensions of
our approach to models that involve multivariate networks and node attributes.

2. Models for unimodal directed networks with missing data

2.1. Models for all the data: respondents and non-respondents

2.1.1. Some terminology and notation
For a set ofn persons oractors, we represent arelational tie between personsi and j

as a binary random variableXij whereXij = 1 if personi considers personj as a partner
under the relationship, and whereXij = 0, otherwise. In other words, a relational tie is a
property of an ordered pair (i, j) of persons, although a tie may not be possible for all ordered
pairs. We define acoupleas an ordered pair of actors (i, j) between whom a relational tie
is possible. We regard the network as a random (directed) graphX = [Xij] with the fixed
node setK = {1, 2,. . . , n} and with an edge directed from nodei to nodej if Xij = 1.5 We
let x = [xij] denote the matrix of realizations of the variablesXij.

In the case of missing data, the node setK is the union of two disjoint subsets,R, the
subset of respondents, andN, the subset of non-respondents. The set of couples then is
defined asC = {(i, j): i ∈ R, j ∈ K = R∪ N, andi �= j}: that is, any ordered pair (i, j) with i
∈ N is not a couple (a tie from a non-respondent is not considered possible for the purposes
of the analysis); nor is a self-tie permitted, as is standard in most network procedures.

2.1.2. Exponential random graph models
We begin by briefly outlining the class of exponential random graph models for networks

with only respondents, that is, whenK = R. These models were first introduced into network
analysis through the Markov random graphs ofFrank and Strauss (1986). Wasserman and
Pattison (1996)discussedp∗ models for univariate networks, with further elaborations for
multivariate networks provided byPattison and Wasserman (1999), and for valued networks
by Robins et al. (1999).

5 If ( i, j) is not a couple inX, Xij is considered a structural zero. In fact this makes no difference at all in the
ensuing description. Rather than a matrix (with some structural zeroes),X can be considered as a set of random
variables on the couples.
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Wasserman and Robins (in press)summarize the basic approach, and the underpinning
of the models through dependency structures is presented inRobins and Pattison (in press).
In summary, the models in the exponential random graph class take the form:

P(X = x) = 1

κ
exp


∑
T⊆C

θT
∏

(s,t)∈T
xst


 (1)

whereC is the set of couples,κ a normalizing quantity, the parametersθT relate to network
configurations(local subgraphs) of particular types depending on the model, and the network
statistic pertaining to a configurationT—

∏
(s,t)∈T xst—indicates whether that configuration

is actually observed in the networkx.6 So each parameter relates to the presence or absence
of a particular network configuration in the observed network. By imposing various ho-
mogeneity constraints—so that parameters of isomorphic configurations are equated—and
by restricting the order of terms in (1), an identifiable model results, with the parameters
expressing tendencies for certain classes of network configurations to be observed.

The simplest model of the class is that of Bernoulli random graphs (Erdös and Renyi,
1959; Frank and Nowicki, 1993), where the couples are assumed to be independent of each
other, so the only relevant network configurations pertain to single ties. A homogeneity
assumption here is equivalent to the assumption that each tie occurs in the graph with equal
probability, and the model is simply:

P(X = x) = 1

κ
exp(θL) (2)

whereθ is a parameter relating to the density of the network andL is the number of observed
ties. A slightly more complex version assumes that dyads are independent of each other, with
the simplest form of homogeneity resulting in parameters relating to ties and to reciprocated
ties:

P(X = x) = 1

κ
exp(θL+ ρM) (3)

whereθ andL are as before, withρ a parameter relating to reciprocity andM the number
of mutual ties.7

Markov random graph models assume that two network couples (i, j) and (r, s), are
independent unless they share a node. AsFrank and Strauss (1986)noted, the resulting
configurations for the Markov graph model relate to single ties, mutual ties, various stars, and
triadic configurations. In this article, we focus on models based on such Markov dependence

6 More formally, a dependence graph is used to represent the hypothesized dependencies among the couples,
with the couples as nodes and the edges representing conditional dependencies between couples (seeRobins and
Pattison, in press, for details). The parameterization of the models is determined by the structure of the dependence
graph, in particular by the cliques of the graph. The parameterθT is non-zero if and only ifT is a clique in the
dependence graph, and there is one and only one parameter for each clique. Different dependence assumptions
leads to different types within the class of exponential random graph models.

7 A looser homogeneity assumption results in the well-known dyadic independencep1 model ofHolland and
Leinhardt (1981)—seeRobins and Pattison (in press).
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structures,8 and with parameters based on the configuration types depicted in the left hand
column ofFig. 1below. These include the familiarp∗ triadic and two-star configurations,
here labeled asτ9 to τ15 (for the full numbering system, which is based on the standard
network triad count, see Fig. 2 ofRobins and Pattison, in press), together with three-in-star
and three-out-star configurations labeledσ1

3 andσ0
3, respectively (we use the same labeling

for configurations and for their related parameters in the model). This Markov random graph
model then becomes:

P(X = x) = 1

κ
exp


 15∑
p=9

τpTp(x)+ σI
3S

I
3(x)+ σO

3 S
O
3 (x)


 (4)

whereTp(x) is a count of triads of typep in the observed graphx, SI
3(x) is the number of

three-in-stars inx, andSO
3 (x) the number of three-out-stars. Because this is a model where

all nodes are respondents, below we term this anR model.9

Eq. (4)expresses a distribution of random graphs, each of which can be construed as
arising from an agglomeration of the configurations represented by the parameters. So the
parameters can be interpreted as indicating the strength of the local structural effects that
produce the graph. It should be noted that interpretation of a parameter is relative to higher or
lower order configurations. For instance, in a dyadic model a positive reciprocity parameter
(ρ) in the presence of a negative density, or edge, parameter (θ) indicates that there are more
reciprocated ties than would be expected by chance, given the number of ties (alternatively,
the density) observed in the graph.

2.1.3. Introducing non-respondents
The presentation of theRmodels above makes clear why they can be used to model both

respondents and non-respondent data simultaneously. There is nothing in the formulation
of (1) that requires that the matrixX be square, so that it could comprise rows represented
by respondents and columns by both respondents and non-respondents. Indeed (1) is quite
general, in that there is no restriction on the set of couplesC. Accordingly, for networks
with missing data, we can present (1) in an expanded form that makes explicit the inclusion
of non-respondents:

P(X = x) = 1

κ
exp


 ∑
P⊆R×R

θP
∏

(s,t)∈P
xst +

∑
Q⊆C:Q∩(R×N)�=∅

θQ
∏

(s,t)∈Q
xst


 (5)

where the first summation is over configurationsP involving only respondents, and where
the second summation is to be taken over configurationsQ that include at least one couple
(s, t) with t a non-respondent.10 Note that if researchers exclude non-respondents and treat

8 More complex models, involving longer paths, higher order configurations, and setting structures, have also
been developed—seePattison and Robins (2002)andSnijders et al. (2004).

9 Readers familiar withp∗ network models may be puzzled by the inclusion of three-star parameters. Hitherto,
published applications of these models have typically only included two-stars as the highest order star parameters.
We discuss this point below.
10 More formally, the summations are over dependence graph cliquesP that contain only respondent–respondent

couples, and over cliquesQ that contain at least one respondent–non-respondent couple.
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Fig. 1. Configurations for Markov graph model with non-respondents (empty circles indicate respondents; black
squares indicate non-respondents).
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the network as comprising respondents only, in fitting ap∗ model they use a model based
on only the first, but not the second, summation.

For our general model, we simply utilize (5) but in applying homogeneity constraints
we distinguish between nodes that are respondents and those that are non-respondents. So,
for instance, the parameter for a two-in-star (τ14) involving three respondents is different
from the parameter for a two-in-star with two respondents and one non-respondent (see the
second row ofFig. 1). Technically, we treat the nodes ascoloreddepending on whether
they represent respondents or non-respondents, and we impose homogeneity across iso-
morphic configurations where the isomorphism preserves both edges and colors. A similar
homogeneity approach is adopted in exponential random graph social selection and social
influence models.

Under a Markov graph dependence assumption, the result is a model with parameters
relating to the configurations inFig. 1. We term this anRNmodel. It takes the form:

P(X = x) = 1

κ
exp


 15∑
p=9

τpTp(x)+ σI
3S

I
3(x)+ σO

3 S
O
3 (x)


 +

15∑
p=12

τpNTpN(x)

+τ9NT9N(x)+ τ12NNT12NN(x)+ σI
3S

I
3N(x)+ σO

3 S
O
3N(x) (6)

Obviously, in any configuration there cannot be a tie from a non-respondent. So there are
no parameters for reciprocated ties and cyclic triads involving non-respondents. Information
on ties to non-respondents is not helpful in determining trends towards reciprocation or
cyclicity, so thatRNmodels do not assist in estimating such trends.

2.2. Homogeneous RN models

Suppose a researcher has confidence that the non-respondents are missing at random.
Then we can attempt to fit a model imposing homogeneity across appropriate configurations
presented inFig. 1. This amounts to equating parameters across the rows of the Figure. More
particularly, we equate the following parameters:τ15 = τ15N ; τ14 = τ14N ; τ13 = τ13N ; τ12
= τ12N = τ12NN ; τ9 = τ9N ; σI

3 = σI
3N ; andσO

3 = σO
3N . To be clear in what follows, we will

label such parameters with an ‘H’ subscript (referring to “homogeneity”), and we will term
this anRH model. Inferences based on this model might be taken to apply to the network
as a whole, irrespective of the non-respondents. Clearly such inferences will only be viable
if the missing at random assumption is reasonable. Comparisons between the two models
may be useful in deciding the validity of this assumption.

2.3. Models for respondents with non-respondent ties as exogenous

If the central focus of the research is on the respondents, and if the missing at random
assumption is not viable, it may be helpful to fit a model predicting only respondent ties, but
using non-respondent ties as exogenous predictors. We term this anR+ model,in that we
are fitting a model only for the network of respondents but taking into account information
relating to non-respondents. A typical research question here might be whether ties external
to the respondents’ organization are important in determining structure among respondents.
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Using Markov dependence assumptions, the resulting model is relatively straightforward
with the parameters a subset of those for the more general model (6).11 The essential
difference is that we are only modeling ties in configurations that involve respondents. For
instance, inFig. 1consider theτ12N configuration, an out-star that contains two ties, one to
a respondent and one to a non-respondent. We can incorporate theτ12N configuration into
our model, but in this case only as a predictor of the tie between the two respondents. Any
configuration that does not involve a tie among respondents, then, will not enter the model.
Accordingly, the model includes configurationsτ12N , τ13N andτ9N , as well as the standard
τ9 to τ15 Markov configurations,σI

3 andσO
3 . The model does not include parameters for

τ14N , τ12NN , σI
3N andσO

3N , as these configurations, if observed, would not include any
respondent-to-respondent ties.

In summary then, we are dealing with four models. TheR model is simply a Markov
random graph model with non-respondents excluded. TheRNmodel is the fullest model and
treats non-respondents as a different type of node, retaining all the resultant homogeneous
effects. TheRHmodel derives from theRNmodel by equating various of theRNeffects to
produce parameters akin to those of standard Markov graph models; it may be applicable
if the missing at random assumption holds. TheR+ model, on the other hand, treats ties
to non-respondents as exogenous, and may be appropriate when the missing at random
assumption is not applicable. With these four models in place, we present two examples:
one from a well-known network data set from which we treat a certain number of nodes as
non-respondents, derive anRNand anRHmodel, and compare against theRmodel for the
entire network. Our second example comes from an organizational study, with the research
question pertaining to network structure among respondents within the one organizational
department. The data, however, included network ties from respondents to non-respondents
in other departments and organizations. We use anR+ model to investigate whether there
are any important “boundary-spanning” effects involving ties outside the department that
influence the shape of the network within the department.

Before we present these examples, however, we discuss some technical details related to
model comparisons, parameter estimation, and the behavior of “near degenerate” models.

2.4. Estimation and model comparisons

In this article, we use pseudo-likelihood estimation, suggested for this class of models by
Strauss and Ikeda (1990). There have been recent promising developments in Monte-Carlo
maximum likelihood estimation for Markov random graph models (Handcock, 2002a,b,
2003; Snijders, 2002), based on algorithms for long-run simulations, but these methods
have yet to be implemented for more complex models, nor in practical terms are they
yet available for very large graphs. As our immediate purpose is simply to illustrate the
new models, we use the more convenient pseudo-likelihood estimation procedure with the
warning that the parameter estimates need to be seen as approximate.

One issue with any estimation procedure for these models relates to degeneracy, first
discussed in the context of Markov random graphs byStrauss (1986). Near degenerate

11 Technically, to develop models with network ties as predictors, we derive a dependence graph from a two-block
chain graph as described byRobins et al. (2001b).
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models occur when particular combinations of parameter values lead to the simulation
procedure behaving unusually, either being “trapped” in a particular region of parameter
space, or possibly oscillating between different regions, as illustrated by some ofSnijders’
(2002)examples. For such parameter values, any estimation procedure is likely to be prob-
lematic.Handcock (2002a,b, 2003)showed that this behavior is to be expected in certain
regions of the parameter space, but that for non-degenerate regions, Monte-Carlo esti-
mation can proceed satisfactorily. Our own work on large-scale simulations of Markov
random graph models (Robins et al., in press) suggests that models that include negative
parameters for three-stars can give rise to plausible model properties in some circum-
stances. This is a preliminary finding—and indeed recent work suggests that the inclu-
sion of certain higher order non-Markov parameters will also be useful in avoiding near
degenerate models (Snijders et al., 2004)—but our current recommendation for Markov
models is that they should at least include parameters pertaining to three-in- and out-stars,
as above.

The combination of two- and three-stars in the one model enables a better modeling
of the degree distribution. A positive two-star parameter suggests a tendency for actors to
have multiple network partners, while a negative three-star parameter suggests a ceiling
on this effect. In other words, if the magnitude of the negative three-star parameter were
sufficiently large, many actors would have multiple network partners but there would be
few with very many (for further details of three-star interpretation, seeRobins et al., in
press).

2.5. Pseudo-likelihood

Pseudo-likelihood estimation can be implemented through standard logistic regression
procedures. Each couple represents a case, with the observation of a tie predicted from
statistics associated with each parameter. Each statistic is the number of configurations
pertaining to the parameter that the tie would complete, if it were observed (for example,
in anRmodel, if there are three two-paths fromi to j, then a tie fromi to j would complete
oneτ15 configuration, three two-in-stars,τ14, three two-out-stars,τ12, and three transitive
triads,τ9). In Appendix A, we briefly outline how to calculate the statistics for each of the
configurations inFig. 1.

Any logistic regression output typically produces standard errors and a deviance statistic,
which is a measure of fit. In pseudo-likelihood estimation, the standard errors are unreliable
and may often be too small (Snijders, 2002), although they might be taken as a rough
indicator of scale. In standard logistic regression models for independent observations, the
deviance is asymptotically distributed as chi-squared. The pseudo-likelihood deviance is still
a useful measure of fit but its distribution is unclear.12 Moreover, the pseudo-likelihood data
file for a sizeable network will contain a very large number of cases, and it would normally
be desirable to take this into account in determining an appropriate alpha level. When
there is substantial power in the presence of many cases, blind adherence to chi-squared
approaches with standard alphas will result all too readily in the retention of many small

12 Indeed, given that the sampling space of random graphs on a fixed number of nodes is finite, albeit large, it is
not certain that the use of asymptotic results is appropriate in any case.
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effects that achieve notional significance. For the same reasons, the use of the Wald statistic
from logistic regression procedures is an uncertain guide to indicate important parameters in
these models. So, pseudo-likelihood estimation needs to be seen as an exploratory technique,
not one that is appropriate for formal null hypothesis significance testing. This is not always
a problem for network analytic studies which often rely on exploratory techniques in any
case.

Moreover, the scale-up properties of these models—that is, the behavior of the same
model with increased numbers of nodes—are not yet well understood (Robins et al., in
press). Hence, it is difficult to make direct comparisons of parameter estimates (irrespec-
tive of the estimation procedure): for instance, in comparing across graphs with different
numbers of nodes, parameter estimates should not necessarily be seen as representing effect
sizes on comparable scales. Nevertheless, conclusions can be drawn about the importance
of various effects in a model, and on that basis comparisons might be made. The advantage
of Monte-Carlo estimation techniques is the availability of reliable standard errors, from
which confidence intervals for estimates can be produced. In the more exploratory world
deriving from pseudo-likelihood estimation, the absence of reliable standard errors makes
this approach problematic.

2.5.1. A heuristic for model simplification
As a means to making decisions about important parameters, we provide here a non-

distributional heuristic based on the pseudo-likelihood deviance as a measure of fit. The
idea is that parameters that are not important would not affect model interpretation grossly
if they were removed, so the basis of the heuristic is to ensure that the conditional proba-
bilities of a tie being present, as estimated from the models, do not vary substantially for
too many cases if a parameter were to be removed. We may still retain the parameter in
the model, but then treat it as “unimportant” in the sense that it does not greatly affect
interpretation.

As a first step, comparison of means of absolute residuals is useful. In addition, we propose
a more defensive strategy when removing a parameter, a step that will lead to a worsening of
residuals (i.e. a worsening in the model’s predictive capacity). Larger changes in estimated
probabilities of a tie being correctly observed (or not observed) might be tolerated for cases
when the model is already successful but only smaller changes might be accepted where
the model is weakly predictive. For this purpose, the pseudo-likelihood deviance statistic
turns out to be valuable. Decisions are required about the level of deviations in predicted
probabilities that are regarded as tolerable. This gives an indication of the level of overall
deviation that is acceptable, and the change in the PL deviance is a useful summary statistic
for that purpose.

We provide detail of our approach inAppendix B. In summary, we suggest removing a
parameter from the model if the resulting change of deviance is less than−2N log(l − δ)
whereN is the number of cases (in a unimodal binary network, the number of couples) and
δ (defined inAppendix Bas an acceptable level for the proportional change in predicted
probabilities) is a small number, possibly 0.001 or 0.005. For instance, suppose we have
a network of 50 actors, all of whom are respondents, so that there are 2450 couples, and
suppose we setδ = 0.005. Then we would remove parameters from the model if they did
not diminish the PL deviance by at least 24.6. Withδ= 0.001, we would remove parameters
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only if the PL deviance was not diminished by less than 4.9. Clearly the researcher has a
choice here, with a smallerδ being a more rigorous criterion.13

This approach can be used to simplify models by parameter removal (see for instance,
Robins et al., 1999), or simply to indicate the parameters that are not important to a model’s
predictive capacity, which is what we do in this article. If the approach is used to simplify
models, there is one possible proviso to the removal of a parameter that is not a sub-
stantial contributor to the PL deviance. Configurations contain within them various other
sub-configurations. Accordingly, in many circumstances it is desirable to keep models hier-
archical, so that parameters that relate to lower order configurations are retained in the model
in the presence of substantial higher order parameters. Admittedly, there are times when a
non-hierarchical model may be pragmatically helpful in terms of simplifying interpretation
(seeRobins and Pattison, 2001, for an example), but a decision to use a non-hierarchical
models should be made with care.

2.6. Example 1: the Kapferer tailor shop data

As an example we useKapferer (1972)tailor shop data for instrumental interactions
(work and assistance-related) in a Zambian tailor shop. Binary directed observations were
made on 39 actors at two time points. We use the data from the first time point here. The
dataset is available in UCINET 5 (Borgatti et al., 1999).

We begin by fitting a Markov random graph model for the entire network. The data
comprises observations on 1482 couples (39× 38). If we use a stringentδ = 0.001, then
−2N log(1 − δ) = 3.0, so that effects that diminish the PL deviance by 3 or more are
considered important. The results are in top panel ofTable 1with unimportant parameters
marked with “#”. We retain these parameters in the model but do not interpret them. Perhaps
not surprisingly, the strongest effect is for reciprocity (theτ11 estimate). There are fewer
two-paths across the network than expected (a negativeτ13 estimate) unless those paths are
closed into transitive triads (the positiveτ9 estimate). Interestingly, there is a strong negative
effect against three-cycles (τ10 estimate). So, apart from reciprocity, the major effects are
for transitivity and against cycles, indicating hierarchical network closure. There is also a
positiveτ12 estimate, suggesting variation in expansiveness; so there are likely to be some
actors who have relatively high outdegree. The three-star parameters are not important in
this model.

To examine our non-respondent models in comparison with the results inFig. 1, we
arbitrarily chose the last 19 of the 39 actors as non-respondents. It cannot be confidently
said that these non-respondents are missing at random. A blockmodel of the entire network,
with separate blocks for the first 20 and the last 19 actors, indicates relatively high density
in blocks (0.14 in the first and 0.10 in the second) yet lower density between blocks (0.05
for block 1 selecting block 2, and 0.01 for block 2 selecting block 1). Nevertheless, the
non-respondent ties are not exogenous here, so thatRNmodels—and possiblyRH models

13 In the sense that for smallerδ two models that differ by one parameter are considered “equivalent” if the
difference in their PL deviances is smaller. In other words, it is easier to consider a parameter “unimportant” if the
δ is larger.
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Table 1
Model estimates for Kapferer network

Parameter Estimate

(a) Markov graph model entire network (PL deviance= 434.9, MAR= 0.078)
τ15 −4.38
τ14 0.03#

τ13 −0.16
τ12 0.40
τ11 4.49
τ10 −0.89
τ9 0.50
σI

3 −0.04#

σO
3 0.03#

(b) Markov graphRmodel with first 20 actors as respondents (PL deviance= 164.2, MAR= 0.124)
τ15 −6.36
τ14 0.11#

τ13 0.37
τ12 1.10
τ11 3.31
τ10 −1.44
τ9 0.33
σI

3 −0.01#

σO
3 −0.27

Note: # indicates parameters whose absence does not change the PL deviance substantially.

depending on how poorly the missing at random assumption holds—are more appropriate
thanR+ models with exogenous non-respondent ties.

We begin with parameter estimates for the respondent-only (R) model, presented in the
bottom panel ofFig. 1. Comparison between the two models inFig. 1 indicates that many
of the effects in the entire data are captured quite well by the respondentR model, but
there are some important differences, notably a change in the sign of the two-path (τ13)
estimate, a strengthening of the positive two-out-star (τ12) estimate and of the negative
three-cycle (τ10) estimate, and an important negative three-out-star effect. These results
are consistent with the blockmodel—there are relatively more two-paths within the denser
respondent block, so that, relative to the increased two-path effect, there are even fewer
three-cycles (recall that a three-cycle is “built up” of three two-paths). Moreover, within
the denser respondent block there is a greater tendency for multiple choices of network
partners, but there is nevertheless a ceiling on this effect (hence the negative three-star
effect). The pseudo-likelihood deviances here are not comparable, given that they relate to
different numbers of cases, but the mean absolute residual suggests that theR model does
not do anywhere near as well as the full model in predicting ties and non-ties.

In Table 2, we present estimates for theRN model. From the mean absolute residual,
we see that this model does appreciably better than theRmodel. Here, we briefly interpret
the important effects relating to non-respondents. There is an important popularity effect
for non-respondents (the positiveτ14N estimate), so that if a non-respondent is chosen at
all there is a tendency for them to be chosen multiple times. But the negative three-in-star
effect (theσI

3N estimate) places a ceiling on popularity levels. This is consistent with the
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Table 2
Model estimates for Kapferer network:RNmodel with first 20 actors treated as respondents

Parameter Estimate

RNmodel (PL deviance= 267.4, MAR= 0.097)
τ15 −6.74
τ15N −5.08
τ14 0.01#

τ14N 1.07
τ13 0.58
τ13N −0.35
τ12 0.79
τ12N 0.31
τ12NN 1.57
τ11 3.71
τ10 −1.40
τ9 0.32
τ9N 0.23#

σI
3 −0.08#

σI
3N −1.40
σO

3 −0.24
σO

3N −0.54

blockmodel: the indegree distribution for the second block chosen by the first indicates that
of the 11 non-respondents selected by respondents, six have indegrees 2 or 3, but none with
indegrees higher than 3.

As might be expected given the lower density of selections of non-respondents by re-
spondents, there is an effect against two-paths ending in the second block (the negative
τ13N estimate). The previously observed outdegree effect is even more pronounced when a
non-respondent is selected (the positiveτ12N andτ12NN estimates, counterbalanced by the
negative three-outstarσO

3N estimate), reflecting the fact that a couple of respondents select
a high number of five or six non-respondents.

In Table 3, we present theRH model. Because the numbers of cases are identical, the
pseudo-likelihood deviances are directly comparable between theRH andRNmodels. We
see that theRNmodel yields better predictions, with a difference of 34.9 in PL deviances but

Table 3
Model estimates for Kapferer network:RHmodel with first 20 actors treated as respondents

Parameter Estimate

RHmodel (PL deviance= 302.3, MAR= 0.109)
τ15H −4.74
τ14H 0.12#

τ13H −0.12
τ12H 0.58
τ11H 3.68
τ10H −0.52
τ9H 0.26
σI

3H 0.04#

σO
3H −0.06
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at the cost of an additional eight parameters, an average of 4.4 per variable. In the Tables, to
determine importance of variables, we have used a stringentδ= 0.001, so that for theseRN
andRHmodels, only variables that contribute 1.5 or less to the PL deviance are considered
unimportant. If we had used the less stringentδ = 0.005, variables contributing less than
7.6 to the deviance would be considered unimportant. This suggests thatRN model is
indeed better but perhaps not dramatically so, a conclusion confirmed by the mean absolute
residuals. So we might infer that although there is structure in the blockmodel, the missing
at random assumption for these non-respondents has some plausibility.

If we used theRH model to infer effects for the entire network, then a comparison of
Table 3with the first panel ofTable 1indicates that we would not draw vastly different
conclusions. This is in a situation where we have almost half the original actors specified
as non-respondents, so theRHmodel is performing well in coping with the missing data.

We have chosen this example to illustrate the potential of this approach, even when the
proportion of non-respondents is as high as 50%, and to permit others to replicate the
results. But as pointed out earlier, we have not chosen non-respondents at random. Our
experience of choosing 19 non-respondents at random for this network suggests that for
the majority of occasions theRH estimates are consistent with the full network estimates
as in Fig. 1. There are occasions when this is not so, particularly when the three-cycle
(τ10) estimate becomes extremely negative to the point of suggesting overfitting of the
parameter. Our original inference was that there were fewer three-cycles than expected in
the network. Creating a large number of non-respondents, and thereby removing a large
number of ties, may result in there being very few or no three-cycles in the data at all.
In these circumstances the estimation procedure obviously cannot function well and the
parameter will appear as overfitted. If this occurs in actual data, we suggest an investigation
of the presence of the configuration in the data to confirm its relative absence (which might
be a useful conclusion in its own right), and then the removal of the parameter from the
model.

The problem obviously does not apply to the same extent if the proportion of non-respon-
dents is lower. We have investigated the Kapferer data further, producing anRHmodel for
each of 15 selections of 9 non-respondents at random. The mean and standard deviation
of the parameter estimates are produced inTable 4. It will be seen that these results are
strikingly consistent with the model for the full data inTable 1.

2.7. Example 2: an organizational department with external non-respondents

We fit the models to a data set from an Australian government organization (Rogers
et al., 2002). A number of networks were measured for 60 respondents in one department
of the organization. Respondents were free to choose their network partners from other
individuals within that department or from other departments. The network we model here
is a binary work frequency network, signifying frequent work partners. Nominations for
frequent work partners included the original 60 respondents, together with an additional
171 non-respondents. In total there were 577 observed ties, of which 245 were among
respondents and 332 from respondents to non-respondents. The question we ask here is
whether external connections beyond the department are important to an understanding of
departmental structure.
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Table 4
Means and standard deviations of parameter estimates for 15 Kapferer networkRH models with nine
non-respondents selected at random

Parameter Mean Standard deviation

τ15H −4.04 0.26
τ14H 0.01 0.22
τ13H −0.17 0.08
τ12H 0.34 0.09
τ11H 4.41 0.50
τ10H −1.03 0.56
τ9H 0.55 0.14
σI

3H 0.03 0.06
σO

3H −0.03 0.02

PL deviance 368.4 41.6
Mean absolute residual 0.084 0.012

It is worth noting that this data is not particularly suitable for reconstruction along the
lines of Stork and Richards (1992), as the 245 ties among respondents included only 39
mutual dyads.14 If we were to apply reconstruction to the non-respondent ties, we would
likely be wrong more often than right. This is not to say that there is no reciprocity effect
in the data: given that the density of the network is some 7%, the fact that 78 out of 245 ties
(32%) are reciprocated suggests quite high levels of reciprocity. This example illustrates
that, even when there is a tendency towards reciprocity, reconstruction assumptions may
not apply particularly well.15

2.7.1. R-models
We begin by fitting the respondent-onlyR model. The respondent-only data comprises

observations on 3450 couples (60× 59). If we use aδ= 0.001, then−2N log(1− δ) = 6.9,
so that effects that diminish the PL deviance by 7 or more are considered important. The
results are presented inTable 5.

The model suggests reciprocity effects (τ11), and some not surprising evidence for hier-
archy, with transitivity effects (τ9—suggesting that the global structure has some tendency
towards clustering of nodes based on hierarchically ordering), and an effect against cyclicity
(τ10—suggesting tendencies against the clustering of nodes based on cyclic exchange).

2.7.2. R+ model
The R+ model is presented inTable 6. The first point to note is that none of the three

additional non-respondent parameters are important in this model. Nor does the PL deviance,
nor the mean absolute residual, differ greatly for that of the MarkovR model inTable 5.

14 This result is less puzzling when other aspects of the data set are taken into account. The network responses
were quite strongly influenced by the formal hierarchy of the organization, so that in choosing network partners,
individuals seemed tempted to choose those on similar or higher levels of the hierarchy. In other words, in surveying
their perceived working environment, respondents tended to look “upwards”, rather than “downwards”.
15 Examination of such statistics for all parameters also gives confidence that the exploratory pseudo-likelihood

estimates are successfully indicating strong effects in the data.
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Table 5
Models for work frequency network among respondents (Rmodel)

Parameter Estimate

Rmodel (PL deviance= 1175, MAR= 0.090)
τ15 −4.31
τ14 0.20
τ13 −0.14
τ12 0.23
τ11 2.11
τ10 −0.41
τ9 0.54
σI

3 −0.03#

σO
3 −0.02#

Note: # indicates parameters that do not change the PL deviance substantially.

Table 6
Models for work frequency network among respondents with non-respondent ties exogenous (R+ model)

Parameter Estimate

R+ model (PL deviance= 1163, MAR= 0.090)
τ15 −4.50
τ14 0.23
τ13 −0.16
τ13N 0.03#

τ12 0.22
τ12N 0.03#

τ11 2.03
τ10 −0.39
τ9 0.51
τ9N 0.16#

σI
3 −0.03

σO
3 −0.02#

Note: # indicates parameters that do not change the PL deviance substantially.

We conclude that external ties beyond the department are not important in understanding
the internal departmental work patterns.16 Note that this conclusion may not apply if the
work frequency network were included in a broader multivariate network analysis, or if
actor attributes were included—see the discussion below.

3. Conclusions

In this article, we have modeled networks with missing data in the form of non-respondents
to a sociometric questionnaire, using exponential random graph models. Our approach is
deliberately pragmatic: we attempt to use whatever information is available to strengthen
interpretations, rather than to discard data when it is incomplete (e.g. when there is infor-

16 The presence of the additional parameters does permit the three-in-star parameter to reach the criterion of
importance, but this does not seem a major change.
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mation on non-respondents in terms of indegrees but not outdegrees). As with any missing
data in social sciences, there is no foolproof way to infer from what is not observed, and we
underline the importance of obtaining the best and most complete data that one reasonably
can. Nevertheless, network data is difficult to collect, and there are times when there are
many non-respondents. In these all-too-common circumstances, we need to use the data as
best we can.

The exponential random graph approach works with missing data because the models es-
sentially adduce the global structure of a network as the aggregation of local sub-structures.
So even though there may be many gaps in the data, sufficient numbers of local social neigh-
borhoods may still be observed from which to make reasonable inferences. Other network
techniques that rely more on observed global network structures, and not so explicitly on
local neighborhoods, are not particularly adequate in the face of substantial missing data.

We see this article as in the tradition of exploratory analysis, rather than as present-
ing procedures that demand formal statistical testing (even though the models do have a
statistical basis). This exploratory approach is forced on us to a degree by the approxi-
mate pseudo-likelihood estimation technique we have used, although new developments
in Monte-Carlo maximum likelihood estimation open the prospect of using these models
in a more formal way. But we see our primary goal as the obtaining of insight into the
data, rather than in the reaching of definitive statistical conclusions (although the latter are
important if available). It is in this light that we have presented our various proposals for
heuristics in model selection and interpretation.

The techniques in this article can be readily extended to the analysis of multivariate
and valued networks in a natural way based on the multivariate and valued extensions ofp∗
models (Pattison and Wasserman, 1999; Robins et al., 1999). More complex generalizations
would involve actor attributes, for instance, in social selection models. If attribute informa-
tion is available on non-respondents, then again the extension follows naturally with a rather
direct application of these techniques to social selection models. If attribute information
is not available for non-respondents, however, the non-respondents then in effect create a
new category of attribute. For instance, if information on a binary attribute such as sex is
not available for non-respondents, then there are in effect three “colors” on the nodes of
the network: non-respondents, male respondents, female respondents. Homogeneity con-
straints could then be imposed based on isomorphic configurations, where the isomorphism
preserves the three colors, in analogy with the approach above for two colors.

Acknowledgements

This work has been supported by the Australian Research Council. We are grateful for
comments from John Skvoretz and Filip Agneessens, and from two anonymous reviewers.

Appendix A. Calculation of statistics for pseudo-likelihood estimation

The data can be decomposed intoR, anR × R matrix of ties among respondents (with
zeroes on the diagonal) andN, anR× Nmatrix of ties from respondents to non-respondents.
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Each cell in these matrices represents a case in the logistic regression that is conducted to
obtain pseudo-likelihood estimates. Accordingly for each of the parameters (configurations
in Fig. 1), there is a matrix of statistics corresponding to the relevant couple. Define some
additional matrices:u1 is anR× Rmatrix containing only 1s, except for 0s on the diagonal;
u2 is anR× N matrix containing only 1s;u3 is anN × N matrix containing only 1s, except
for 0s on the diagonal; and0 is a matrix of the relevant dimension containing only 0s. Then
the statistics can be calculated via the following matrix arithmetic.

R× Rmatrix R× N matrix

τ15 u1 0
τ15N 0 u2
τ14 u1 × R 0
τ14N 0 u1 × N
τ13 u1 × t(R) + t(R) × u1 0
τ13N u2 × t(N) t(R) × u2
τ12 R × u1 0
τ12N N × t(u2) R × u2
τ12NN 0 N × u3
τ11 t(R) 0
τ10 t(R) × t(R) 0
τ9 R × R + t(R) × R + R × t(R) 0
τ9N N × t(N) R × N + t(R) × N

Here ‘×’ indicates matrix multiplication and ‘t(R)’ indicates the transpose ofR. Having
calculated these statistics, it is simply a matter of reshaping the data and statistics into
the one logistic regression file. It is perhaps simplest to calculate the three-star statistics
by computing new variables in the logistic regression file:sI3 = t14(t14 − 1)/2; SI

3N =
t14N(t14N − 1)/2; sO3 = t12(t12 − 1)/2; andsO3N = t12NN(t12NN − 1)/2.

Appendix B. Proposal for model simplification

B.1. Deviations in predicted probabilities

Suppose that pseudo-likelihood estimation is used for models withN cases, whereYi is a
dichotomous variable for thei-th case, whereP0i is the probability thatYi = 1 conditional
on all observed values ofYj for j �= i, as predicted under the original model, and where
P1i is the analogous conditional probability predicted under a model with one parameter
removed. Letπ0i indicate the original model’s predicted conditional probability of assigning
the correct value ofY to casei, that is:

π0i =
{
P0i, whenYi = 1

1 − P0i, whenYi = 0
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If we consider the model as predicting probabilities of classifying each case to categories,
Yi = 1 andYi = 0, thenπ0i is the probability of correct classification. Letπ1i be the analo-
gous probability for the revised model. Because the revised model has one less parameter,
we would expect thatπ0i ≥ π1i, or equivalently thatP0i > P1i whenYi = 1 and thatP1i ≥
P0i whenYi = 0.

B.2. The mean of absolute residuals

Denote asR0i the absolute residual in the original model for casei, i.e.R0i = |Yi − P0i|. It
follows that forYi = 1,R0i = 1 − P0i = 1 − π0i, and that forYi = 0,R0i = P0i = 1 − π0i.
In other words, the absolute residual for casei is simply the model’s predicted probability
for incorrect classification. Let̄R0 signify the mean of the absolute residuals for model 0
and�R̄01 the change in the mean absolute residuals from model 0 to model 1. We then
have:

N�R̄01 = N(R̄0 − R̄1) =
∑
i

(π1i − π0i) =
∑
Yi=1

(P0i − P1i)+
∑
Yi=0

(P1i − P0i)

We would ideally like |P0i − P1i| = |π0i − π1i| to be suitably small for alli (with
“suitably small” to be determined by the level of deviations that are regarded as tolerable).
In that case,�R̄01 is clearly a simple and useful measure. What is more likely, of course,
is that even if�R̄01 is small, |P0i − P1i| will be large for somei. Provided that the number
of cases where this occurs is not substantial, then we might accept that overall the two
models can be treated as approximately equivalent in their abilities to predict conditional
probabilities, even though there may be a small proportion of individual cases where this is
not so.

Despite the simplicity of�R̄01, it is not on a logarithmic scale unlike the logits from
which the model’s estimates are derived. Secondly, and relatedly, a particular difference
|P0i − P1i| can lead to different interpretations between models, depending onπ0i.

For instance, supposeπ0i − π1i = 0.2. If the original model performs very well in
classifying casei, sayπ0i = 0.9, the revised model does not do quite as well but still
accords the correct classification a relatively high probability of 0.7. In these circumstances,
the overall interpretation of the model might not be substantially changed and this fall in
the probability of correctly classifying casei may be considered as not invidious. But if the
original model does poorly for casei, sayπ0i = 0.23, the revised model will do very poorly
to the point that interpretation of the model will have correct classification as quite a rare
event. Here, the change in probability does change interpretation substantially.

B.3. Proportional changes in probabilities

Accordingly, we might rather accept changes in probability that are relatively large for
cases where the original model fits well, but smaller for cases where it fits poorly. A means
to this end is—rather than to seek small values of |π0i − π1i|—to aim for small values of
|π0i − π1i|/π0i. For instance, in comparison with the example in the previous paragraph, if
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(π0i − π1i)/π0i = 0.2, and ifπ0i = 0.9, thenπ1i = 0.78; whereas ifπ0i = 0.23, thenπ0i
= 0.18.

Moreover, if we revert to the logarithmic scale we can utilize the PL deviance.

B.4. The deviance statistic

The deviance is two times the logarithm of the pseudo-likelihood function, that is:

G2
PL = −2 log

[∏
i

P
Yi
i (1 − Pi)

(1−Yi)
]

= −2
∑
i

[Yi logPi + (1 − Yi)log(1 − Pi)]

= −2
∑
Yi=1

logPi − 2
∑
Yi=0

log(1 − Pi) = −2
∑
i

logπi

so that

G2
PL1 −G2

PL0 = −2
∑
i

log

(
π1i

π0i

)
= −2

∑
i

log

(
1 − π01 − π1i

π0i

)

= −2
∑
i

log(1 − δi)

whereδi = (π0i − π1i)/π0i.
Now if it so happens thatδi is suitably small for alli, then�G2

PL = G2
PL1−G2

PL0 will be
small. Suppose we are in the very fortunate position where the parameter being investigated
is uniformly irrelevant across all cases, so that, say, 0≤ δi ≤ 0.005 for alli. Then for alli,
−2 log(1− δi) ≤ 0.01 and�G2

PL ≤ 0.01N.
This simple calculation suggests a guideline for determining the limits of�G2

PL wherein
the two models might be considered equivalent. If we considerδ an acceptable level for the
proportional change in predicted probabilities, and assume that the models are well behaved
in the sense of the previous paragraph whereby the parameter is uniformly irrelevant, then for
all i, 0≤ δi ≤ δ, and a change in the deviance of�G2

PL = −2N log(1−δ) can be considered
a tolerable variation. Of course, the assumption of uniform irrelevance is unlikely to hold,
but we still might utilize the resulting limit as a necessary condition for considering the two
models equivalent.

In general, as the calculation of the limit is dependent onN, for a setδ the limit will
increase with increasingN. For maximum likelihood models, this would be tantamount
to decreasing theα-level for testing significance, which is in fact a sensible practice asN
becomes large.
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